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Abstract
Feature acquisition in predictive modeling is an important
task in many practical applications. For example, in patient
health prediction, we do not fully observe their personal fea-
tures and need to dynamically select features to acquire. Our
goal is to acquire a small subset of features that maximize
prediction performance. Recently, some works reformulated
feature acquisition as a Markov decision process and applied
reinforcement learning (RL) algorithms, where the reward re-
flects both prediction performance and feature acquisition cost.
However, RL algorithms only use zeroth-order information
on the reward, which leads to slow empirical convergence,
especially when there are many actions (number of features)
to consider. For predictive modeling, it is possible to use first-
order information on the reward, i.e., gradients, since we are
often given an already collected dataset. Therefore, we pro-
pose differentiable feature acquisition (DiFA), which uses a
differentiable representation of the feature selection policy to
enable gradients to flow from the prediction loss to the pol-
icy parameters. We conduct extensive experiments on various
real-world datasets and show that DiFA significantly outper-
forms existing feature acquisition methods when the number
of features is large.

Introduction
The dominant paradigm of supervised learning assumes ac-
cess to fully observed feature vectors and target values during
the training of predictive models. However, access to fully ob-
served data points is impractical in many real-world scenarios.
In many applications, a model can acquire additional infor-
mation (e.g., features) at an acquisition cost. Thus, the model
should know when to acquire a feature and what features to
acquire before making a prediction. For example, consider a
doctor assessing the health of a patient: initially, the doctor
may only know a few symptoms the patient is experiencing.
The doctor needs to dynamically decide what additional in-
formation to ask for and further diagnostic tests to perform.
Acquiring results from all possible tests is infeasible due to
time and financial constraints. Therefore, the doctor needs
to assess the health of the patient, dynamically acquire ad-
ditional information under practical constraints, and decide
on future treatment for the patient using this acquired infor-
mation (Qayyum et al. 2020). A similar situation happens in
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education, where in online learning platforms or intelligent
tutoring systems, we can test a student’s knowledge on cer-
tain concepts using assessment questions and craft a better
learning plan, but we need to limit the number of questions
to ask to avoid overwhelming the student (Siemens 2013).
Thus, dynamically acquiring relevant features is important to
both minimize the feature acquisition cost and maximize pre-
diction performance, with a significant impact on real-world
applications (Shim, Hwang, and Yang 2018).

We note that the feature acquisition task is different from
the feature selection or dimensionality reduction task, where
the goal is to select a static subset of features for all data
points to reduce the number of input variables (Guyon and
Elisseeff 2003; Li et al. 2017; Cai et al. 2018). In contrast,
the dynamic feature acquisition task, i.e., selecting the next
feature to acquire based on past observation, has similarities
to the active learning task, where we need to actively select
the next data point to label. Thus, many active learning-based
heuristics (such as uncertainty sampling, diversity sampling,
etc.) can be extended to the task of feature acquisition (Lewis
and Gale 1994; Brinker 2003; Settles 2009). Some earlier
works in active feature acquisition use uncertainty sampling,
expected utility gain, or variance-based approaches (Melville
et al. 2004; Saar-Tsechansky, Melville, and Provost 2009;
Huang et al. 2018; Gong et al. 2019; Ma et al. 2019). For
example, the efficient dynamic discovery of high-value infor-
mation (EDDI) method uses a probabilistic model to find the
expected utility using information gained from each unob-
served feature and acquire the feature with the highest value
(Ma et al. 2019). EDDI uses a variational autoencoder with
arbitrary conditioning (VAEAC) probabilistic model (Ivanov,
Figurnov, and Vetrov 2018) to estimate a latent variable from
partially observed features and compute the joint distribution
of both missing features and the target variable. This joint
distribution enables one to compute the expected information
gain to greedily acquire the next feature based on mutual
information. However, these static heuristics-based feature
acquisition policies are neither optimal nor data-driven and
cannot improve with more training data.

To address this limitation, some prior works (Shim, Hwang,
and Yang 2018; Li and Oliva 2021) reformulate the feature
acquisition task as a Markov decision process (MDP) where
the policy selects the next feature to acquire based on the
current MDP state, which is a function of the observed fea-
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tures (Zubek and Dietterich 2002; Rückstieß, Osendorfer,
and Smagt 2011; He, Mineiro, and Karampatziakis 2016).
The joint active feature acquisition and classification (JAFA)
method (Shim, Hwang, and Yang 2018) is one of the ear-
lier methods that apply reinforcement learning (RL) for the
task of feature acquisition; the JAFA method uses a deep Q-
network-based (DQN) RL method (Mnih et al. 2016, 2015).
However, for potentially long episodes (or a large number of
acquired features), RL methods obtain sparse rewards and
suffer from credit assignment problems (Li and Oliva 2021).
The generative surrogate model for RL (GSMRL) method,
augments JAFA with a probabilistic model to provide inter-
mediate rewards (using expected information gain) and to
provide the policy with additional side information about
each unobserved feature (Li and Oliva 2021). The optimal
policy learned by the GSMRL method remains the same
as that by the JAFA policy; however, side information and
intermediate rewards help the GSMRL method during its
optimization process, resulting in improved empirical perfor-
mance. Moreover, the GSMRL method uses proximal policy
optimization (PPO), which has better performance than DQN
on many tasks (Schulman et al. 2017).

In RL algorithms, a policy typically observes the reward
after taking action for one or more steps; the reward is often
assumed to be non-differentiable (Sutton and Barto 2018).
Thus, many policy gradient-based RL algorithms (e.g., PPO)
use zeroth-order information on the reward function when
optimizing policy parameters (Williams 1992; Schulman et al.
2017). In the case of feature acquisition, the policy dynami-
cally selects a subset of features (actions) and observes the
target prediction performance (the reward). However, in con-
trast to applications like game playing and robot control,
where we only have access to the reward itself, in feature
acquisition, we can obtain first-order information on the
reward, i.e., gradients of the predictive loss. This information
offers us more information than the zeroth-order reward itself
and can potentially help us improve feature acquisition.

Contributions. In this paper, we attempt at making use
of first-order gradient information to improve data-driven
dynamic feature acquisition in supervised learning. We show
that we can obtain a differentiable estimator of the reward
function (consisting of feature acquisition cost and the log-
likelihood for the prediction task) that leads to improved
feature acquisition policies, especially when the number of
features is large. We propose DiFA, a Differentiable Feature
Acquisition framework, to learn a feature acquisition policy
that optimizes the performance on the target prediction task.
The feature acquisition policy is learned in an end-to-end
manner together with the prediction model. We verify the
effectiveness of DiFA through extensive experiments on sev-
eral large real-world datasets. We observe that the learned
acquisition policy outperforms existing policies in the predic-
tion tasks, requiring (sometimes significantly) fewer features
to reach the same predictive quality.

Methodology
We consider the supervised learning setup where each data
point is associated with a feature vector x = (x1, · · · , xD),

consisting of D features, which can be real-valued or categor-
ical, and a target variable y, which can be real-valued (∈ R),
binary (∈ {0, 1}), or categorical (∈ {0, · · · , C − 1}). We
note that in practice, some features can be missing, i.e., unob-
served, in some data points. The feature acquisition task is to
acquire a certain number of features sequentially to maximize
the performance of the supervised target variable prediction
task. Thus, the feature acquisition policy Π starts with an
empty feature set ∅ and acquires a set of K non-missing
features (⊂ {1, · · · , D}) sequentially and use these acquired
features to predict the target y.

At time step t, we denote the t−1 already acquired features
from previous time steps as Ot−1 = {(1), · · · , (t−1)}where
(τ) denotes the acquired feature at time step τ ;O0 is an empty
set. We denote the partially observed feature set as st−1 ⊂ S
consisting of observed feature values x(1), · · · , x(t−1), the
mask for acquired features Ot−1 and any other additional
side information at−1. The policy Π(·) selects the next fea-
ture to acquire, (t) ∈ {1, · · · , D}\(Ot−1 ∪ M), condi-
tioned on st−1, where M are the missing features. Since
we do not know the missing feature values in the origi-
nal dataset, we cannot acquire these missing features dur-
ing policy learning. We define a set of valid features as
Vt−1 = {1, · · · , D}\(Ot−1 ∪M); the policy can only ac-
quire features from the valid feature set Vt−1 at time step t.
To simplify notations, we will omit the set of missing fea-
turesM hereafter. We denote the predictive model as f(·)
that takes as input the feature vector (which can be partially
observed) and outputs the predicted target variable. The fea-
ture acquisition optimization problem (for a single data point)
can be written as

minimize
θ,ϕ

K∑
t=1

ℓ

(
y, f

(
st(ϕ); θ

))
(1)

s.t. Ot = Ot−1 ∪Π(st−1;ϕ), ∀t ∈ {1, · · · ,K}. (2)

Here, θ and ϕ are parameters for the prediction model f(·)
and feature acquisition policy Π(·), respectively.

We note that there are alternative ways to formulate the
feature acquisition task. Each of the features j can be associ-
ated with a different cost value cj ; the goal is to maximize
predictive performance while minimizing the total cost of
all acquired features. We instead formulate our methodology
with a uniform cost across features to enable a fair compar-
ison with existing methods. We defer details on the DiFA
framework with varying feature acquisition costs to the sup-
plementary material, where we illustrate that it can be treated
similarly to the case with uniform feature acquisition costs.

Differentiable Feature Acquisition
We note that the feature acquisition operation Ot = Ot−1 ∪
Π(st−1;ϕ) is non-differentiable; RL algorithms excel in
these situations, which is why they are used in previous works
on feature acquisition. The RL action (next feature to ac-
quire) distribution p(j|s;ϕ) comes from the policy Π(st;ϕ).
We can regard the negative loss (or predictive likelihood)
−ℓ(y, f(s(ϕ); θ)) as the reward for taking action j, r(j;ϕ).
Many RL algorithms (e.g., PPO) use zeroth-order information
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of the reward function r(·) when optimizing policy parame-
ters ϕ using the score-function stochastic gradient estimator
(Schulman et al. 2017; Williams 1992)

∇ϕEp(j|s;ϕ)[r(j;ϕ)] = Ep(j|s;ϕ)[r(j;ϕ)∇ϕp(j|s; θ)], (3)

where we denote the expectation operator as E. The score-
function estimator is universally applicable in the absence of
gradient information of the reward function r(·). However,
in contrast to applications like game playing and robot con-
trol, where we only have access to the reward r(·) itself, for
observable datasets (such as the task of learning feature ac-
quisition policy), we can often obtain first-order information
of the reward function

∇ϕEp(j|s;ϕ)[r(j;ϕ)] = Eϵ∼p(ϵ)[∇ϕr
(
q(ϵ;ϕ)

)
], (4)

using a known sampling path of p(j|s;ϕ) from q(ϵ;ϕ) with a
random variable ϵ. The latter formulation, often known as the
path-wise gradient estimator, has been shown to have lower
variance than zeroth order stochastic estimators (Ghadimi and
Lan 2013; Mohamed et al. 2020) and has been successfully
used in multiple sequential decision-making tasks (Ghosh
and Lan 2021; Ghosh, Mitra, and Lan 2022).

Thus, the key idea in learning a data-driven differentiable
feature acquisition policy Π(·) is that we need to pass the gra-
dient of the loss function ℓ(·, ·) through the feature acquisition
policy. For RL algorithms in (3), only the action distribution
needs to be differentiable; we do not need to back-propagate
gradients from the reward value (negative loss). However, if
we want to use (4), we need to back-propagate (i) from the
loss ℓ(y, f(st(ϕ); θ)) to the input of the prediction model st,
∂ℓ
∂st

, (ii) from st to the feature mask Ot, ∂st
∂Ot

, and (iii) from
Ot to the policy parameter ϕ, ∂Ot

∂ϕ . Back-propagation from
the loss ℓ(y, f(st(ϕ); θ)) to the input of the prediction model
st (i) is straight-forward. To back-propagate from the input
st to the feature maskOt (ii), we need to make sure the input
representation st is a differentiable function of Ot; we will
detail the feature representation in the following subsections.
To back-propagate from the feature mask Ot to the policy
parameters ϕ, we need to approximate the non-differentiable
feature acquisition operation, which we detail next.

Feature Acquisition Policy
For gradient backpropagation, we use a sparse mask vector
zt−1 ∈ {0, 1}M to encode the indices of the features present
in the acquired feature set Ot−1 at time t, with zt−1,j = 1 if
and only if the feature j has been acquired j ∈ Ot−1. This
vector zt−1 has a one-to-one correspondence with the ac-
quired feature setOt−1 and we will use them interchangeably.
The policy can use an arbitrary non-linear feature acquisition
model g(·) : S → RD with parameters ϕ to score each of
the available features that has not been acquired yet, and to
acquire a single feature wt ∈ {0, 1}D ∩∆D−1 for the next
step. We use the Gumbel-softmax operator (ρ) (Jang, Gu,
and Poole 2016) followed by straight-through approximation
(Bengio, Léonard, and Courville 2013) to randomly sample
a single feature wt from the output of g(·) as the feature
acquired by the policy. The updated acquired feature set zt

at time step t+ 1 is given by

zt = zt−1 +wt

(
ρ
(
g(st−1;ϕ)

))
(5)

The Gumbel softmax operation on vector g(·) ∈ RD is de-
fined as (Jang, Gu, and Poole 2016)

ρj(·)=
exp

(
(gj(·) + ϵj)/τ

)∑
k∈Vt−1

exp
(
(gk(·)+ϵk)/τ

), ∀j ∈ Vt−1 (6)

where ϵ1, · · · , ϵD are i.i.d random variable drawn from the
standard Gumbel distribution. The single feature acquisition
operation is defined as

wt

(
g(st;ϕ)

)
= one-hot

(
argmax
j∈Vt−1

ρj(·)
)
.

The selection operation, wt

(
ρ(·)

)
, is differentiable w.r.t.

ϕ with the approximation, so we have
∂ℓ

∂wt

(
ρj(·)

) ≈ ∂ℓ

∂ρj(·)
, ∀j ∈ Vt−1. (7)

We note that one can easily compute gradient of the output
of the Gumbel-softmax operator ρ(·) w.r.t. policy parameters
ϕ using the reparameterization trick (Kingma and Welling
2013). Empirically, straight-through Gumbel-softmax-based
gradient estimators have lower variance than score function-
based estimators in (3) (Jang, Gu, and Poole 2016), which
have been applied in prior work to learn feature acquisition
policies (Shim, Hwang, and Yang 2018; Li and Oliva 2021).

Feature Representation and Imputation Model
We also need to represent the feature vector st such that
we can compute ∂st

∂zt
and in turns ∂ℓ

∂zt
, ∂ℓ

∂ϕ . To this end,
we consider an optional missing value imputation model
h(·;ψ). The imputation model h uses acquired feature val-
ues x(1), · · · , x(t), and the mask for the acquired features,
zt, to impute the missing feature values x\Ot

. We consider
the imputation model to be fixed throughout the feature ac-
quisition training process. Our framework is agnostic to the
imputation model h and mean/zero imputation is equally ap-
plicable in our case; we denote the imputed feature values
as x̂ := (x̂1, · · · , x̂D). In particular, we use VAEAC (Ivanov,
Figurnov, and Vetrov 2018) to learn the missing features (po-
tentially including the target also) conditioned on observed
features xOt , similar to the EDDI method (Ma et al. 2019).

In addition to the imputed values for the missing features,
the probabilistic VAEAC model can provide side information
on features, which is used by the GSMRL method (Li and
Oliva 2021). In particular, we consider the mean µj , stan-
dard deviation σj , and utility (expected information gain to
the target) uj for each missing feature j. The distribution of
the target variable, y, is given by N (µy, σy) for real-valued
features and Cat(p1, · · · , pC) for categorical features where
N and Cat represent Normal and Categorical distribution,
respectively. We represent the target distribution using a sin-
gle vector ŷ = (µy, σy) (or (p1, · · · , pC)) and concatenate
with the auxiliary information from the features. Thus, the
auxiliary information vector is

a = ( µ1, σ1, u1︸ ︷︷ ︸
side info on feature 1

, · · · , µD, σD, uD︸ ︷︷ ︸
side info on feature D

, ŷ), (8)
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Forward Pass
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Figure 1: Visualization of DiFA’s gradient calculation at time step 3, i.e., selecting the third feature. Observed features are {1, 5}
and the policy acquires feature 3 at this step; the gradient flows through valid features V2 = {2, 3, 4}. For simplification, we do
not show feature mask zt, side information at, and the imputed values x̂ when constructing st in (9).

where the expected information gain to the target is

uj = H(y|xO)− Ep(xj |xO)H(y|xj ,xO),

= H(xj |xO)− Ep(y|xO)H(xj |y,xO).

We denote the shannon entropy operator as H. We note that
the auxiliary information is only defined for features that
have not yet been acquired; otherwise, they are assumed to
be 0 for j ∈ Ot.

We represent the feature vector at time step t as

st =
(
x⊙ zt + x̂⊙ (1− zt)︸ ︷︷ ︸

1

⊕ zt︸︷︷︸
2

⊕ at︸︷︷︸
3

)
, (9)

where ⊙ and ⊕ are element-wise multiplication and con-
catenation operators on vectors, respectively. The first term,
x⊙ zt + x̂⊙ (1− zt), uses the acquired feature values and
imputes the rest using an optional imputation model h. The
second term, zt, provides information on the acquired feature
set. Together, these two terms provide full information on
the state of the partially observed sample. The third auxiliary
term, at provides side information on features; previous re-
search found that they are useful in the presence of sparse
information (Li and Oliva 2021). We use the feature vector
st as input to both the feature acquisition model g and the
prediction model f .

Gradients In (9), features that are not acquired yet, are
imputed with the imputation model h(·;ψ); in case of mean
imputation, we simply use the mean values. However, note
that st is differentiable w.r.t. zt (or Ot) and even when a
feature j is not acquired, the actual value of the that feature xj
affects the gradient computation. Recall that the imputation
model is fixed during the training process and the gradient
does not flow through the auxiliary information vector at
in (9). Thus, for simplicity, we will omit this auxiliary vector.
We rewrite the mask vector in (5) as

zt =
(
(zt−1,1 +wt,1), · · · , (zt−1,D +wt,D)

)
. (10)

We note that wt,j is 1 for the newly acquired feature and
0 otherwise. Moreover, the selection process is defined
over valid features Vt−1 (features not acquired till the last

time step and not missing in the original data point, x i.e.,
∈ {1, · · · , D}\Ot−1 ∪M). Thus, the gradient flows only
through wt,j where j ∈ Vt−1. wt,j has effect on the first two
terms in (9): the feature values x⊙ zt + x̂⊙ (1− zt) ∈ RD

(actual or imputed) and the feature mask zt ∈ RD. Thus, we
have these two co-ordinates for each feature j as

st,j = x̂j + (xj − x̂j) · (zt−1,j +wt,j(ϕ)),

st,D+j = zt−1,j +wt,j(ϕ), ∀j ∈ {1, · · · , D}.

For a valid feature j ∈ Vt−1, we have

∂ℓ

∂wt,j
=

∂ℓ

∂st,D+j
+

∂ℓ

∂st,j
· (xj − x̂j). (11)

Intuitively, on the one hand, if the imputed feature value x̂j
is close to the true feature value xj (in the case of a good
imputation model) or the gradient w.r.t. the feature value st,j
is small (in the case of an unimportant feature), the weight
wt,j should remain similar. On the other hand, if the imputed
feature value is far from the true feature value and the ab-
solute value of the gradient w.r.t. to st,j is large, the weight
for the feature wt,j should be increased (or decreased) when
∂ℓ

∂st,j
· (xj − x̂j) < 0 (or > 0). We note that even when

a feature j is not acquired at step t, we can still compute
the gradient w.r.t. the weight wt,j and pass it to the pol-
icy parameters. In contrast, score-function estimators in (3)
have non-zero gradient only a feature j that is acquired, i.e.,
wt,j = 1:

∂ℓ

∂wt,j
= −ℓ log νj(·;ϕ) · 1[wt,j = 1], (12)

where νj(·;ϕ) represents the probability (softmax output) of
the acquired feature using a reinforcement learning policy
with parameter ϕ. We summarize DiFA’s training process in
Algorithm 1. We visualize DiFA training process for a single
time step in Figure 1.

Dealing with Spatial Features We encode the feature rep-
resentation st differently for image datasets. The reason is
that image datasets are particularly vulnerable when spatial
features are provided as a single vector, even when flattened
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Algorithm 1: DiFA training process
1: Input (optional) Imputation model h(·;ψ).
2: Initialize parameters ϕ, θ, learning rate η.
3: while not converged do
4: Randomly sample data point(s) (x,y).
5: Initialize O0 = ∅ for each data points.
6: for t ∈ 1 · · ·K do
7: Sample feature j∼Π(st−1;ϕ) and Ot←Ot−1∪j.
8: Update feature mask zt and representation sOt us-

ing (5), and (9).
9: Compute loss ℓ

(
y, f

(
sOt

(ϕ); θ
))

and gradients
∇θℓ and ∇ϕℓ using (11) and (7).

10: Take gradient steps for ϕ and θ.
11: end for
12: end while

st provides full information to both the feature selection
policy and the prediction model. We encode a partially ob-
served image x ∈ Rc×H×W with c channels into dimension
R5c×H×W where each of the 5 chunks represent the feature
value xj · z·,j + x̂j · (1 − z·,j) (observed or imputed), the
observation mask z·,j , the mean µj , standard deviation σj ,
and utility uj for each of the c channel features. For the mean
imputation scheme, there will be only two chunks containing
the feature values and the observation masks. Using these
spatial representations for image datasets, we can leverage
2-D convolutional layers often used in image classification
models. We provide specific network architecture choices for
different datasets in their respective experimental section.

Dealing with Categorical Features In (9), we assume the
features are real-valued when masking the feature d using
xd ⊙ zt,d operation. Even though the masked value is 0 for
features that are not yet acquired, this representation lets us
compute the gradient w.r.t. zt,d which we can pass to the pol-
icy parameters. To handle categorical features, we first con-
vert them into dense features using embedding layers before
applying the masking operations. We represent categorical
features as E(xd)⊙ zt,d where E is the embedding layer and
⊙multiplies the scalar zt,d with each dimension in the vector
E(xd). Thus, although unobserved categorical features are
represented using zero vectors, we can compute the gradient
w.r.t. zt,d. We handle x̂d for categorical features similarly,
where we sample the most likely feature value using the im-
putation model h. The ∂ℓ

∂st,j
· (xj − x̂j) term in (11) for valid

categorical features becomes
∑

l
∂ℓ

∂st,j,l
· (E(xj)l − E(x̂j)l),

where l is the embedding dimension, and the additional sub-
script st,j,l can be viewed as multiple co-ordinates for the
embedding of the categorical feature.

Experiments
In this section, we detail our experimental setup, model im-
plementation, and experimental results on real-world public
datasets. The number of actions, i.e., the feature dimensionD,
is key to learning a feature acquisition policy; large values of
D can be challenging to handle in practice. Prior work mostly

Dataset K EDDI JAFA GSMRL DiFA

MNIST 16 0.2474 0.3019 0.8794 0.9038
32 0.5306 0.9694 0.9641 0.9701

Fashion-
MNIST

32 0.1035 0.8507 0.8435 0.8713
64 0.1111 0.8758 0.878 0.9069

SVHN 64 0.2962 0.902 0.8726 0.9107
128 0.5489 0.9186 0.9057 0.9445

CIFAR10 64 0.1802 0.5651 0.5485 0.5712
128 0.2646 0.6751 0.6597 0.7072

Grid
4 0.691 0.7889 0.793 0.792
6 0.7448 0.9007 0.8979 0.8985
8 0.7922 0.968 0.9658 0.9633

Parkinson
(-MSE)

6 -0.9272 -0.6586 -0.6523 -0.6595
8 -0.8844 -0.6342 -0.6202 -0.6038

10 -0.8354 -0.5971 -0.5967 -0.5831

PhysioNet-
Mortality
(F1)

4 0.3384 0.4806 0.4735 0.4805
8 0.374 0.4968 0.4989 0.4952

12 0.4103 0.5084 0.5056 0.51

Table 1: Average metrics (accuracy is the default metric on
the first five datasets) for all models. We defer the standard
deviation numbers in Figure 2 to the supplementary material.

used synthetic datasets and smaller real-world datasets such
as UCI datasets and the MNIST dataset down-sampled to
D = 16× 16 (Li and Oliva 2021). The reason for this choice
is computational: the time complexity of the EDDI method
grows as O(D2) and the RL methods used for JAFA and
GSMRL methods are empirically slow to converge when the
number of actions (D) increases (Freeman et al. 2021). We
show in our experiments that DiFA, due to its differentiable
nature, is more scalable to much larger datasets, such as CI-
FAR where the feature dimension D is 3072, than existing
methods.

Setup and Baselines
We compare our method, DiFA, with the JAFA (Shim,
Hwang, and Yang 2018), GSMRL (Li and Oliva 2021), and
EDDI methods (Ma et al. 2019). We repeat each experi-
ment five times with different random seeds and list/plot the
mean and the standard deviation (std) numbers; we list
the p-values in the supplementary material. We implement
all methods in PyTorch and run our experiments in a single
NVIDIA 2080Ti GPU. Our implementation will be publicly
available at https://github.com/arghosh/DiFA.

We take a unifying approach for preprocessing, network
architecture, and training process for all the methods consid-
ered in this paper. The reason is that we observe that minor
changes in preprocessing, network architecture, training pro-
cess, and even the base RL algorithm can cause significant
changes in the performance of the same method. Since we
use both image and static datasets, we start with the over-
all setup first. We detail the network architecture specifics
of the dataset, in their respective subsections. We list the
hyperparameters in the supplementary material.
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Figure 2: Visualization of average metrics (lines) and standard deviations (error bars) for learnable feature acquisition policies.

Preprocessing and the imputation model: All existing
methods and our method, except JAFA, use an imputation
model. We use the exact same imputation model based on
VAEAC for all of these methods. DiFA uses the imputation
model to augment side information and to impute the missing
input feature values in a differentiable fashion in (9). EDDI
uses the imputation model to impute the missing features.
GSMRL uses the imputation model to augment side infor-
mation and leave the missing feature values as 0. JAFA does
not use the imputation model and keeps the missing feature
value as 0. We perform standard Gaussian normalization for
all the real-valued features.

Prediction model and the acquisition policy: For all
methods, we pre-train the prediction model for a fixed num-
ber of epochs. We use the same network architecture for all
methods. We select a subset of the features to be masked uni-
formly random across all features. Since the distribution of
the uniform random mask is different from the mask for the
selected features, we further jointly fine-tune the prediction
model along with the feature selection policy with a smaller
learning rate. The EDDI method takes ∼ 7 days (O(D2))
just to perform inference on the test set of the CIFAR10
dataset. Thus, for the EDDI method, we fixed the pre-trained
prediction model and perform inference without further train-
ing. The RL policy for the JAFA and GSMRL methods and
the differentiable policy for the DiFA method have the exact
same network architecture.

Base RL algorithm: JAFA and GSMRL train the fea-
ture selection policy using RL-based algorithms. The former
uses Double DQN (Hasselt 2010) while the latter uses PPO
(Schulman et al. 2017). Given the success of PPO methods
for stabilizing RL training, we use PPO algorithms for both
of these methods. In fact, we observe that JAFA performs sig-
nificantly better than previously reported (Li and Oliva 2021)
when using PPO as the base RL algorithm. Since we use a

fixed number of acquired features for all methods, we do not
use any feature acquisition costs; instead, we use negative
log-likelihood as the reward at the end of each RL episode.
Moreover, for the GSMRL method, we provide intermediate
rewards following prior work (Li and Oliva 2021).

Image Classification
We use the following four datasets for image classification
experiments: MNIST (C = 10, n = 70K, c = 1, D =
1× 28× 28) (LeCun et al. 1998), FashionMNIST (C = 10,
n = 70K, c = 1,D = 1×28×28) (Xiao, Rasul, and Vollgraf
2017), SVHN (C = 10, n = 100K, c = 3,D = 3×32×32)
(Netzer et al. 2011), and CIFAR10 (C = 10, n = 70K,
c = 3, D = 3× 32× 32) (Krizhevsky, Hinton et al. 2009),
where C, D, n, and c are the number of classes, the image
dimension (channels, height, and width), number of samples,
and number of input channels, respectively.

We use the ResNet18 architecture (He et al. 2016) as the
prediction model for all of these image datasets. We change
the kernel size to 3 for the first convolutional layer, follow-
ing prior work (Chen et al. 2020). JAFA and EDDI use raw
pixel values as features (true value or masked value) and the
feature mask in their prediction models, whereas DiFA and
GSMRL augment the prediction model with side information
(mean, standard deviation, and expected information gain).
Thus, the first convolutional layer of ResNet18 has 2c and
5c channels for these two cases, respectively, depending on
whether side information is present. We also use a ResNet-
style architecture with five convolutional layers as the model
for the feature selection policy. For DiFA and GSMRL, the
side information at uses estimated logits ŷ from the impu-
tation model. We concatenate the output logits ŷ with the
output from the convolutional layers; JAFA does not use any
side information, and the convolutional layers use spatial
features ∈ R2c×H×W . We finally use a single hidden layer
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for the actor layer and the critic layer for RL-based methods,
JAFA and GSMRL. We also use a ResNet-style architecture
for the VAEAC imputation model. We use five convolutional
layers to encode the image, five deconvolutional layers to
decode the image, and two linear layers to compute the latent
variables.

Results and Discussion In Table 1, we list the mean accu-
racies across all random seeds for various numbers of total
acquired features (K) on the MNIST, FashionMNIST, SVHN,
and CIFAR10 datasets. The static feature selection policy us-
ing a heuristic criterion, EDDI, does not perform well, with
a performance that falls way below other methods on every
dataset and for all values ofK. In Figure 2, we plot the means
(as lines) and stds (as error bars) of the remaining models
(without EDDI) to visualize the statistical significance of
the results; we list p-value numbers in the supplementary
material.

On the MNIST dataset, DiFA outperforms other methods
by 0.5%-2%. JAFA performs slightly better than GSMRL
for K = 64; however, we observe that JAFA converges to
suboptimal solutions for K = 16 for all 5 random seeds.
We believe that the reason is that the auxiliary information
provided by the imputation module is more helpful when
the number of total acquired features, K, is smaller. We ob-
serve a higher variance in the MNIST dataset, especially for
small values of K. On the FashionMNIST dataset, DiFA
outperforms other methods by 2%-3% for all values K. In-
terestingly, DiFA with K = 32 reaches the same predictive
performance as GSMRL and JAFA with K = 64, which
means a 50% sample efficiency improvement on the Fash-
ionMNSIT dataset. JAFA and GSMRL perform similarly on
the FashionMNSIT dataset as well. On the SVHN dataset,
DiFA outperforms other methods by 1%-4%. Similar to the
FashionMNIST dataset, we observe that DiFA requires 50%
fewer features to reach similar predictive performance on the
SVHN dataset. On the CIFAR10 dataset, DiFA outperforms
other methods by 1%-6%. Overall, on all the image classi-
fication datasets, DiFA outperforms other methods; in most
cases, the performance gain is statistically significant, as evi-
dent in Figure 2. We also observe that EDDI performs worse
than other methods by a large margin. JAFA and GSMRL
perform relatively the same for larger values of K.

Other Supervised Tasks
We use two other supervised datasets from the UCI reposi-
tory (Asuncion and Newman 2007): the Grid dataset (a binary
classification task with n = 10K, D = 12) and the Parkin-
son dataset (a regression task with n = 5K, D = 16) where
n and D are the number of data points and feature dimension,
respectively. We use negative mean squared error (MSE) as
the metric for the regression task. We also experiment with
the in-hospital mortality task (an imbalanced binary classi-
fication task with n = 12K, D = 41) from the PhysioNet
2012 challenge (Goldberger et al. 2000). Since the PhysioNet
dataset is highly class-imbalanced, we use weighted cross-
entropy loss for feature selection policy and prediction model
learning, following prior work (Li and Oliva 2021). More-
over, we use the F1 score as the evaluation metric for the

PhysioNet dataset. Note that PhysioNet contains on average
10 unobserved features per data point; we select features
from only the observed features. The prediction model has
three fully connected layers with skip connections, dropout
regularizer, and LeakyReLU activation function. The input
layer maps real-valued features to a dense vector and concate-
nates the embeddings of the categorical features to another
dense vector. Finally, we pass these two dense vectors along
with the mask and auxiliary side information to the predic-
tion model. The feature selection policy model has the same
network architecture as the prediction model. The VAEAC
imputation model uses a skip connection with three fully con-
nected layers to encode the features and three fully connected
layers to decode the latent variables. The input layer of the
VAEAC model concatenates two dense latent vectors, one for
real-valued features, and one for categorical features, along
with the mask, similar to the prediction model.

Results and Discussion In Table 1, we list the mean met-
rics across all random seeds for various numbers of acquired
features (K) for the Grid, Parkinson, and PhysioNet 2012
Challenge datasets. Similar to image datasets, the static pol-
icy, EDDI, does not perform well in any setting. In Figure
2, we plot the means (as line plot) and stds (as error bars)
for the remaining models to visualize the statistical signif-
icance of the results. We observe that JAFA, GSMRL, and
DiFA perform similarly on the UCI datasets (Grid and Parkin-
son) and PhysioNet datasets since they are relatively small.
In Figure 2, we see that only on the Parkinson dataset, for
K = {8, 10}, DiFA has a statistically significant advantage
over other methods. In every other case, there is no clear
winner among all methods. We emphasize that this result is
as expected since RL methods are asymptotically optimal;
since these datasets are small, for small values of K, RL can
often learn the optimal feature selection policy, unlike on
larger image datasets where they often cannot do so.

Conclusions and Future Work
In this paper, we proposed DiFA, a differentiable feature
acquisition method that uses first order information on the
prediction loss reward to optimize the feature acquisition pol-
icy parameters. Through extensive experiments on real-world
image classification and supervised learning datasets, we
demonstrated that DiFA can significantly outperform existing
reinforcement learning-based methods and informativeness-
based heuristics for feature acquisition. DiFA expands the
horizon of feature selection to scenarios where the number
of features is an order of magnitude larger than what ex-
isting methods can manage. There are numerous avenues
for future work, including extending DiFA to temporal and
spatio-temporal data. For temporal datasets (e.g., videos), we
need to dynamically decide whether to acquire some features
in each time step, which requires changing the objective in
(2) to handle temporal dynamics in the data. We also note
that on datasets where the number of features is very large,
such as ImageNet (D ∼ 150K), feature acquisition remains
challenging. We believe that differentiable physics engines
combined with DiFA can be a promising solution (Freeman
et al. 2021; de Avila Belbute-Peres et al. 2018).
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