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Abstract

Zero-shot learning (ZSL) is an extreme case of transfer learn-
ing that aims to recognize samples (e.g., images) of un-
seen classes relying on a train-set covering only seen classes
and a set of auxiliary knowledge (e.g., semantic descriptors).
Existing methods usually resort to constructing a visual-to-
semantics mapping based on features extracted from each
whole sample. However, since the visual and semantic spaces
are inherently independent and may exist in different mani-
folds, these methods may easily suffer from the domain bias
problem due to the knowledge transfer from seen to unseen
classes. Unlike existing works, this paper investigates the
fine-grained ZSL from a novel perspective of sample-level
graph. Specifically, we decompose an input into several fine-
grained elements and construct a graph structure per sample
to measure and utilize element-granularity relations within
each sample. Taking advantage of recently developed graph
neural networks (GNNs), we formulate the ZSL problem to
a graph-to-semantics mapping task, which can better exploit
element-semantics correlation and local sub-structural infor-
mation in samples. Experimental results on the widely used
benchmark datasets demonstrate that the proposed method
can mitigate the domain bias problem and achieve compet-
itive performance against other representative methods.

Introduction

Recent years have seen a rise of interest in zero-shot learn-
ing (ZSL) which imitates the human ability to recognize un-
seen classes without observing real samples (Kodirov, Xi-
ang, and Gong 2017; Yu et al. 2018; Guo and Guo 2019; Zhu
et al. 2019; Chen et al. 2021c; Liu et al. 2022; Kim, Shim,
and Shim 2022; Su et al. 2022; Khan et al. 2023). Specif-
ically, ZSL takes utilization of seen classes with labeled
samples and auxiliary knowledge between seen and unseen
classes to achieve recognition. This knowledge, e.g., se-
mantic descriptions that exist in a high-dimensional feature
space, can represent meaningful high-level and per-class in-
formation about samples. In ZSL, the common practice is to
map an unseen class sample from its original feature space,
e.g., visual space, to the semantic space by reusing a map-
ping function trained on seen classes. With such mapped
semantic features (representation), we can then search for
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Figure 1: A comparison of our method (red stream) with
conventional ZSL methods (blue stream) and fine-grained
ZSL methods (purple stream, zoom in for better view).

the most closely related (e.g., by similarity metrics) descrip-
tion whose corresponding class is assigned to the sample. In
practice, the ZLS can be further restricted to the classic ZSL
and generalized ZSL (GZSL), where the former only consid-
ers the recognition of unseen classes during inference, while
the latter also classifies samples from seen classes.

In ZSL, one non-negligible issue is that the visual and
semantic spaces are inherently independent and may ex-
ist in entirely different manifolds. This issue brings about
the domain bias problem (Fu et al. 2015) when general-
izing the learned knowledge from seen to unseen classes,
i.e., the mapped semantic features of unseen class samples
may be biased to seen classes. Recently, several works have
been proposed to mitigate the domain bias problem and ob-
tained some promising results. For example, some meth-
ods consider doing the alignment between visual-semantic
spaces when constructing the mapping function (Zhang and
Saligrama 2015; Schonfeld et al. 2019; Guo and Guo 2020).
Differently, some methods try to synthesize unseen class
samples or features based on generative models, e.g., GANs



or VAEs, and involve them in the training process (Huang
et al. 2019; Zhao et al. 2022; Feng et al. 2022). Some other
methods apply the encoder-decoder structure to maintain the
robustness of the mapping function (Kodirov, Xiang, and
Gong 2017; Yu et al. 2018). Most recently, several fine-
grained methods (Xie et al. 2019; Huynh and Elhamifar
2020) concatenate the features of the whole sample with lo-
cal regions to enhance the representations, while the relation
among local regions is not addressed.

As far as we know, existing methods usually train the
mapping functions with either whole sample features or
concatenated fine-grained features. Such a training scheme
may ignore the subtle element-semantics correlation and
local sub-structural information in samples from different
classes. Concretely, our motivations are two-fold: @ Taking
the seagull as an example (Figure 1), it may have some spe-
cial elements such as beak, nape, feet, etc. These elements
are more accurate visual characteristics of bird species and
can usually correspond ‘one-to-one’ with the semantic de-
scription like yellow-beak, white-nape, gray-tail, etc. Such
element-semantics correlation can potentially facilitate the
recognition. ® Certain connectivity exists among these ele-
ments which establish unique topological structures such as
the relative position/distance of each fine-grained element.
Moreover, these elements may have some mutual influences,
e.g., the beak-feet pair usually has stronger connection and
co-occurrence. Thus, a properly adopted propagation can
potentially enhance the representation of each other.

In this paper, we suggest that the above intrinsic proper-
ties are big pluses for the more accurate and robust visual-
semantics mapping, and for the first time, we propose a
novel sample-level graph-based ZSL framework with im-
proved performance. Specifically, we first decompose an in-
put into several fine-grained elements, i.e., via key-point lo-
calization and cropping, and then convert it into a sample-
level graph considering its topological structure and mutual
influences between elements. Regarding the graph variables,
we use the nodes embedded with visual features to present
each element of the sample, and use the linking edges to
present whether a relation exists between two elements.
To determine the edges, we further design a pseudo-link
and propagate verification to identify the mutual influence
among elements. Afterward, we build upon the graph neural
networks (GNNs) to extract and fuse the local sub-structural
information among elements residing in each sample-level
graph, and further formulate the ZSL problem to a graph-to-
semantics mapping task for better preservation of the one-
to-one element-semantics correlation.

In summary, our contributions are three-fold:

e We first utilize the graph structure to model the samples
in ZSL, and explore the element-semantics correlation
and local sub-structure information to construct more ac-
curate and robust ZSL mapping.

* We reformulate the ZSL to a graph-to-semantics map-
ping task and convert the recognition into the sample-
level graph classification as an alternative for ZSL.

* Experimental results on ZSL and GZSL tasks demon-
strate that the proposed method can outperform other rep-
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resentative methods and verify its effectiveness.

Related Work
Zero-Shot Learning

Most ZSL methods are implemented by mapping the visual
features to semantic space spanned by class descriptions and
then performing nearest neighbor search (Akata et al. 2015;
Schonfeld et al. 2019). In contrast, some methods propose
to map the semantic features into visual space and point out
that using semantic space as shared latent space may reduce
the variance of features (Zhang, Xiang, and Gong 2017).
Different from the direct mappings, a few branches of them
try to learn a metric network or compatibility function that
takes paired visual and semantic features as inputs and cal-
culates their similarities (Sung et al. 2018). [Summary]: our
mapping function is similar to the first one, while we convert
the visual input into the sample-level graph and construct a
graph-to-semantics mapping to achieve the ZSL recognition.

Compared with the above conventional methods, our
model is more likely related to the fine-grained ZSL and
semantics-level graph-based ZSL. Specifically, the fine-
grained ZSL tries to make use of the concatenation of global
and local features (Ji et al. 2018; Xie et al. 2019; Huynh
and Elhamifar 2020), or learn dictionaries through joint
training with samples, attributes, and labels (Chen, Cao,
and Ji 2019), to enhance the representation. Recently, an-
other branch of fine-grained method (Xie et al. 2020) ex-
tends the graph embedding into the global and local con-
catenation to further enhance the representation, which is
very similar to (Ji et al. 2018; Zhu et al. 2019). Dif-
ferently, the semantics-level graph-based ZSL utilizes the
WordNet (Miller 1995) to link each per-class semantic de-
scription and then model the class-wise correlation as a
global semantics-level graph, which can better capture the
dependencies among classes (Wang, Ye, and Gupta 2018;
Kampffmeyer et al. 2019). [Summary]: our method differs in
two aspects. First, we only use local features rather than the
concatenation with also global features. Second and more
importantly, we model the inputs as sample-level graphs and
convert the ZSL problem into a graph-to-semantics mapping
task. Thus, our method is complementary to the semantics-
level graph-based ZSL.

GNN:s for Graph Recognition

The GNNs are popular graph techniques in deep learning
that attracts increasing attention most recently. In practice,
the GNNs can be trained in a supervised or unsupervised
manner to handle multiple tasks such as node classification,
edge prediction, graph embedding, and graph classification.
Specifically, the graph classification aims at classifying an
entire graph structure into different classes (Zhang et al.
2018; Ying et al. 2018), which has been widely used in some
real-world applications like community recognition, docu-
ments categorization, social network analysis, drug discov-
ery, and so on. In this paper, we extend the graph classifica-
tion to ZSL domain, where we replace the learning targets
with class semantic descriptions to form a graph-level re-
gression process.



Methodology
Problem Definition

Given a train-set of seen class D = {w;, 4}, where
x; is the input sample with class label y; belonging to m
seen classes C = {c1,ca, - ,¢m}. The goal of ZSL is
to construct a model for a set of unseen classes C’
{c,ch,-+ .} (CNC" = ¢), of which no sample is avail-
able. During inference, given unseen class sample z’, the
model is expected to predict its class ¢(z’) € C”. To this end,
some auxiliary knowledge, e.g., the semantic descriptions
denoted as s = (a1, az, -+ ,a,) € R, is required to bridge
the gaps between seen/unseen classes. The train-set can
then be further specified as D = {x;, y;, si}f\il, and each
seen/unseen class ¢; / ¢;’ is endowed with a semantic proto-
type p¢; / pe;; € R™. Thus, for each seen class sample we
have its semantic features s; € P = {pc,,Dear* » Pern }s
while for test unseen class sample z’, we need to obtain its
semantic features s’ € R"™, and set the class label by search-
ing for the most closely related semantic prototype within
P = {pc,/,Pey’y -+ s De,r t for ZSL or within P’ U P for
GZSL. In summary, the training can be described as:

arg min — Z L(f

where L (-) is the loss function and ¢ (-) denotes the reg-
ularization term. The f (-; W) is a mapping with trainable
parameter W that maps samples from visual space to se-
mantic space. ¢ (-) denotes a feature extractor, e.g., a CNNs
backbone. During inference, given a test sample .4, the
recognition can be described as:

arg max Sim (f (¢ (Trest) ; W), P'(j)) ,
J

arg max Sim (f (& (Ttest) ;

J

W), s:)+¢ (W), (D)

@

w) (PuP?), )
where Sim (+) is a similarity metric. Eq. (2) is used for the
ZSL task where the similarity search is limited in unseen
classes, and Eq. (3) is for the GZSL task where the search
can generalize to novel samples from seen classes as well.

ZSL as Sample-Level Graph Recognition

Given train-set D = {z;,y;, si}fvzl, our method has three
steps to convert the ZSL task to a graph-to-semantics map-
ping problem: 1) elements decomposition, 2) sample-level
graph construction, and 3) sample-level graph recognition.
The elements decomposition obtains several fine-grained el-
ements of a sample, which can then be presented by a well-
designed graph structure. We feed these per-sample graphs
into our modified Element-Rank-Aware (ERA) GNNs that
sequentially pass through graph convolutional layers, our
modified element ranking pooling layers, and regression lay-
ers, to reach their semantic descriptions.

Element-Rank-Aware GNNs Our modified ERA-GNNs
consist of three consecutive operations. First, the graph con-
volution layers are the same as standard graph convolutions
that responsible for extracting high-level topological-wise
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element representations and mutual influences of samples.
Then, we design the element ranking pooling (ER-Pooling)
layers, which are sensitive to element-wise importance, to
downsample and fuse high-level features to more representa-
tive graphical features. Last, the regression layers are convo-
lutional and dense layers that link to semantic descriptions.
Graph Convolutions - Suppose a sample-level graph (A, F)
has been given, where A € {[0,1]}"*" is the adjacency
matrix, in which the non-zero values denote the correlation
(edge) existence and weight between two elements in a sam-
ple. F € R"*? is the element feature matrix representing
that the sample-level graph has n elements and each of them
contains d-D features. The graph convolution operation in
our method can be described as:

H=6 (ﬁ—%Af)—%F@), &)
where A = A + I, and I is the identity matrix denotes a
self-loop in each element of the sample-level graph. D =
> ;A;j is the diagonal degree matrix, and © € RI*d" jg
the trainable parameter matrix. §(-) is a nonlinear activa-
tion, e.g., ReLU. The graph convolutions can be decoupled
into four processes. A linear transformation FO is first per-
formed which maps the element features from d to m chan-
nels into the next layer. Then, AFO propagates element in-
formation to neighboring elements. Next, D 2AD" 2 nor-
malizes each row in the obtained feature matrix H. The last
nonlinear activation J(-) performs point-wise activation and
outputs the graph convolution results. To further extract the
deep high-level multi-scale features, we can stack multiple
graph convolution layers, e.g., k layers, as:

HO =5 (D 1AD IHEVe) ()

where the obtain k sequential features {H } I €an be
further downsampled and regressed by our element ranking
pooling layers and regression layers, respectively.

Element Ranking Pooling - Conventional graph poolings
usually downsample the graph in a hard way due to its non-
Euclidean structure (Gilmer et al. 2017; Ying et al. 2018),
i.e., the reduced graph nodes are usually not organized and
the calculation is usually mean/maximum value-based. Such
a pooling strategy fits classic graph applications well since
the structural information provides the major contribution to



their recognition. However, in our sample-level graph-based
ZSL, the visual information is also important since the nodes
explicitly correspond to key elements of a visual sample.
Thus, it is crucial to properly organize the reduced elements
to fit the downstream ZSL recognition.

Intuitively, the elements within a sample can have dif-
ferent visual importance. For example, the back and beck
may contribute more than other key elements to recognize
the seagull class. Moreover, we note that different layers
can also contain rich multi-scale visual features, which are
usually ignored in conventional graph pooling strategies. As
demonstrated in Figure 2, we design the Element Ranking
Pooling to integrate such visual information. Specifically,
we use the element degrees and weights w.r.t. the linking
edges to calculate the element importance score:

1 g
. Zwij - RI;,
9 =

where w;; denotes the edge-weight between element 4 and
7 in A, and RI; is the relative importance of element ¢
w.r.t. the recognition of whole sample. Note w;; and RI;
can be obtained during the sample-level construction in
Sect. Sample-Level Graph Construction. The parameter g is
the degree of element i, which can be easily obtained by
g = Sum(A);. Next, we rank all elements according to their
scores and select the highest p elements to calculate its lin-
ear transformation, i.e., denoted as LT(-), into d-D element
features:

(6)

Score;

pE = LT(rE, p; @), (7

where rE € R"*2 V4" s the ranked element matrices and 0]
denotes the transformation weight. The pooled pE € RP*?
(suppose the final output element are d-D features) is then
further fed into the regression layers to reach the semantic
descriptions.

Element Decomposition Key-point localization is usually
applied to predict a set of semantic key-points for objects
(Huang, Gong, and Tao 2017; Sarlin et al. 2019; Guo and
Farrell 2019). For example, a bird can have several standard
key-points reflecting its appearance and subtle characteris-
tics. Taking the CUB-Birds' dataset (Wah et al. 2011) as an
example, a bird image can be detected with 15 key-points,
of which each key-point is located at a specific element,
e.g., forehead, beak, leg, tail, etc. These key-points can be
used to align the objects and reveal their subtle differences
which help to recognize different fine-grained classes, e.g.,
bird species. In our method, we follow the method of using
a 2-dimensional probability distribution heat map of the ob-
ject to localize the key-points. Specifically, a ResNet-34 (He
et al. 2016) with the classification layer removed, is used as
the encoder. Then, by stacking three blocks consisting of one
upsampling (bilinear interpolation) layer, one convolution
layer, one batch normalization layer, and one ReLU layer
each, and a final convolution layer and upsampling layer to
output the key-points location tensor. The elements decom-
position can localize several key-points of a sample, and we

"http://www.vision.caltech.edu/visipedia/CUB-200-2011.html
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can then use a cropping operation to decompose the sam-
ple (e.g., width W and height ) into several fine-grained
elements based on these key-points as:

Tp=ap —w/2
yz):yl~c_h/27

where (x, yx ) is the 2-d coordinate of one key-point, w and
h are width and height of the cropped element. (x,,yp,) is
the 2-d coordinate of the top left corner of the cropped ele-
ment, where x,, and y, are potentially set to (W — w) and
(H — h) respectively, or set to 0, to retain the cropped el-
ement within the sample size range. These elements can be
regarded as the nodes of a sample-level graph, and each of
them is further fed into a visual feature extractor to obtain
the element features.

®)

Sample-Level Graph Construction Given the elements,
we design a verification-based pseudo-link and propa-
gate method to identify the mutual influence among them,
and further determine their linking edges. Notably, in our
method, the edges are set based on their mutual influences,
thus two linked elements are not necessarily spatially adja-
cent. To this end, we first assume that every two-element
pair is initially established with a relation that can perform
the node propagation as a graph, and then to verify whether
or not such relation can be satisfied under certain measure-
ment. Given several elements, we specify two elements, e.g.,
i and j, are initially connected by a pseudo-link. We denote
fi and f; as element features and thus a simulated one-pass
propagation can be achieved by:

fi = fivi + fjvij, )

fi = fivi + fivgi, (10)
where v;; / vj; is the weight of 7 w.r.t. j and j w.r.t. 4, re-
spectively. v; / v; are used to simulate the self-loop in graph.
Regardless of the orders and weights, we can simply use the
mean features of these two elements, i.e., %( fi + f;), to ap-
proximatively indicate whether the propagation is positive
or not for the establishment of edge between elements ¢ and
j. Notably, such a simulated propagation is similar to two el-
ements performing graph convolution with the same weight
of 1/2 and containing a self-loop.

To verify the positivity, we train a mini-classifier based on
the whole feature representation of training samples (seen
classes only), and then to calculate the classification con-
fidence, i.e., accuracy denoted as Con(-), for each two-
element pair of single features f; and f;, and propagated
features £ (f; + f;), respectively. If both conditions, i.c.,

Con((fi + f;)/2) > Con(f;) + ¢, (11)
Con((fi + f;)/2) > Con(f;) + ¢, (12)

satisfied, then we say that the propagation is verified as pos-
itive and the edge is confirmed. Here, ¢ is a small positive
constant that controls the threshold.

Afterward, for all confirmed edges, we define the edge-
weight between elements ¢ and j as:

. = Gonllfi + £3)/2) = (Conlfi) + Con(f;)) /2

ij = max(Con(f;), Con(f;)) ’
(13)




and for each single element, we define its relative impor-
tance w.r.t. the recognition of the whole sample as:

_ Con(f;)
27:1 COn(fl) ’
where w;; and RI; can reflect the strength of relation ¢ and j

and the contribution degree of element ¢ to the recognition,
respectively.

RI; (14)

Training ZSL on Sample-Level Graphs Finally, the
train-set can be presented as D = {(A;, F;), vi, Sz}i\; We
feed these labeled seen class sample-level graphs into our
ERA-GNNG, i.e., denoted as G(-; Wg), in which we stack &
graph convolution layers to obtain k sequential features as:
k

{HV} =oAL FawWy). ()
where each H(®) € R™*¢ is the propagated feature matrix
of Ir-th layer. Each row stores an element and each column
represents a feature channel. Afterward, we use the designed
Element Ranking Pooling to downsample the multi-scale
graphs, and obtain the ranked and pooled graph representa-
tion pE. For simplicity, we denote the whole pooling process
as ERP(-; ®). Last, the regression layers are convolutional
and dense layers, i.e., denoted as Rgs(-; Wx), that link to
semantic descriptions. Thus, the training of ZSL can be for-
malized as:

. 1
argmin — -

N
> " L (Rgs(ERP (G (Ai,Fi;Wg);®); Wr), s;)
Wg . Wg,® i=1

+¢(Wg) +v(Wr).

(16)
where o(+) and «(-) are L2-norms that can add penalties as
model complexity increases and thus avoid overfitting.

Experiments
Experimental Setup

Dataset and Evaluation Metrics Following (Ji et al.
2018; Elhoseiny et al. 2017), we evaluate our method
on two widely used fine-grained datasets including CUB-
Birds (Wah et al. 2011) and NABirds (Van Horn et al. 2015).
Specifically, CUB-Birds consist of bird images covering 200
classes with 11,788 images. Each image is annotated with
key-point location and attribute labels. For ZSL, 150 classes
of bird images act as seen classes for training, and the re-
maining 50 classes are unseen classes. Each of their proto-
types is represented by a 312-dimensional semantic attribute
description which can present meaningful class-level infor-
mation. The NABirds is a larger dataset containing 1,011 to-
tal classes with 48,562 images. While for ZSL, some gender-
specific classes are further merged, resulting in 404 final
classes. Among them, 323 classes are seen classes and the
remaining 81 are unseen classes. Similarly, each image is
also annotated with the required key-point location, while
differently, the semantic descriptions of each class is a col-
lected article from Wikipedia.

Two different settings are considered in our experiments
including 1) classic ZSL and 2) generalized ZSL (GZSL).
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For ZSL, all test samples belong to unseen classes, i.e.,
the model only searches for the class prototypes on unseen
classes P’ (Eq. (2)). While for GZSL (Xian, Schiele, and
Akata 2017), the search can also generalize to novel samples
from seen classes, i.e., the model searches the class proto-
types on both seen and unseen classes { P’ U P} (Eq. (3)).

Figure 3: Localization results on ZSL setting: some exam-
ples (better viewed in color).

Key-point PCK | Key-point PCK
Back 92.4 | Beak 972
Belly 91.3 | Breast 92.8
Crown 98.4 | Forehead  98.0
Left-eye 98.3 | Left-leg 71.3
Left-wing 89.5 | Nape 97.7
Right-eye 98.7 | Right-leg  74.7
Right-wing  92.3 | Tail 85.5
Throat 98.0 | Overall 91.6

Table 1: Localization results on ZSL setting.

Implementation Our method is implemented by Pytorch
and trained with NVIDIA RTX 3090 GPU. The GNNs con-
sist of four graph convolution layers and the designed ele-
ment ranking pooling layers. The regression layers are sim-
ple convolutional and dense layers that directly link to se-
mantic descriptions. As to the element decomposition, we
follow the general settings of PAIRS (Guo and Farrell 2019)
to construct the key-point localization network. Specifically,
a ResNet-34 with the classification layer removed is acted
as an encoder. Three blocks consisting of one upsampling
layer, one convolution layer, one batch normalization layer,
and one ReLU layer each, and a final convolution and up-
sampling layers are stacked to decode the key-points lo-
cation. The cropped element size w and h are both set to
56 for CUB-Birds and 224 for NABirds by an empirical
investigation from the data statistics. As to the detection,
we identify 15 elements for CUB-Birds and 6 elements for
NABirds due to their availability. In the experiments, we also
report the results when directly using the key-point annota-
tions to construct the sample-level graph. Two results are
denoted as Ours (D), i.e., detection-based model, and Ours
(A), i.e., annotation-based model, respectively. When con-
structing the sample-level graph, we control the threshold



Method F  Fine-grained | ACC (CUB-Birds) | ACC (NABirds)
ESZSL (Romera-Paredes and Torr 2015) g X 48.7 243
JLSE (Zhang and Saligrama 2016) % X 42.1 -
SYNC (Changpinyo et al. 2016) g X 54.4 28.9
SAE (Kodirov, Xiang, and Gong 2017) g X 61.4 -
RelationNet (Sung et al. 2018) g X 62.0 -
S?GA (Jiet al. 2018) % v 75.3 394
Chen et al. (Chen, Cao, and Ji 2019) g v 58.3 33.8
GAL (Yu and Lee 2019) g X 62.5 -
Zhu et al. (Zhu et al. 2019) g v 70.5 35.7
AREN (Xie et al. 2019) R v 70.7 -
AMS-SFE (Guo and Guo 2020) g X 70.1 -
MPGAN (Chen et al. 2020) 1% v 48.2 27.2
APNet (Liu et al. 2020) R X 57.7 -
RGEN (Xie et al. 2020) g v 76.1 414
Keshari et al. (Keshari, Singh, and Vatsa 2020) R X 60.8 -
DAZLE (Huynh and Elhamifar 2020) R v 64.1 35.5
LsrGAN (Vyas, Venkateswara, and Panchanathan 2020) R X 60.3 -
Xu et al. (Xu et al. 2020) R X 65.7 -
HSVA (Chen et al. 2021b) R X 65.7 -
VGSE (Xu et al. 2022) R X 35.0 -
TDCSS (Feng et al. 2022) R X 61.1 -
Ours (D) g v 76.9 42.8
Ours (A) g v 78.7 4.2

Table 2:

Comparison results of ZSL (accuracy %). ‘F’-features: GoogleNet (G), VGGNet (V), ResNet (R). The best result is

marked in ‘underlined bold’, the second in ‘bold’, and the third in “‘underlined’.

to retain =2 50 and = 20 edges among the sample-level graph
for CUB-Birds and NABirds, respectively. As to the visual
features, we use GoogleNet (Szegedy et al. 2015) to extract
a 1024-dimensional feature vector for each element.

Localization Results on ZSL Setting

We report the key-point localization results on CUB-Birds
based on the ZSL data setting where only seen classes are
used during training, and to detect key-points of samples
from unseen classes. The PCK (percentage of correct key-
points) score is used to measure the performance, i.e., a pre-
dicted key-point (p) is correct if it’s within a small neighbor-
hood of the ground truth (g):

Hp - g” < c*max (h‘bvwb) ) an

where (hp, wyp) is the longer side of the bounding box and
c is a constant factor. The results are shown in Table 1 and
Figure 3. It can be observed that most detected key-points
are reasonable and accurate enough to be utilized as the base
points of sample elements.

Comparison on ZSL Setting

To demonstrate the effectiveness of our proposed method,
we first compare it with existing representative methods in
the ZSL setting. We selected 21 competitors based on the
following criteria: 1) published in the most recent years;
2) cover a wide range of models; 3) they clearly represent
the state-of-the-art; and 4) all of them are under the stan-
dard splits (Xian, Schiele, and Akata 2017). We compute
and report the multi-way classification accuracy as in previ-
ous works. The comparison results with the selected repre-
sentative competitors are shown in Table 2. It can be seen
from the results that our method outperforms all competi-
tors with great advantages on both datasets. Taking the more
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significant CUB-Birds as an example, the prediction accu-
racy of our method achieves 76.9% and 78.7% for detection-
and annotation-based models, respectively. Moreover, we
can also observe that the performance of fine-grained-based
methods is overally better than the average result of other
competitors. Specifically, comparing with S2GA (Ji et al.
2018), Chen et al. (Chen, Cao, and Ji 2019), Zhu et al. (Zhu
et al. 2019), AREN (Xie et al. 2019), MPGAN (Chen et al.
2020), RGEN (Xie et al. 2020), and DAZLE (Huynh and
Elhamifar 2020) which also fall into the fine-grained ZSL
models, our method improves the prediction accuracy by a
large margin as 3.4%, 20.4%, 8.2%, 8.0%, 30.5%, 2.6%, and
14.6%, respectively, which fully demonstrate the effective-
ness of our method.

Comparison on GZSL Setting

In Table 3, we compare our method with 23 competitors on
GZSL setting (Xian, Schiele, and Akata 2017). For the gen-
eralized ZSL, we compute the average per-class prediction
accuracy on test images from unseen classes (U) and seen
classes (S), respectively, and report the Harmonic Mean cal-
culated by H = (2 x U x S) /(U + S), which can quan-
tify the aggregate performance across both seen and unseen
classes. It can be seen from the results that, although most
of these competitors cannot retain the same level of per-
formance on both seen and unseen classes, our method can
achieve the most balanced prediction accuracy. For example,
ESZSL (Romera-Paredes and Torr 2015), SYNC (Chang-
pinyo et al. 2016) and SAE (Kodirov, Xiang, and Gong
2017) have a very large margin, i.e., 51.2%, 59.4% and
50.1%, between their accuracy of seen and unseen classes in
CUB-Birds, which result in poor performance on Harmonic
Mean. In contrast, our method can obtain both comparative
results on unseen classes and seen classes as 52.3% / 71.1%
and 38.8% / 54.6%, for CUB-Birds and NABirds, respec-



Method ‘ F ‘ Fine-grained |— C[UBSBlrldsHM U II\IAlélrd[s HM
ESZSL (Romera-Paredes and Torr 2015) V X 126 638 210 | 13.5 442 20.7
SYNC (Changpinyo et al. 2016) g X 11.5 709 19.8 | 16.3 495 245
SAE (Kodirov, Xiang, and Gong 2017) g X 7.8 579 292 - - -
RelationNet (Sung et al. 2018) g X 38.1 61.1 470 - - -
f-CLSWGAN (Xian et al. 2018) R X 437 5777 49.7 - - -
SE-GZSL (Kumar Verma et al. 2018) R X 41.5 533 46.7 - - -
SP-AEN (Chen et al. 2018) R X 347 70.6 46.6 - - -
Zhu et al. (Zhu et al. 2019) % v 36.7 71.3 485 | 28,6 534 372
SGAL (Yu and Lee 2019) g X 409 553 47.0 - - -
DASCN (Ni, Zhang, and Xie 2019) R X 459 59.0 51.6 - - -
AREN (Xie et al. 2019) R v 38.9 787 52.1 | 31.1 535 393
APNet (Liu et al. 2020) R X 559 48.1 51.7 - - -
Keshari et al. (Keshari, Singh, and Vatsa 2020) R X 448 599 513 - - -
DAZLE (Huynh and Elhamifar 2020) R v 653 42.0 51.1 | 39.7 445 42.0
LsrGAN (Vyas, Venkateswara, and Panchanathan 2020) R X 477 570 519 - - -
FREE (Chen et al. 2021a) R X 557 599 577 - - -
BZSL+Attributes (Badirli et al. 2021) R v 315 50.6 388 | 264 332 294
BZSL+Word Vectors (Badirli et al. 2021) R v 224 450 299 | 25.0 30.8 27.6
HSVA (Chen et al. 2021b) R X 527 583 553 - - -
VGSE (Xu et al. 2022) R X 241 457 315 - - -
TDCSS (Feng et al. 2022) R X 442 628 519 - - -
SE-GZSL (Kim, Shim, and Shim 2022) R X 60.3 53.1 564 - - -
CE-GZSL+SDFA? (Zhao et al. 2022) R X 59.2 59.6 54.0 - - -
Ours (D) g v 512 684 58.6 | 37.1 512 43.0
QOurs (A) g v 523 71.1 603 | 38.8 546 454

Table 3: Comparison results of GZSL (accuracy %). ‘F’-features: GoogleNet (G), VGGNet (), ResNet (R). The best result is
marked in ‘underlined bold’, the second in ‘bold’, and the third in ‘underlined’.

tively, and thus result in the best result of Harmonic Mean
as 60.3% and 45.5%, respectively. Our method outperforms
all competitors for the most balanced prediction accuracy
which can better fit a more realistic application scenario.

Mapping Robustness

We further conduct the evaluation of mapping robustness
on our method on CUB-Birds. Given the trained model,
we map unseen class samples from visual to semantic
space. With these obtained semantic features, we apply t-
SNE (Van der Maaten and Hinton 2008) to visualize them
in a 2D map. We show the visualization results on two SO-
TAs, i.e., SAE (Kodirov, Xiang, and Gong 2017) and AMS-
SFE (Guo and Guo 2020), and our method under the ZSL
setting in Figure 4(a), Figure 4(b) and Figure 4(c), respec-
tively. It can be seen from our method that only a small
portion of unseen class samples are shifted in the semantic
space. Moreover, the obtained semantic features are more
continuous and aggregated. These merits demonstrate that
our method significantly mitigates the domain bias problem.

Conclusion

This paper proposed a novel fine-grained ZSL framework
based on the sample-level graph to address the challeng-
ing domain bias problem. Our method decomposes sam-
ples into fine-grained elements presented as graph struc-
tures, in which nodes and edges are different elements and
relations among them. Taking advantage of GNNs, we refor-
mulate the ZSL problem to a graph-to-semantics mapping
task which can better exploit element-semantics correlation
and local sub-structure information in samples. Experimen-
tal results verified the effectiveness of our method.
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(c) t-SNE of Ours

Figure 4: Visualization results of mapping robustness.
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