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Abstract

Online Knowledge Distillation (OKD) is designed to alle-
viate the dilemma that the high-capacity pre-trained teacher
model is not available. However, the existing methods mostly
focus on improving the ensemble prediction accuracy from
multiple students (a.k.a. branches), which often overlook the
homogenization problem that makes student models saturate
quickly and hurts performance. We assume that the intrin-
sic bottleneck of the homogenization problem comes from
the identical branch architecture and coarse ensemble strat-
egy. We propose a novel Adaptive Hierarchy-Branch Fu-
sion framework for Online Knowledge Distillation, termed
AHBF-OKD, which designs hierarchical branches and adap-
tive hierarchy-branch fusion module to boost the model di-
versity and learn complementary knowledge. Specifically,
we first introduce hierarchical branch architectures to con-
struct diverse peers by increasing the depth of branches
monotonously on the basis of the target branch. To effectively
transfer knowledge from the most complex branch to the sim-
plest target branch, we propose an adaptive hierarchy-branch
fusion module to create hierarchical teacher assistants recur-
sively, which regards the target branch as the smallest teacher
assistant. During the training, the teacher assistant from the
previous hierarchy is explicitly distilled by the teacher assis-
tant and the branch from the current hierarchy. Thus, the im-
portant scores to different branches are effectively and adap-
tively allocated to reduce branch homogenization. Extensive
experiments demonstrate the effectiveness of AHBF-OKD
on different datasets, including CIFAR-10/100 and ImageNet
2012. For example, the distilled ResNet18 achieves the Top-
1 error of 29.28% on ImageNet 2012, which significantly
outperforms the state-of-the-art methods. The source code is
available at https://github.com/linruigong965/AHBF.

Introduction
Deep neural networks have achieved remarkable success in
various scenarios (He et al. 2016; Ren et al. 2015; He et al.
2017). However, the over-parameterized models are difficult
to deploy on resource-limited devices, such as mobile and
embedded devices. To make a trade-off between the model
simplicity and efficiency, Knowledge Distillation (KD) tech-
niques (Hinton, Vinyals, and Dean 2015; Romero et al.
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Figure 1: Different schematic frameworks of online knowl-
edge distillation. (a) Mutual learning, (b) Ensemble the in-
dependent models by averaging outputs. (c) Ensemble the
identical branches with the attention mechanism. (d) The
proposed AHBF-OKD with gradual hierarchical distillation.

2015) have been widely used to transfer knowledge from a
high-capacity teacher to a high-efficiency student.

Traditional KD methods (Hinton, Vinyals, and Dean
2015; Zagoruyko and Komodakis 2017; Yim et al. 2017)
employ a two-stage training procedure, i.e., first pre-training
a powerful teacher and then distilling its knowledge to
a compact student. Despite the significant improvements
in student discriminative ability, the following two prob-
lems still exist, prohibiting their usage in real applications.
(1) The high-capacity pre-trained teachers are not always
available; (2) The two-stage training process requires high
computation costs. To address these issues, Online Knowl-
edge Distillation (OKD) employs an end-to-end teacher-free
training paradigm, which has received much research focus.

The existing OKD methods construct multiple students
with identical architecture, one of which is considered as
the target model and distilled from its peers. We compare
different OKD schematics in Fig. 1. Mutual learning (Zhang
et al. 2018) in Fig. 1(a) collaboratively learns the students
by transferring the knowledge from their peers. Recently,
consistency regularization (Berthelot et al. 2019; Sohn et al.
2020; Xie et al. 2020), a variant of mutual learning, aligns
the peer outputs with different data augmentations of the
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Figure 2: An overview of the proposed AHBF-OKD, which contains two components, hierarchical branch structure and adaptive
hierarchy-branch fusion module (right panel).

same images. However, their performance improvement is
marginal due to the low discriminability of each peer. Alter-
natively, as shown in Fig. 1(b), ensemble knowledge by aver-
aging peer logits (Allen-Zhu and Li 2020) improves teacher
discriminability and allows the target student to learn rich
knowledge from the teacher. To further improve peer diver-
sity, several methods introduce an attention mechanism to
assign different scores to each branch for ensembling during
training, as shown in Fig. 1(c). For example, the gate mod-
ule (Lan, Zhu, and Gong 2018) ensembles all branch fea-
tures to estimate the important score of the corresponding
branch. The works in (Chen et al. 2020; Li et al. 2020) apply
the self-attention mechanism to generate different attention
scores to build an ensemble teacher. Despite the diversity at-
tained by the attention mechanism, these methods still exist
in the homogenization problem that different branches learn
the same semantic features on the misclassified images.

To address the above problems, we propose a novel
Online Knowledge Distillation via Adaptive Hierarchy-
Branch Fusion (AHBF-OKD), which designs the hierar-
chical branch structures and adaptive hierarchy-branch fu-
sion (AHBF) module to boost the model diversity and learn
complementary knowledge. As shown in Fig. 1(d), hierar-
chical branches with diverse structures are first constructed
by increasing the depth of peer monotonously based on
the target branch. Then, the adaptive hierarchy-branch fu-
sion module is proposed to create hierarchical teacher as-
sistants recursively regarding the target branch as the small-
est teacher assistant. Instead of dense connecting to multi-
ple hierarchical teacher assistants, the teacher assistant and
branch of the current hierarchy only explicitly distill the
smaller teacher assistant of the previous hierarchy, which re-
duces the gap in the coarse distillation that roughly transfers
knowledge from the ensemble logits of all branches. Thus,
each branch learns the knowledge from more high-capacity
branches and teacher assistants. Furthermore, we introduce
simple yet effective attention learning to adaptively assign
the important scores for different branches to build teacher
assistants, which takes the features from the last AHBF and
the current branch. We only keep the target branch during in-
ference and remove the AHBF module and other branches.

We summarize our contributions as follows:

1. We propose a novel Adaptive Hierarchy-Branch Fusion
framework for Online Knowledge Distillation (AHBF-
OKD), which address the homogenization problem with
hierarchical branch structure and hierarchy-branch fu-
sion.

2. Recursive teacher assistants gradually reduce the gap be-
tween different hierarchy-branches and adaptively assign
important scores for effective knowledge distillation.

3. Extensive experiments demonstrate the superior perfor-
mance of the proposed AHBF-OKD on various datasets
and network architectures. For example, on ImageNet
2012, AHBF-OKD outperforms baseline ResNet18 by
1.21% and also surpasses the SOTA OKD methods.

Related Work
Two-stage knowledge distillation. KD originates from the
idea that the output of a pre-trained big model can be com-
bined with the labeled data to train a small model (Bucilua,
Caruana, and Niculescu-Mizil 2006). The work (Hinton,
Vinyals, and Dean 2015) popularizes this idea by forcing
the output softened logits of the student model to imitate the
teacher model during training. Recently, many methods have
been proposed to further exploit the teacher-student align-
ment of intermediate feature maps (Romero et al. 2015), in-
stance relational graphs (Liu et al. 2019), similarity atten-
tion maps (Ji, Heo, and Park 2021) and generative adversar-
ial predictions (Micaelli and Storkey 2019). However, these
methods still follow a two-stage training paradigm (i.e., first
pre-training teacher and then distillation), which will sig-
nificantly increase computational overhead. Moreover, the
pre-trained teacher models are not always available in some
scenarios, which leads to less commercial attractiveness.

Online knowledge distillation. To overcome the afore-
mentioned drawbacks, OKD have been proposed by simul-
taneously optimizing both student and teacher in an end-
to-end training manner, which simplifies the training pro-
cess to save training computation overhead. For example,
DML (Zhang et al. 2018) trains multiple models with the
same capacity simultaneously and distills the knowledge
from each other by mutual learning. Besides, feature-level
adversarial training (Chung et al. 2020) is also leveraged into
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mutual learning for OKD. KDCL (Guo et al. 2020) further
averages the output logits of all students as the soft target,
which is used as the knowledge to distill the target student.
The works (Lan, Zhu, and Gong 2018; Chen et al. 2020) in-
troduce the gate or attention mechanism to derive an individ-
ual target for each student and employ two-level distillation
to transfer the strong ensemble teacher to the target student.
Recently, the diversity in the logits of branches has been ex-
plored by feature-fusion module with classifier diversifica-
tion (Li et al. 2020; Kim et al. 2021) and peer collaborative
learning (Wu and Gong 2021). Differently, our method em-
ploys hierarchical branches to increase feature diversity dur-
ing training and recursively constructs hierarchical teacher
assistants to reduce the distillation gap.

Knowledge distillation by teacher assistant. Teacher as-
sistant has been first proposed in (Mirzadeh et al. 2020)
to reduce the large gap between student and teacher by a
moderate model as transition (Mirzadeh et al. 2020). This
strategy (Wang et al. 2020) is also effectively extended to
distill assistants have been proposed for knowledge dis-
tillation, such as temporal mean teacher (Wu and Gong
2021), densely guided assistants (Son et al. 2021), attention-
based meta network (Ji, Heo, and Park 2021) and cross-
stage teacher (Chen et al. 2021). Unlike these methods, our
hierarchical teacher assistants are recursively constructed
by the adaptive hierarchy-branch fusion module, such that
the knowledge from the highest-capacity branches is effec-
tively transferred to the lowest-capacity target branch with-
out dense connections.

Preliminaries
Notations. As illustrated in Fig. 2, suppose we have a net-
work architecture with M branches, where low-level layers
in each branch share the same parameter θll, and the m-
th branch has its own high-level layers with parameter θmhl
and fully-connected (FC) layers for classification with pa-
rameter θmfc,m = 1, · · · ,M . Additional auxiliary layers are
added into each branch with parameter θma (m = 1, · · · ,M)
in our OKD framework, where the first branch is denoted
as the target one (a.k.a. a given student network) without
θ1a (i.e., θ1a ∈ ∅). Without considering the AHBF mod-
ule, we denote the parameter set of the m-th branch as
Θm = {θll, θmhl, θma , θmfc}. The generated feature maps be-
fore the FC layer are denoted by Fm using the parameters
θll, θmhl and θma .

Given a labeled training sample x with corresponding la-
bel y ∈ {0, 1}C from C classes, the output probability of
class c given by the m-th branch fm is computed as:

pmc =
exp(zmc )∑C
i=1 exp(z

m
i )

, (1)

where zm is the logit outputs of the nueral network fm with
parameter Θm. For multi-class classification, the objective
function minimizes the cross entropy loss between the pre-
dicted vector and the ground-truth label y (a one-hot vector):

Lm
CE =

C∑
c=1

yc log p
m
c . (2)

Traditional Knowledge Distillation
Generally, traditional knowledge distillation (KD) uses
Kullback-Leibler divergence to minimize the distribution di-
vergence between the softened logits of student f1 and the
teacher f t model (Hinton, Vinyals, and Dean 2015). The
softened output is formulated as:

p̃1c =
exp(z1c/τ)∑C
i=1 exp(z

1
i /τ)

, p̃tc =
exp(ztc/τ)∑C
i=1 exp(z

t
i/τ)

, (3)

where τ is the temperature parameter. Thus, the loss function
of traditional knowledge distillation is denoted as:

LKD = τ2
C∑

c=1

p̃tc log
p̃tc
p̃1c

, (4)

where p̃tc and p̃sc denote the softened outputs of teacher and
student models, respectively. Thus, the overall loss of tradi-
tional KD with balancing parameter λ is formulated as:

LTKD = L1
CE + λLKD. (5)

Online Knowledge Distillation
Previous OKD methods consider M branches with identi-
cal architecture f1 and all branches are optimized simulta-
neously during the training. OKD employs an appropriate
fusion function D(·) (e.g. self-attention or soft gate) to gen-
erate the important score s ∈ RM using branch features
Fm, and then the score is merged into the logit zmc of the
corresponding branches to build a strong teacher. Thus, the
logit of aggregated teacher f ta is denoted as:

pat
c =

M∑
m=1

sm · pmc =
M∑

m=1

Dm(F 1, · · · , FM ) · pmc . (6)

Correspondingly, we obtain the softened logit of the aggre-
gated teacher denoted by p̃at

c . Thus, the overall loss function
of OKD is constructed by aligning the softened output of the
aggregated teacher and that of each branch using Eq. 4, as
well as the cross entropy loss Eq. 2:

LOKD =
M∑

m=1

Lm
CE +Lat

CE +λ · τ2
M∑
k=1

C∑
c=1

p̃at
c log

p̃at
c

p̃mc
. (7)

However, minimizing the Eq. 7 may lead to the homogeniza-
tion problem, as the same branch architecture and coarse en-
semble strategy are used for distillation.

The Proposed AHBF-OKD
Hierarchical Branch Structure
As shown in Fig. 2, the hierarchical branch structure is con-
structed by adding auxiliary layers after high-level layers
while keeping the same shared low-level layers. The first
hierarchy-branch is our target network without auxiliary lay-
ers, and the following hierarchy-branches gradually increase
the number of a blocks to build the diversity structure, where
a is set to a multiple of 2. We call the target branch the first
hierarchy-level branch.

7733



For more clear presentation, we take ResNet32 architec-
ture, for example, to elaborate on how to add the auxiliary
layers. All hierarchy-branches share low-level layers in the
first two stages and have their separated parameters after the
second stage. We add different auxiliary layers after the third
stage in the original ResNet32 containing the number of 10
layers (i.e., 5 blocks) to build hierarchical branches accord-
ing to the hierarchy level. Thus, the m-th level branch needs
to add 2a(m− 1) auxiliary layers, where 2 is the layer num-
ber in one block.

By constructing the hierarchical branch structure, we
learn more diverse features for the following effective fu-
sion, which alleviates the homogenization problem. Actu-
ally, we also compress the target network by setting it as the
M -th branch and decreasing the layers to build other hierar-
chical branches in the opposite way. A more detailed discus-
sion is presented in the experiments.

Adaptive Hierarchy-Branch Fusion
After constructing a hierarchical branch structure, we pro-
pose hierarchical teacher assistants recursively by the hier-
archical attention score to gradually reduce the gap between
the deepest M -th branch to the target one.

Hierarchical teacher assistants. Inspired by (Mirzadeh
et al. 2020), teacher assistant (TA), as an intermediate
teacher, is used to reduce the gap by transferring the knowl-
edge from the huge capacity teacher to the compact student.
In (Son et al. 2021), all branches regarded as TA (except
the smallest one) guide each TA to learn every other smaller
TA densely, which leads to large training computation over-
head and the gap between them is still large. To this end,
our hierarchical teacher assistants reduce this gap by recur-
sively merging the last TA and the current hierarchy-branch.
Moreover, the knowledge transfer comes from the adjacent
TA without dense connections.

Fig. 2 illustrates the construction of hierarchical teacher
assistants. For simplicity, we take the first hierarchy-level
branch as the first TA, i.e., its logit p

ta(1)
c is equal to p1c .

Then, the output logits of hierarchical teacher assistants are
constructed by:

pta(m)
c = sm1 pmc + sm2 pta(m−1)

c ,m = 2, · · · ,M, (8)

where sm ∈ R2 is the hierarchical attention score, which
will be introduced in the following parts. Then, the softened
output logits of hierarchical teacher assistants p̃ta(m)

c are gen-
erated by Eq. 3.

With the help of hierarchical teacher assistants, we con-
struct two kinds of distillation losses for knowledge transfer
as: (1) Lm

TAKL, knowledge distillation from the m-th TA to
the (m − 1)-th TA, and (2) Lm

BTKL, knowledge distillation
from the m-th hierarchy-branch to the (m−1)-th TA. These
two losses are formulated using KL-divergence as:

Lm
TAKL = τ2

C∑
c=1

p̃ta(m)
c log

p̃
ta(m)
c

p̃
ta(m−1)
c

. (9)

Lm
BTKL = τ2

C∑
c=1

p̃mc log
p̃mc

p̃
ta(m−1)
c

. (10)

Thus, we formulate the final knowledge distillation loss as:

LFKL =
M∑

m=2

(λ1Lm
TAKL + λ2Lm

BTKL), (11)

where λ1 and λ2 are balanced parameters.
Hierarchical attention score. The attention mecha-

nism is often used to allocate the importance score s for
each branch and construct a more powerful teacher for
OKD (Lan, Zhu, and Gong 2018; Chen et al. 2020; Li et al.
2021). Different from these methods by using all features
of branches, we introduce hierarchical attention to construct
the hierarchical teacher assistant by only fusing features
from two branches. Inspired by the FPN (Lin et al. 2017), the
input features for hierarchical attention in the m-th hierarchy
are built by bottom-to-top, which are from the (m − 1)-th
teacher assistant F̃m−1 and the m-th hierarchy-branch Fm

by the concatenation operation. As such, the hierarchical at-
tention score sm in the m-th hierarchy is obtained through a
simple network Am using the feature F̃m as an input:

sm = Am(
[Fm, F̃m−1], θmha

)
, F̃ 1 = F 1,m = 2, · · · ,M, (12)

where [·] is feature concatenation operation, Am is a se-
quence of layers including one convolution layer for reduc-
ing the channel number, one FC layer, and Softmax oper-
ation with parameter θmha. F̃m,m = 2 · · · ,M − 1 is the
feature from the convolutional output in Am−1. Therefore,
we use Eq. 12 to generate the logit of each hierarchical TA.

Training and inference. Inspired by the (Laine and Aila
2017), simple initialization on all branches may lead to
non-convergence during training. To this end, we introduce
the ramp-up function to reduce the training sensitivity for
knowledge distillation, which is formulated as:

ω(i) = e−5(1−i/E)2 , (13)

where E is a hyper-parameter to decide the smoothness of
the ramp-up function and i is the i-th epoch. Therefore, we
leverage Eq. 11 into the cross-entropy loss of all hierarchy-
branches and hierarchical teacher assistants to construct the
overall loss function of the proposed AHBF-OKD, which is
formulated as:

L =
M∑

m=1

Lm
CE +

M∑
m=2

Lta(m)
CE + ω(i) · LFKL, (14)

where Lta(m)
CE is the cross-entropy loss between the m-th TA

and ground-truth label y. In Eq. 14, the ω(i) achieves a
smaller value in the early epoch, which reduces the effect
of knowledge distillation by using the ground-truth label to
guide the training. With the increase of ω(i), the knowledge
flow between hierarchy-branches becomes more important.

We directly minimize the overall loss function L of the
proposed AHBF-OKD by stochastic gradient descent (SGD)
in an end-to-end manner. After training, we use the target
branch for inference by safely removing other structures,
including other hierarchy-branches and adaptive hierarchy-
branch fusion module.
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Network Baseline CL ONE OKDDip AFID FFSD-C AHBF-OKD

ResNet32 6.31 ± 0.07 6.01 ± 0.09 5.99 ± 0.05 5.58 ± 0.08 5.83 ± 0.07 5.49 ± 0.10 5.32 ± 0.11

ResNet110 5.58 ± 0.09 4.95 ± 0.17 5.17 ± 0.07 4.56 ± 0.11 5.02 ± 0.11 4.48 ± 0.10 4.33 ± 0.08

VGG16 6.22 ± 0.11 6.15 ± 0.12 6.16 ± 0.08 5.87 ± 0.03 5.98 ± 0.13 5.92 ± 0.16 5.60 ± 0.11

DenseNet40-12 7.02 ± 0.05 7.11 ± 0.06 6.85 ± 0.15 6.48 ± 0.12 6.62 ± 0.09 6.43 ± 0.07 6.17 ± 0.14

MobilenetV2(0.5) 14.35 ± 0.23* 14.12 ± 0.15* 14.01 ± 0.05* 13.85 ± 0.17* 14.05± 0.15* 13.77± 0.14* 13.64 ± 0.21

Table 1: Error (%) comparison with SOTA methods on CIFAR-10. a ± b means the mean value a with the standard variance
b, and boldface represents the best performance in all tables. * denotes the re-implemented results using the official released
codes. MobileNetV2(0.5) means to use the 50% channels of the original MobileNetV2.

Network Baseline CL ONE OKDDip AFID FFSD-C AHBF-OKD

ResNet32 28.72 ± 0.19 27.67 ± 0.46 27.44 ± 0.05 25.63 ± 0.14 25.95 ± 0.05 25.50 ± 0.10 25.19 ± 0.16

ResNet110 23.79 ± 0.57 21.17 ± 0.58 21.56 ± 0.09 21.14 ± 0.14 21.43 ± 0.13 21.17 ± 0.12 20.96 ± 0.14

VGG16 25.68 ± 0.19 25.67 ± 0.08 25.62 ± 0.11 25.15 ± 0.19 25.23 ± 0.08 25.11 ± 0.14 24.92 ± 0.12

DenseNet40-12 28.97 ± 0.15 28.55 ± 0.34 28.61 ± 0.12 28.34 ± 0.02 28.47 ± 0.06 28.26 ± 0.08 27.88 ± 0.23

MobileNetV2(0.5) 40.21 ± 0.11 39.37 ± 0.17* 39.16 ± 0.16* 38.29 ± 0.12* 38.91 ± 0.17* 38.12 ± 0.11* 37.77 ± 0.14

Table 2: Error (%) comparison with SOTA methods on CIFAR-100.

Network Baseline ONE OKDDip FFSD-C ABHF-OKD

ResNet18 30.49 29.45 29.37* 29.85 29.28

ResNet34 26.76 25.90* 25.60 25.80 25.47

Table 3: Error (%) comparison on ImageNet 2012.

Experiments
Experimental Setups
Datasets and model architectures. We evaluate the pro-
posed AHBF-OKD approach on three widely-used datasets,
CIFAR-10/100(Krizhevsky, Hinton et al. 2009) and Ima-
geNet 2012(Russakovsky et al. 2015). All images are nor-
malized by channel means and standard deviations, as well
as the following standard data augmentation in (He et al.
2016). For model architectures, the baseline networks con-
tain ResNets (He et al. 2016), VGG (Simonyan and Zis-
serman 2015), DenseNet (Huang et al. 2017) and Mo-
bileNetV2 (Sandler et al. 2018).

Implementations. Following ONE (Lan, Zhu, and Gong
2018), we separate the last stage of the baseline network
to generate hierarchical multi-branch architecture, and other
blocks are regarded as shared low-level layers. The branch
number M and auxiliary block number a are both set to 4,
unless otherwise specified. We use SGD with Nesterov mo-
mentum 0.9 as the optimizer and the temperature τ is set to
3. For CIFAR-10/100 datasets, we set the batch size to 128
and the initial learning rate to 0.1. The learning rate is de-
cayed by 0.1 at the epochs 150 and 225 with 300 epochs in
total and the weight decay is set to 5× 10−4. For ImageNet
2012, we set batch size to 96, and the learning rate is also ini-
tialized by 0.1, which is decayed by 0.1 at epochs 30 and 60

with a total of 90 epochs. The weight decay is set to 1×10−4.
In default, the hyper-parameter E is respectively set to 300
and 90 on CIFAR-10/100 and ImageNet 2012, and (λ1, λ1)
is set to (4, 2). All results are generated by averaging the re-
sults over 3 runs. The proposed AHBF-OKD is implemented
by PyTorch 1.10 and MindSpore 1.7.0 (Huawei 2020), and
trained on two NVIDIA 3090 GPUs.

State-of-the-art OKD methods. We compare the pro-
posed AHBF-OKD to SOTA OKD approaches, including
CL (Song and Chai 2018), ONE (Lan, Zhu, and Gong 2018),
OKDDip (Chen et al. 2020), AFID (Su et al. 2021) and
FFSD (Li et al. 2022). We also train the target networks from
scratch without knowledge distillation as baselines. For a
fair comparison, we compare OKDDip and FFSD directly
using the target branch as the leader for the second-level dis-
tillation, and the branch number of SOTA methods is set to 4.
The top-1 error in the target is used to evaluate performance.

Comparison with SOTA Methods
CIFAR-10. We summarize the results in Tab. 1. Obviously,
all OKD methods improve the performance of baselines.
For example, the best previous SOTA method FFSD-C out-
performs the baseline ResNet32 by 0.82%, and achieves
the largest improvement of 1.1% on ResNet110, com-
pared to other baselines. We also observe that our AHBF-
OKD achieves the best performance, compared to all SOTA
methods. For example, our method achieves a lower er-
ror of 4.33% on ResNet110, compared to the best previ-
ous SOTA error of 4.48% in FFSD-C. For the high-capacity
model VGG16, our method achieves performance gains over
FFSD-C by 0.32% . Compared to the previous SOTA meth-
ods on the compact MobileNetV2(0.5), AHBF-OKD also
shows the best performance of our method.
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Figure 3: The Effect of components in ABHF-OKD.

CIFAR-100. In Tab. 2, our method also achieves the best
performance to improve various network architectures on
CIFAR-100, compared to other SOTA methods. For exam-
ple, our AHBF-OKD outperforms the best SOTA method
OKDDip by 0.18% on ResNet110. For DeseNet40-12, our
AHBF-OKD achieves performance gains over FFSD-C by
0.38%. AHBF-OKD is also effective to improve the perfor-
mance of compact vanilla MobileNetV2(0.5) by 2.44% and
outperforms FFSD-C with an error of 38.12% by 0.35%. We
also find that the target network architecture significantly af-
fects the performance of online knowledge distillation, the
highest capacity VGG16 is more difficult to improve per-
formance using OKD methods, compared to other network
architectures. To explain, the ensemble teacher constructed
by such high-capacity models may lead to overfitting when
training on the limited training data.

ImageNet 2012. We further evaluate the effectiveness
of the proposed AHBF-OKD on the large-scale ImageNet
dataset and set the auxiliary block a to 2. Tab. 3 summa-
rizes the results of previous SOTA methods and our ABHF-
OKD. Our method significantly decreases the Top-1 error of
vanilla ResNet18 and ResNet34 by 1.21% and 1.29%, re-
spectively. Moreover, our ABHF-OKD also achieves a new
SOTA performance. For example, on ResNet34, our ABHF-
OKD surpasses OKDDip by 0.13%. To explain, our ABHF-
OKD employs the hierarchical branches to increase diversity
and proposes the adaptive hierarchy-branch fusion module
to construct hierarchical teacher assistants for effective KD.

Ablation Study
In this section, we select ResNet32 as the target network on
CIFAR-100 for an ablation study.

Effect of branch number M . As shown in Fig. 3(a),
the number of hierarchical branches varies from 2 to 6.
Our method achieves the best performance when setting the
branch number to 4. The increase in branch numbers does
not consistently improve performance. This is due to the
fact that overfitting occurs when significantly increasing the
hierarchical branch number. Therefore, the excess branches
hinder the effectiveness of knowledge distillation.

Effect of hyper-parameters λ1, λ2 and E. We first ana-
lyze the sensitivity of E in Fig. 3(c). Obviously, we gradu-
ally improve performance by increasing E. When E is set
to 300 (i.e., total epoch number), it helps to achieve the
lowest error of 25.19%. This indicates that the hierarchical

λ1

λ2 0 1 2 3 4

0 28.88 27.19 26.88 26.59 26.76

1 27.04 25.77 25.98 26.23 26.30

2 26.32 25.61 25.66 25.48 25.37

3 26.76 25.48 25.66 25.39 25.54

4 26.78 25.45 25.19 25.45 25.98

Table 4: Effect of hyper-parameter λ1 and λ2 on error (%).

branches require several epochs to stabilize the training in
the early epochs, such that the knowledge is well extracted
for late knowledge distillation. Intensifying the degree of
knowledge distillation in the early time significantly affects
final performance. For example, the setting of 300 surpasses
that of 80 by 1.02%. In Tab. 4, we further analyze the effect
of balanced parameters λ1 and λ2 to control the losses of
LTAKL and LBTKL, respectively. We observe that (1) with-
out these two losses (i.e., λ1 = λ2 = 0), only using the
CE-loss of hierarchy-branches and hierarchical teacher as-
sistants w.r.t. ground-truth label can not work well; (2) The
loss of LTAKL is more important to that of LBTKL (see
27.04% in the group of (1, 0) vs. 27.19% in the group of
(0, 1)), which indicates the knowledge transferred from ad-
jacent TAs is richer than that from the next hierarchy-branch.
(3) More focus on the minimization of LTAKL achieves the
better performance, compared to LBTKL under the same bal-
anced situations. E.g., the group of (4,2) achieves a lower
error of 25.19% than 25.37% in the group of (2,4).

Effect of hierarchical branch structure. In Fig. 3(b), we
vary the auxiliary block a from 0 to 5 to explore the effect
of hierarchical structure, where 0 presents each branch has
the same structure without auxiliary layers. We find that the
larger auxiliary block number does not consistently improve
performance, which is set to 4 achieving the lowest error
of 25.19%. Note that we achieve the error of 26.47% when
dropping off all auxiliary layers (i.e., a = 0).

Effect of AHBF module. As shown in Fig. 3(d), we eval-
uate the effectiveness of the AHBF module, which mainly
consists of hierarchical teacher assistants and hierarchi-
cal attention scores. For hierarchical teacher assistants, we
train the hierarchy-branch with the losses of LTAKL and
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Figure 4: Feature visualization of different branches by t-SNE under the misclassified samples of the target branch (i.e., branch
1). (a) ONE, (b) OKDDip, (c) ABHF-OKD. The numbers denote the branch hierarchy level and each color corresponds to a
category in CIFAR-10.

Figure 5: Euclidean distance between the target branch and
other ones on the misclassified samples of the target branch
using different OKD methods.

LBTKL, which achieves the best performance. For example,
LTAKL+LBTKL (deonted by LFKL) surpasses only LTAKL

by 1.13%, only LBTKL by 1.40% and without the distilla-
tion knowledge of hierarchical teacher assistants by 3.79%.
It indicates that knowledge is effectively transferred from
the deepest branches and TA to the target branch.

Analysis and Discussion
Homogenization problem. We explore the homogenization
problem by feature visualization of each branch based on t-
SNE (Van der Maaten and Hinton 2008) and the Euclidean
distance of each branch logit. As shown in Fig. 4, we find
that each branch in the proposed AHBF-OKD has more dis-
criminative than that of other methods for misclassified sam-
ples. Fig. 5 further shows each branch in ONE and OKDDip
has a more similar logit distance than AHBF-OKD.

Target model compression. Our AHBF-OKD can be ex-
tended to compress the target branch by regarding the tar-
get branch as the top branch and gradually decreasing the
blocks in each stage to construct the hierarchical branch
structure. All training parameter remains the same except

Network a Method Error(%) MFLOPs Param(M)

ResNet32

- Baseline 28.72 142.65 1.35
- ONE 27.44 142.65 1.35

2↓
Branch4 26.57 142.65 1.35
Branch3 27.36 114.00 0.95
Branch2 28.18 86.30 0.81
Branch1 31.48 57.87 0.36

MobileNetV2(0.5)

- Baseline 40.21 14.02 1.98
- ONE 39.16 14.02 1.98

1↓
Branch4 38.24 14.02 1.98
Branch3 39.12 13.69 1.73
Branch2 40.12 13.00 1.64
Branch1 41.4 12.67 1.39

Table 5: Compression results of target models.

for a on CIFAR-100. In Tab. 5, our method (Branch3) re-
duces 28.65 MFLOPs and 0.4M parameters of ResNet32
with the lower error of 27.36%, compared to ONE. AHBF-
OKD (Branch3) can easily compress MobileNetV2, which
achieves a lower error of 39.12% with only 87% parameters
and 92.7% FLOPs. In this case, AHBF-OKD requires less
overall training computation compared to ONE. Note that
the target network (Branch4) also outperforms baselines.

Conclusion
In this paper, we propose a novel Adaptive Hierarchy-
Branch Fusion Framework for Online Knowledge Distil-
lation (AHBF-OKD), which alleviates homogenization by
designing hierarchical branches and an adaptive hierarchy-
branch fusion module. We first employ the hierarchical
branch structure by gradually adding the auxiliary layers
into the target branch to generate diverse features. Then,
hierarchical teacher assistants are constructed in the AHBF
module by merging the previous TA and the current branch
in a recursive manner, where the smaller TA from the previ-
ous hierarchy can be distilled from the knowledge of the cur-
rent TA and hierarchy-branch. Experiments show the pro-
posed AHBF-OKD achieves superior performance on a va-
riety of CNN architectures over different datasets.
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