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Abstract

We consider the task of producing heatmaps from users’ ag-
gregated data while protecting their privacy. We give a dif-
ferentially private (DP) algorithm for this task and demon-
strate its advantages over previous algorithms on real-world
datasets.
Our core algorithmic primitive is a DP procedure that takes
in a set of distributions and produces an output that is close
in Earth Mover’s Distance to the average of the inputs. We
prove theoretical bounds on the error of our algorithm under
a certain sparsity assumption and that these are near-optimal.

1 Introduction
Recently, differential privacy (DP) (Dwork et al. 2006b,a)
has emerged as a strong notion of user privacy for data ag-
gregation and machine learning, with practical deployments
including the 2022 US Census (Abowd 2018), in industry
(Erlingsson, Pihur, and Korolova 2014; Shankland 2014;
Greenberg 2016; Apple Differential Privacy Team 2017;
Ding, Kulkarni, and Yekhanin 2017) and in popular machine
learning libraries (Radebaugh and Erlingsson 2019; Testug-
gine and Mironov 2020). Over the last few years, DP algo-
rithms have been developed for several analytic tasks involv-
ing aggregation of user data.

One of the basic data aggregation tools is a heatmap.
Heatmaps are popular for visualizing aggregated data in
two or higher dimensions. They are widely used in many
fields including computer vision and image processing, spa-
tial data analysis, bioinformatics, etc. Many of these applica-
tions involve protecting the privacy of user data. For exam-
ple, heatmaps for gaze or gene microdata (Liu et al. 2019;
Steil et al. 2019) would be based on data from individuals
that would be considered private. Similarly, a heatmap of
popular locations in a geographic area will be based on user
location check-ins, which are sensitive. Motivated by such
applications, in this paper, we present an efficient DP algo-
rithm for computing heatmaps with provable guarantees, and
evaluate it empirically.

At the core of our algorithm is a primitive solving the fol-
lowing basic task: how to privately aggregate sparse input
vectors with a small error as measured by the Earth Mover’s
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Distance (EMD)? While closely related to heatmaps, the
EMD measure is of independent interest: it was origi-
nally proposed for computer vision tasks (Rubner, Tomasi,
and Guibas 2000) since it matches perceptual similar-
ity better than other measures such as ℓ1, ℓ2, or KL-
divergence (Stricker and Orengo 1995; Levina and Bickel
2001; Wang and Guibas 2012). It is also well-suited for spa-
tial data analysis since it takes the underlying metric space
into account and considers “neighboring” bins. EMD is used
in spatial analysis (Kranstauber, Smolla, and Safi 2017), hu-
man mobility (Isaacman et al. 2012), image retrieval (Rub-
ner, Tomasi, and Guibas 1998; Puzicha et al. 1999), face
recognition (Xu, Yan, and Luo 2008), visual tracking (Zhao,
Yang, and Tao 2008), shape matching (Grauman and Darrell
2004), etc. For the task of sparse aggregation under EMD,
we give an efficient algorithm with asymptotically tight er-
ror. We next describe our results in more detail.

1.1 Our Results
We consider the setting where each user i holds a probability
distribution pi over points in [0, 1)2, and the goal is to com-
pute the heatmap of the average of these probabilities, i.e.,
1
n

∑n
i=1 pi. We give an ε-DP algorithm for this task, estab-

lish its theoretical guarantees, and provide empirical evalua-
tions of its performance. (For definitions, see Section 2.)

Sparse Aggregation under EMD. At the heart of our ap-
proach is the study of aggregation under EMD1, where we
would like to output the estimate of 1

n

∑n
i=1 pi with the er-

ror measured in EMD. There are two main reasons why we
consider EMD for the error measure. First, a bound on the
EMD to the average distribution implies bounds on several
metrics commonly used in evaluating heatmaps, including
the KL-divergence, ℓ1 distance, and EMD itself. Second,
while it is possible to obtain DP aggregation algorithms with
bounded EMD error, as we will discuss below, any DP ag-
gregation algorithm must suffer errors under other metrics,
including KL-divergence or ℓ1 distance, that grow with the
resolution2, rendering them impractical when the number of
users is small compared to the resolution.

1For a formal definition of EMD, please see Section 2.1.
2Specifically, it follows from previous work (Dwork et al. 2015)

that, if we consider the ℓ1 distance or KL-divergence for ∆ × ∆
grid and n ≤ Oε(∆), then the error must be Ω(1).
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When the distributions pi’s are arbitrary, we show that a
simple ε-DP algorithm yields a guarantee of Oε(1/

√
n) on

EMD, and that this bound is essentially optimal. While this
is already a reasonable bound, we can improve on it by ex-
ploiting a property that is commonly present in distributions
used for aggregations: “sparsity” (Cormode et al. 2012a).

Following the literature on compressed sensing (Indyk
and Price 2011; Backurs et al. 2016), we define our approx-
imation guarantee for the sparse EMD aggregation prob-
lem with respect to the best k-sparse distribution3 that ap-
proximates the average a := 1

n

∑n
i=1 pi under EMD. More

formally, we say that an output distribution â is a (λ, κ)-
approximation for sparse EMD aggregation if

EMD(â,a) ≤ λ ·mink-sparse a′ EMD(a′,a) + κ,

where λ, κ > 0 denote the multiplicative approximation ra-
tio and additive error respectively.

Our main algorithmic contribution is in showing that un-
der such a sparse approximation notion, we can achieve an
error of only Oε(

√
k/n) and that this is tight.4

Theorem 1.1 (Informal). There exists an ε-DP algo-
rithm that, for any constant λ ∈ (0, 1), can output a
(λ,Oε(

√
k/n))-approximation for sparse EMD aggregation

w.p. 0.99. Furthermore, no ε-DP algorithm can output a
(λ, oε(

√
k/n))-approximate solution w.p. 0.1.

Due to a known connection between sparse EMD ag-
gregation and k-median clustering on the plane (Indyk and
Price 2011; Backurs et al. 2016), our result also yields an im-
proved DP algorithm for the latter. Due to space constraints,
we omit the formal statement of our k-median results.

Experimental results. We test our algorithm on both real-
world location datasets and synthetic datasets. The results
demonstrate its practicality even for moderate values of
ε ∈ [0.5, 5] and a number of users equal to 200. Further-
more, we compare our algorithm with simple baselines; un-
der popular metrics for heatmaps, our results demonstrate
significant improvements on these regimes of parameters.

1.2 Overview of Techniques
At a high level, our algorithm is largely inspired by the work
of Indyk and Price (2011) on compressed sensing under
EMD. Roughly speaking, in compressed sensing, there is an
underlying vector x that is known to be well-approximated
by a sparse vector; we have to provide a matrix A such that,
when we observe the measurements Ax, we can reconstruct
x′ that is close to x (under a certain metric). This can of
course be done trivially by taking A to, e.g., be the identity
matrix. Thus, the objective is to perform this recovery task
using as few measurements (i.e., number of rows of A) as
possible. There is a rich literature on compressive sensing;
most relevant to our work are the prior papers studying com-
pressive sensing with EMD, in particular, Indyk and Price
(2011) and Backurs et al. (2016).

3A distribution is k-sparse if it is non-zero on at most k points.
4Note that the output â need not be k-sparse. This is the reason

why the approximation ratio λ can be less than one.

Indyk and Price (2011) presented an elegant framework
for reducing the compressed sensing problem under EMD
to one under ℓ1, which is well-studied (see, e.g., Berinde
et al. 2008; Berinde, Indyk, and Ruzic 2008; Indyk and
Ruzic 2008; Berinde and Indyk 2009). Their reduction cen-
ters around finding a linear transformation with certain prop-
erties. Once such a transformation is specified, the algorithm
proceeds (roughly) as follows: transform the input x, run the
compressed sensing scheme for ℓ1, and “invert” the trans-
formation to get x′. Note that the number of measurements
required is that of the ℓ1 compressed sensing scheme.

One can try to use the Indyk–Price scheme for DP aggre-
gation by viewing the hidden vector x as the sum

∑n
i=1 pi,

and then adding Laplace noise to each measurement to en-
sure privacy. Although they did not analyze their guarantees
for noisy measurements, one can follow the robustness of
known ℓ1 compressed sensing schemes to analyze the er-
ror. Unfortunately, since the error will scale according to the
ℓ1 norm of the noise vector and the noise vector consists of
O(k · log(n/k)) entries, this approach only provides an error
guarantee of O(k · (poly log n)/n).

To overcome this, we observe that, while compressed
sensing and DP aggregation seem similar, they have differ-
ent goals: the former aims to minimize the number of mea-
surements whereas the latter aims to minimize the error due
to the noise added (irrespective of the number of measure-
ments). With this in mind, we proceed by using the Indyk–
Price framework but without compressing, i.e., we simply
measure the entire transformation. Even with this, the noise
added to achieve DP is still too large and makes the error
dependent on log n. As a final step, to get rid of this fac-
tor we carefully select a different noise magnitude for each
measurement, which allows us to finally achieve the O(

√
k)

error as desired. The details are presented in Section 3.
Our lower bound follows the packing framework of Hardt

and Talwar (2010). Specifically, we construct a set of k-
sparse distributions whose pairwise EMDs are at least
Ω(1/

√
k). The construction is based on an ℓ1 packing of

the
√
k ×
√
k grid, which gives a set of size 2Ω(k). It then

immediately follows from Hardt and Talwar (2010) that the
error must be at least Ωε(

√
k/n) with probability 0.9.

1.3 Related Work and Discussion
In a concurrent and independent work, Bagdasaryan et al.
(2022) also study the private heatmaps problem. However,
our work differs from theirs in three aspects: (i) they do not
formulate the problem in terms of EMD, (ii) their work does
not provide any formal utility guarantees unlike ours, (iii)
their emphasis is on communication efficiency in distribut-
ed/federated setting whereas our focus is more general.

Our DP EMD sparse aggregation algorithm bears high-
level similarity to known algorithms for DP hierarchical his-
tograms (see, e.g., Cormode et al. 2012b; Qardaji, Yang,
and Li 2013): all algorithms may be viewed as traversing
the grid in a top-down manner, starting with larger subgrids
and moving on to smaller ones, where a noise is added to
the “measurement” corresponding to each subgrid. The dif-
ferences between the algorithms are in the amount of noise
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added to each step and how the noisy measurement is used to
reconstruct the final output. Our choices of the noise amount
and the Indyk–Price reconstruction algorithm are crucial to
achieve the optimal EMD error bound stated in Theorem 1.1.

There are also DP hierarchical histogram algorithms that
do not fit into the above outline, such as the PrivTree al-
gorithm (Zhang, Xiao, and Xie 2016). An advantage of our
approach is that the only aggregation primitive required is
the Laplace mechanism; therefore, while we focus on the
central model of DP (where the analyzer can see the raw
input and only the output is required to be DP), our algo-
rithm extends naturally to distributed models that can imple-
ment the Laplace mechanism, including the secure aggrega-
tion model and the shuffle model (Balle et al. 2020; Ghazi
et al. 2020). On the other hand, algorithms such as PrivTree
that use more complicated primitives cannot be easily im-
plemented in these models.

2 Notation and Preliminaries
For N ∈ N ∪ {0}, we write [N ] to denote {0, . . . , N}. Let
G∆ be the set of (∆×∆) grid points in [0, 1)2; specifically,
G∆ = {(i/∆, j/∆) | i, j ∈ [∆− 1]}. For notational conve-
nience, we assume throughout that ∆ = 2ℓ for some ℓ ∈ N.

For an index set I, we view p ∈ RI as a vector indexed
by I and we write p(i) to denote the value of its ith coor-
dinate; this notation extends naturally to the set S ⊆ I of
coordinates, for which we let p(S) :=

∑
i∈S p(i). Further-

more, we use p|S to denote the restriction of p to S; more
formally, p|S(i) = p(i) if i ∈ S and p|S(i) = 0 otherwise.
We also write p|S̄ as a shorthand for p−p|S , i.e., the restric-
tion of p to the complement of S. We use supp(p) to denote
the set of non-zero coordinates of vector p. A vector is said
to be k-sparse if its support is of size at most k. Recall that
the ℓ1-norm of a vector p ∈ RI is ∥p∥1 :=

∑
i∈I |p(i)|.

2.1 Earth Mover’s Distance (EMD)
Given two non-negative vectors p,q ∈ RG∆

≥0 such that
∥p∥1 = ∥q∥1, their Earth Mover’s Distance (EMD) is
EMD(p,q) := minγ

∑
x∈G∆

∑
y∈G∆

γ(x, y) · ∥x− y∥1,

where the minimum is over γ ∈ RG∆×G∆

≥0 whose marginals
are p and q. (I.e., for all x ∈ G∆,

∑
y∈G∆

γ(x, y) = p(x)

and, for all y ∈ G∆,
∑

x∈G∆
γ(x, y) = q(y).)

We define the EMD norm of a vector w ∈ RG∆ by
∥w∥EMD := min

p,q∈RG∆
≥0

p−q+r=w,∥p∥1=∥q∥1

EMD(p,q) + α · ∥r∥,

where α = 2 is the diameter of our space [0, 1)× [0, 1).
The following simple lemma will be useful when dealing

with unnormalized vs normalized vectors.
Lemma 2.1. Suppose that s, ŝ ∈ RG∆

≥0 are such that ∥s∥1 =

n and ∥s− ŝ∥EMD ≤ n/2. Let a = s/∥s∥1 and â = ŝ/∥ŝ∥1.
Then, we have ∥a− â∥EMD ≤ 4∥s− ŝ∥EMD/n.

Proof. Let ζ = ∥s−ŝ∥EMD; observe that |∥s∥1−∥ŝ∥1| ≥ ζ.
As a result, we have ∥ŝ∥1 ∈ [n− ζ, n+ ζ]. Thus,

∥ŝ/n− â∥EMD ≤ ∥ŝ∥EMD ·
∣∣∣∣ 1n − 1

∥ŝ∥1

∣∣∣∣

≤ (n+ ζ) ·
∣∣∣∣ 1n − 1

n− ζ

∣∣∣∣ ≤ 3ζ

n
.

As a result, from the triangle inequality, we have

∥a− â∥EMD ≤ ∥a− ŝ/n∥EMD + ∥ŝ/n− â∥EMD

≤ ζ

n
+

3ζ

n
=

4ζ

n
.

2.2 Differential Privacy
Two input datasets X,X′ are neighbors if X′ results from
adding or removing a single user’s data from X. In our set-
ting, each user i’s data is a distribution pi over G∆.
Definition 2.1 (Differential Privacy; Dwork et al. (2006b)).
A mechanism M is said to be ε-DP iff, for every set O
of outputs and every pair X,X′ of neighboring datasets,
Pr[M(X) ∈ O] ≤ eε · Pr[M(X′) ∈ O].

For a vector-valued function f , its ℓ1-sensitivity, denoted
by S1(f), is defined as maxneighbors X,X′ ∥f(X)− f(X′)∥1.
Definition 2.2 (Laplace Mechanism). The Laplace mecha-
nism with parameter b > 0 adds an independent noise drawn
from the Laplace distribution Lap(b) to each coordinate of
a vector-valued function f .
Lemma 2.2 (Dwork et al. (2006b)). The Laplace mecha-
nism with parameter S1(f)/ε is ε-DP.

2.3 Heatmaps
Given p ∈ RG∆

≥0 , its associated heatmap with Gaussian filter
variance σ2 is defined as

Hσ
p (x, y) =

∑
(x′,y′)∈G∆

e
− (x−x′)2+(y−y′)2

2σ2

Z(x′,y′) · p(x′, y′)

for all (x, y) ∈ G∆, where Z(x′, y′) :=∑
(x′,y′)∈G∆

e−
(x−x′)2+(y−y′)2

2σ2 is the normalization factor.
In the heatmap aggregation problem over n users, each

user i has a probability distribution pi over G∆. The goal is
to output an estimate of the aggregated heatmap Hσ

a where
a = 1

n

∑
i∈[n] pi.

3 Algorithm
In this section, we describe our private sparse EMD aggre-
gation algorithm and prove our main result.
Theorem 3.1. For any ε > 0 and λ ∈ (0, 1), there is an ε-

DP algorithm that can, w.p. 0.99, output a
(
λ,O

( √
k

λεn

))
-

approximation for the k-sparse EMD aggregation problem.

3.1 Pyramidal Transform
As alluded to in Section 1, we use a linear transformation
from (Indyk and Price 2011). This linear transformation
is the so-called (scaled) pyramidal transform, whose vari-
ant is also often used in (metric) embedding of EMD to
ℓ1 (Charikar 2002; Indyk and Thaper 2003). Roughly speak-
ing, the transform represents a hierarchical partitioning of
[0, 1)2 into subgrids, where a subgrid at a level is divided
into four equal subgrids at the next level. The (scaled) pyra-
midal transform has one row corresponding to each subgrid;
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Algorithm 1: DPSPARSEEMDAGG

1: Input: distributions p1, . . . ,pn on G∆

2: Parameters: ε1, . . . , εℓ > 0, w ∈ N
3: s←

∑n
i=1 pi

4: for i = 0, . . . , ℓ do
5: νi ← Lap(1/εi)

⊗mi

6: y′
i ← 1

2i (Pis+ νi)
7: end for
8: y′ ← [y′

0 · · ·y′
ℓ]

9: ŝ← RECONSTRUCT(y′;w)
10: return â := ŝ/∥ŝ∥

Algorithm 2: RECONSTRUCT

1: Input: noisy measurements y′ ∈ R
⋃

i∈[ℓ] C2i

2: Parameters: w ∈ N
3: S0 ← C1

4: for i = 1, . . . , ℓ do
5: Ti ← children(Si−1)
6: Si ← the set of min{w, |Ti|} coordinates in Ti with

maximum values in y′

7: end for
8: S ←

⋃
i∈[ℓ] Si and ŷ← y′|S

9: return ŝ← argmins′≥0 ∥ŷ −Ps′∥1

the row is equal to the indicator vector of the subgrid scaled
by its side length. These are formalized below.

Definition 3.1. For i ∈ N ∪ {0}, we let C2i denote the set
of level i grid cells defined as C2i := {[a, a+2−i)× [b, b+
2−i) | (a, b) ∈ G2i}; let mi := |C2i |.

For i ∈ [ℓ], the level-i grid partition map is defined as
the matrix Pi ∈ {0, 1}C2i×G∆ where Pi(c, p) = 1 iff
p ∈ c. The (scaled) pyramidal transform is the matrix P ∈
R

⋃ℓ
i=0 C2i×G∆ defined by P :=

[
P⊤

0 2−1P⊤
1 . . . 2−ℓP⊤

ℓ

]⊤
.

3.2 The Algorithm

Our algorithm for sparse EMD aggregation consists of two
components. The first component (Algorithm 1) aggregates
the input distributions (Line 3) and applies the pyrami-
dal transform to the aggregate, adding different amounts
of Laplace noise for different levels of the grid (Lines 5,
6). (The parameters ε1, . . . , εℓ, which govern the amount of
Laplace noise, will be specified in the next subsection.) The
second component (Algorithm 2) takes these noisy measure-
ments for every level of the grid and reconstructs the solu-
tion by first recovering the ℓ1 solution (Line 8) and then the
EMD solution using a linear program (Line 9).

We stress that our algorithm is similar to that of Indyk and
Price (2011) except for two points: first, we add noise to the
measurements and, second, we are not doing any “compres-
sion” in contrast to (Indyk and Price 2011), which takes a
wide matrix A for ℓ1 recovery and multiplies it with Ps.

3.3 Analysis
Following the framework of Indyk and Price (2011), our
analysis proceeds in two stages. We first show that the “re-
covered” ŷ is close, in the ℓ1 metric, to the true value of
Ps. Then, we use the properties of P to argue that the out-
put ŝ is close, in EMD, to s. Since we are adding noise to
our measurement, we need to extend the work of Indyk and
Price (2011) to be robust to noise. Finally, we set the privacy
parameters ε1, . . . , εℓ to finish our proof of Theorem 3.1.

Let us now briefly demystify the additive error bound
Oε,λ(

√
k) that we end up with for ŝ (which ultimately gives

the Oε,λ(
√
k/n) error bound for the normalized â). We

will select w = Oλ(k) so as to have an additive error of
Oε(
√
w). At a high level, each noise 1

2i · νi(t) added to
a “queried” term yi(t) for t ∈ Ti permeates to an error
of the same order. For simplicity, assume for the moment
that |νi(t)| = O(1/εi). Now, notice that if we are at level
i < log

√
w, then |Ti| = |C2i | = 22i and thus the total error

contribution of this level is O(2i/εi). On the other hand, for
a level i ≥ log

√
w, we will have |Ti| = w and the error

contribution is O
(

w
2iεi

)
. Now, when i = log

√
w ± O(1),

these error terms are O(
√
w/εi) and thus we should set

εi = Ω(1) to get the desired bound. However, in terms
of |i − log

√
w|, these error terms become exponentially

smaller, i.e., O
( √

w

2|i−log
√

w|εi

)
. This leads to the natural

choices of εi we use, which is to make it proportional to
γ|i−log

√
w| for some constant γ > 0.5. This indeed leads to

the desired Oε(
√
w) = Oε,λ(

√
k) bound.

Phase I: ℓ1 Recovery. We will now analyze the ℓ1 recov-
ery guarantee of ŷ. Our recovery algorithm, which is an
adaptation of Indyk and Price (2011), does not work for gen-
eral hidden vectors. However, it works well for those that
follow a certain “tree-like structure”, formalized below.

Definition 3.2 (Indyk and Price (2011)). For i ≥ 1, a grid
cell c′ ∈ C2i is said to be a child of grid cell c ∈ C2i−1

if c ⊆ c′. This forms a tree rooted at [0, 1) × [0, 1) ∈ C0

where every internal node has exactly four children. We let
Tw denote the set of all trees such that the number of nodes
at each level is at most w.

Let Mw denote the set of y = [y0 · · ·yℓ] where yi ∈
RC2i

≥0 such that
1. supp(y) ⊆ T for some tree T ∈ Tw.
2. For all i ∈ [ℓ− 1], p ∈ C2i , the following holds: y(p) ≥

2 · y(children(p)).
Under the above notion, we can adapt the ℓ1 recovery

analysis of Indyk and Price (2011) in the no-noise case to
our regime, where the noise shows up as an error:

Lemma 3.2. Let y∗ ∈ argminy∈Mw
∥Ps − y∥1 where

supp(y∗) ⊆ T ∗ for some T ∗ ∈ Tw; let T ∗
i denote T ∗ ∩ C2i

and Vi = T ∗
i \ Si for all i ∈ [ℓ]. Then, ŷ on Line 8 of

RECONSTRUCT satisfies ∥ŷ − Ps∥1 ≤ 3∥y∗ − Ps∥1 +

O
(∑

i∈[ℓ]
1
2i ∥νi|Vi∪Si

∥1
)
.

Proof. For every q ∈ T ∗\S, let R(q) be the highest ancestor
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of q that does not belong to S. We have

∥y∗|S̄∥1 =
∑

q∈T∗\S

y∗(q) =
∑
i∈[ℓ]

∑
p∈Vi

∑
q∈R−1(p)

y∗(q)

(♢)

≤
∑
i∈[ℓ]

∑
p∈Vi

2y∗(p) = 2
∑
i∈[ℓ]

y∗(Vi), (1)

where (♢) follows from the second property ofMw.
Next, consider the algorithm at the ith iteration and p ∈

Vi. Since p was not picked, the following must hold for all
q ∈ Si \ T ∗

i : y′(p) ≤ y′(q). Observe also that from |Si| =
max{w, |C2i |} and |T ∗

i | ≤ max{w, |C2i |}, we also have
|Si \ T ∗

i | ≥ |T ∗
i \ Si| = |Vi|. Thus, we get

y′(Vi) ≤ y′(Si \ T ∗
i ). (2)

From this and (1), we can further derive
∥y∗|S̄∥1

(1)
≤ 2

∑
i∈[ℓ]

(y∗(Vi)−Ps(Vi)) +Ps(Si \ T ∗
i )


+

∑
i∈[ℓ]

Ps(Vi)−Ps((Si \ T ∗
i ))


(□)

≤ 2∥y∗ −Ps∥1 + 2

∑
i∈[ℓ]

Ps(Vi)−Ps((Si \ T ∗
i ))


(△)

≤ 2∥y∗ −Ps∥1 + 2

∑
i∈[ℓ]

1

2i

∥∥∥νi|Vi∪(Si\T∗
i )

∥∥∥
1


+ 2

∑
i∈[ℓ]

y′(Vi)− y′((Si \ T ∗
i ))


(2)
≤ 2∥y∗ −Ps∥1 + 2

∑
i∈[ℓ]

1

2i

∥∥∥νi|Vi∪(Si\T∗
i )

∥∥∥
1

 , (3)

where (□) follows from supp(y∗) ⊆ T ∗ =
⋃

i∈[ℓ] T
∗
i and

(△) follows from how y′ is calculated. Finally, from ŷ =
y′|S and how each entry of y′ is computed, we have
∥ŷ −Ps∥1 = ∥y′|S −Ps|S∥1 + ∥PsS̄∥1

≤

∑
i∈[ℓ]

1

2i
∥νi|Si

∥1

+ ∥y∗|S̄∥1 + ∥y∗|S̄ −Ps|S̄∥1

(3)
≤

∑
i∈[ℓ]

1

2i
∥νi|Si

∥1


+

2∥y∗ −Ps∥1 + 2

∑
i∈[ℓ]

1

2i

∥∥∥νi|Vi∪(Si\T∗
i )

∥∥∥
1


+ ∥y∗ −Ps∥1

≤ 3∥y∗ −Ps∥1 + 3

∑
i∈[ℓ]

1

2i
∥νi|Vi∪Si

∥1

 .

Phase II: From ℓ1 to EMD. We now proceed to bound
the EMD error. The main lemma is stated below.
Lemma 3.3. Let the notation be as in Lemma 3.2. For any
η′ ∈ (0, 1), by setting w = O(k/(η′)2), the output ŝ of RE-
CONSTRUCT satisfies ∥s− s∗∥EMD ≤ η′ ·mink-sparse s′ ∥s−
s′∥EMD +O

(∑
i∈[ℓ]

1
2i ∥νi|Vi∪Si∥1

)
.

Similar to the proof of Indyk and Price (2011), our proof
of Lemma 3.3 converts the recovery guarantee under ℓ1 met-
ric to that under EMD; to do this, we need the following two
statements from prior work.
Lemma 3.4 (Model-Alignment of EMD with Mw (Indyk
and Price 2011)). For any x ∈ RG∆

≥0 , k ∈ N and η ∈ (0, 1),
there exist w = O(k/η2) and y∗ ∈ Mw such that ∥y∗ −
Ps∥1 ≤ η ·mink-sparse x′ ∥x− x′∥EMD.

Lemma 3.5 (EMD-to-ℓ1 Expansion (Indyk and Thaper
2003)). For all z ∈ RG∆ , ∥z∥EMD ≤ ∥Pz∥1.

Proof of Lemma 3.3. Recall that we use s to denote the true
sum

∑n
i=1 pi. We set η = η′/6 and let w = O(k/η2) =

O(k/(η′)2) be as in Lemma 3.4, which ensures that there
exists y∗ ∈Mw with

∥y∗ −Ps∥1 ≤ η · min
k-sparse s′

∥s− s′∥EMD. (4)

Thus, using Lemma 3.5, we can derive
∥s− s∗∥EMD ≤ ∥P(s− s∗)∥1

(triangle inequality) ≤ ∥ŷ −Ps∥1 + ∥ŷ −Ps∗∥1
(how s∗ is computed) ≤ 2∥ŷ −Ps∥1

(Lemma 3.2) ≤ 6∥y∗ −Ps∥1

+O

∑
i∈[ℓ]

1

2i
∥νi|Vi∪Si

∥1


(4)
≤ η′ · min

k-sparse s′
∥s− s′∥EMD

+O

∑
i∈[ℓ]

1

2i
∥νi|Vi∪Si∥1

 .

Finishing the Proof. We now select the privacy parame-
ters and complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let w = O(k/(η′)2) be as in
Lemma 3.3 with η′ = λ/4, and let q = ⌊log2

√
w⌋. Let γ =

0.8 be the “decay rate” for εi’s, and let Z =
∑ℓ

i=0 γ
|i−q| ≤

O(1) be the normalization factor. We run Algorithm 1 with
εi = γ|i−q| · ε/Z.

Privacy Analysis. We can view the ith iteration of the al-
gorithm as releasing 2iy′

i = Pis + νi. Since each pi has
ℓ1 norm at most one, its sensitivity with respect to Pis is at
most one; thus, Lemma 2.2 implies that the ith iteration is εi-
DP. As a result, by basic composition theorem of DP, we can
conclude that releasing all of y′

0, . . . ,y
′
ℓ is (ε0+· · ·+εℓ)-DP.

Since the reconstruction is simply a post-processing step, the
post-processing property of DP ensures that Algorithm 1 is
(ε0+ · · ·+εℓ)-DP. Finally, observe that by definition of εi’s,
we have ε0 + · · ·+ εℓ = ε as desired.
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Figure 1: Metrics averaged over 60 runs when varying ε. Shaded areas indicate 95% confidence interval.

Utility Analysis. Applying Lemma 3.3, we can conclude
that ∥s−s∗∥EMD ≤ η′ ·mink-sparse s′ ∥s−s′∥EMD+ξ, where

ξ = O
(∑

i∈[ℓ]
1
2i ∥νi|Vi∪Si∥1

)
. Recall that each of Vi, Si’s

is of size at most max{w, 22i} (because of definition ofMw

and the fact that mi = |C2i | = 22i), and that each entry of
νi is sampled from Lap(1/εi). As a result, we have

E[ξ] ≤ O

∑
i∈[ℓ]

1

2i
·max{w, 22i} · 1

εi


= O

∑
i∈[q]

2i

γq−iε

+O

 ∑
i∈{q+1,...,ℓ}

k

λ2
· 1

2iγi−qε


= O

(
2q

ε

)
+O

(
k

λ2
· 1
2q
· 1
ε

)
= O

(√
k

λε

)
,

where the last bound follows from our choice of γ > 0.5 and
q = ⌊log2

√
w⌋. Hence, by Markov’s inequality, w.p. 0.99,

we have ∥s − s∗∥EMD ≤ η′ · mink-sparse s′ ∥s − s′∥EMD +

100E[ξ] = η′ ·mink-sparse s′ ∥s−s′∥EMD+O
(√

k
λε

)
. Finally,

applying Lemma 2.1 concludes the proof.

4 Experiments
In this section, we study the performance of our algorithms
on real-world datasets.

Implementation Details. We implement Algorithm 1
with a minor modification: we do not measure at the level
i < q = ⌊log

√
w⌋. In other words, we start directly at the

lowest level for which the number of grid cells is at most√
w. It is possible to adjust the proof to show that, even with

this modification, the error remains Oε(
√
k). Apart from

this, the algorithm is exactly the same as presented earlier.
We note that the linear program at the end of Algorithm 2
can be formulated so that the number of variables is only
O(wℓ); the reason is that we only need one variable per cell
that is left out at each stage. This allows us to solve it effi-
ciently even when the resolution ∆ = 2ℓ is large.

As for our parameters, we use the decay rate γ = 1/
√
2,

which is obtained from minimizing the second error term

in the proof of Theorem 3.1 as ℓ → ∞5. We use w = 20
in our experiments, which turns out to work well already
for datasets we consider. We refrain from tuning parame-
ters further since a privacy analysis of the tuning step has to
be taken into account if we want to be completely rigorous.
(See, e.g., (Liu and Talwar 2019) for a formal treatment.)

Datasets. We use two datasets available at snap.stanford.
edu to generate the input distribution for users. The first
dataset6, called GOWALLA, consists of location check-ins
by users of the location-based social network Gowalla. Each
record consists of, among other things, an anonymized user
id together with the latitude (lat) and longitude (lon) of the
check-in and a timestamp. We filtered this dataset to con-
sider only check-ins roughly in the continental US (i.e., lon
∈ (−135,−60) and lat ∈ (0, 50)) for the month of Jan-
uary 2010; this resulted in 196,071 check-ins corresponding
to 10,196 users. The second dataset7, called BRIGHTKITE,
also contains check-ins from a different and now defunct
location-based social network Brightkite; each record is sim-
ilar to GOWALLA. Once again, we filtered this dataset to
consider only check-ins in the continental US for the months
of November and December 2008; this resulted in 304,608
check-ins corresponding to 10,177 users.

For each of these datasets, we partition the whole area
into a 300 × 300 grid. We then took the top 30 cells (in
both datasets combined) that have the most check-ins. (Each
of the 30 cells is mostly around some city like New York,
Austin, etc, and has check-ins from at least 200 unique
users). We then consider each cell, partition into ∆×∆ sub-
grids and snap each check-in to one of these subgrids.

Metrics. To evaluate the quality of an output heatmap ĥ
compared to the true heatmap h, we use the following com-
monly used metrics: Similarity, Pearson coefficient, KL-
divergence, and EMD. (See, e.g., (Bylinskii et al. 2019)
for detailed discussions of these metrics.) We note that the
first two metrics should increase as ĥ,h are more similar,

5When w (and thus q) is fixed, the second error term is propor-
tional to Z ·

∑ℓ−q−1
i=0

1
(2γ)i

which converges to 1
(1−γ)(1−0.5/γ)

as

ℓ → ∞. The latter term is minimized when γ = 1/
√
2

6Available at http://snap.stanford.edu/data/loc-Gowalla.html
7Available at http://snap.stanford.edu/data/loc-Brightkite.html
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Figure 2: Example visualization of different algorithms for ε = 1 (top) and ε = 5 (bottom). The algorithms from left to right
are: original heatmap (no privacy), baseline, baseline with top 0.01% and our algorithm.

whereas the latter two should decrease.

Baselines. We consider as a baseline an algorithm recently
proposed in (Liu et al. 2019),8 where we simply add Laplace
noise to each subgrid cell of the sum s, zero out any negative
cells, and produce the heatmap from this noisy aggregate.
We also consider a “thresholding” variant of this baseline
that is more suited to sparse data: only keep top t% of the
cell values after noising (and zero out the rest).

4.1 Results
In the first set of experiments, we fix ∆ = 256. For each
ε ∈ {0.1, 0.5, 1, 2, 5, 10}, we run our algorithms together
with the baseline and its variants on all 30 cells, with 2 trials
for each cell. In each trial, we sample a set of 200 users and
run all the algorithms; we then compute the distance met-
rics between the true heatmap and the estimated heatmap.
The average of these metrics over the 60 runs is presented
in Figure 1, together with the 95% confidence interval. As
can be seen in the figure, the baseline has rather poor per-
formance across all metrics, even for large ε = 10. We ex-
periment with several values of t for the thresholding vari-
ant, which yields a significant improvement. Despite this,
we still observe an advantage of our algorithm consistently
across all metrics. These improvements are especially signif-
icant when ε is not too large or too small (i.e., 0.2 ≤ ε ≤ 5).

In the second set of experiments, we study the ef-
fect of varying the number n of users. By fixing a sin-
gle cell (with > 500 users) and ε, we sweep n ∈

8We remark that (Liu et al. 2019) also propose using the Gaus-
sian mechanism. However, this algorithm does not satisfy ε-DP.
Moreover, even when considering (ε, δ)-DP for moderate value of
δ (e.g., δ = 10−3), the Gaussian mechanism will still add more
noise in expectation than the Laplace mechanism.

{50, 100, 200, 300, 400, 500} users. For each value of n, we
run 10 trials and average their results. As predicted by the-
ory, our algorithms and the original baseline perform better
as n increases. However, the behavior of the thresholding
variants of the baseline are less predictable, and sometimes
the performance degrades with a larger number of users. It
seems plausible that a larger number of users cause an in-
crease in the sparsity, which after some point makes the sim-
ple thresholding approach unsuited for the data.

We also run another set of experiments where we fix a sin-
gle cell and ε, and vary the resolution ∆ ∈ {64, 128, 256}.
In agreement with theory, our algorithm’s utility remains
nearly constant for the entire range of ∆. On the other
hand, the original baseline suffers across all metrics as ∆
increases. The thresholding variants are more subtle; they
occasionally improve as ∆ increases, which might be at-
tributed to the fact that when ∆ is small, thresholding can
zero out too many subgrid cells.

We include examples of the heatmaps from each approach
in Figure 2.

5 Discussions and Future Directions
We present an algorithm for sparse distribution aggregation
under the EMD metric, which in turn yields an algorithm
for producing heatmaps. As discussed earlier, our algorithm
extends naturally to distributed models that can implement
the Laplace mechanism, including the secure aggregation
model and the shuffle model (Balle et al. 2020; Ghazi et al.
2020). Unfortunately, this does not apply to the more strin-
gent local DP model (Kasiviswanathan et al. 2008) and it
remains an interesting open question to devise practical lo-
cal DP heatmap/EMD aggregation algorithms for “moder-
ate” number of users and privacy parameters.
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