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Abstract
Graph neural networks (GNNs) are popular weapons for mod-
eling relational data. Existing GNNs are not specified for
attribute-incomplete graphs, making missing attribute impu-
tation a burning issue. Until recently, many works notice that
GNNs are coupled with spectral concentration, which means
the spectrum obtained by GNNs concentrates on a local part
in spectral domain, e.g., low-frequency due to oversmoothing
issue. As a consequence, GNNs may be seriously flawed for
reconstructing graph attributes as graph spectral concentration
tends to cause a low imputation precision. In this work, we
present a regularized graph autoencoder for graph attribute
imputation, named MEGAE, which aims at mitigating spec-
tral concentration problem by maximizing the graph spec-
tral entropy. Notably, we first present the method for estimat-
ing graph spectral entropy without the eigen-decomposition
of Laplacian matrix and provide the theoretical upper error
bound. A maximum entropy regularization then acts in the
latent space, which directly increases the graph spectral en-
tropy. Extensive experiments show that MEGAE outperforms
all the other state-of-the-art imputation methods on a variety
of benchmark datasets.

1 Introduction
Graph attribute missing is ubiquitous due to messy collec-
tion and recording process (Yoon, Davtyan, and van der
Schaar 2016; Roth 1994). In a biochemical scenario, for
instance, data is missed due to the difficulties in measuring
or calculating quantitative molecular properties (e.g., HOMO
and LUMO orbital energy) at the atomic level (Yomogida
et al. 2012; Salomon et al. 2003), attenuating the graph or
node representations when we introduce a graph model for
molecules. For graph learning tasks, even a small fraction
of missing attributes will potentially interfere with the per-
formance, leading to biased inferences (Sterne et al. 2009;
Wooldridge 2007).

Graph Neural Networks (GNNs) have demonstrated power-
ful ability on various graph-related tasks. Most GNNs consist
of two parts: feature propagation and transformation. The for-
mer is the key to the success of GNNs as it can yield suitable
spectral responses for graph desires (Li et al. 2022). For exam-
ple, graph convolutional networks (GCN) (Kipf and Welling
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Figure 1: Spectral visualization of GAE. Red histograms
show the graph spectra. After GAE encoder (GCN), spectral
concentration appears in the latent space. Upon MLP decoder,
the spectral concentration is not alleviated.

2017) applies a recursive aggregation mechanism for updat-
ing node representations, leading to the low-frequency con-
centration from a spectral view (Wu et al. 2019; Donnat et al.
2018; Tang et al. 2022). The mechanism makes GCN effec-
tive for numerous real-world applications as low-frequency
concentration promotes the convergence of representations
of adjacent nodes (Nt and Maehara 2019; Xu et al. 2020).
However, this spectral concentration diminishes partial eigen-
values, i.e., spectral values. As a consequence, it causes seri-
ous performance degradation on the standard graph attribute
imputation models such as graph autoencoders (GAEs) (Li
et al. 2020; Park et al. 2019; Li et al. 2021). In Figure 1,
we visualize the graph spectra of the input, latent and out-
put based on GAE (Kipf and Welling 2016), which is the
backbone of most GAEs. As the figure makes clear, existing
GAEs leave sufficient room for improvement to combat the
loss of spectral components. Delving into graph attribute re-
construction, a natural question arises: how can GAEs impute
with alleviated spectral concentration?

In this work, inspired by the maximum entropy princi-
ple (Narayan and Nityananda 1986; Burch, Gull, and Skilling
1983; Frieden 1972) that is capable to alleviate concentrated
data distributions, we propose to maximize the graph spectral
entropy for mitigating spectral concentration while imputa-
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tion. We present a novel method for graph attribute impu-
tation called Max-Entropy Graph AutoEncoder (MEGAE).
Unlike existing imputation methods, our model trains a GAE
with the regularization for maximizing the graph spectral en-
tropy. However, when it comes to the computation of graph
spectral entropy, it becomes challenging due to large time
complexity of the eigen-decomposition for Laplacian ma-
trix (Cai, He, and Han 2007a,b; Jia et al. 2016). In this regard,
we design the tight wavelet kernels (Shuman et al. 2015;
Leonardi and Van De Ville 2013; Ahmad and Sheikh 2018)
in MEGAE to encode features into the spectral domain in-
volving several spectral bands. We then theoretically prove
that the proposed wavelet paradigm can well approximate
the actual graph spectral entropy by a predictable upper error
bound without eigen-decomposition. Upon entropy regular-
ized latent representations, we use symmetric wavelet de-
coder to perform data deconvolution for reconstructing graph
attributes.

In the experiments, we proceed with an empirical evalua-
tion of MEGAE on single- and multi-graph datasets. Firstly,
we show that MEGAE outperforms 16 state-of-the-art meth-
ods on attribute imputation tasks, including commonly used
classical methods and graph learning based imputation meth-
ods. Additional downstream experiments of graph and node
classifications demonstrate that imputed graphs by MEGAE
can obtain the best accuracy performance when compared to
state-of-the-art imputation models.

Contributions. We summarize our contributions below:

• We propose to maximize the graph spectral entropy to
overcome the spectral concentration issue in GAEs for
graph attribute reconstruction.

• We present Max-Entropy Graph AutoEncoder (MEGAE)
for encoding graphs into spectral domain and maximizing
the spectral entropy in the latent space.

• We develop an efficient method for approximating the ac-
tual graph spectral entropy without eigen-decomposition,
and importantly, provide the theoretical upper error
bound.

2 Related Work
Matrix Completion. Missing data is a widely researched
topic. Matrix completion methods can be applied to im-
pute graph attributes without using the graph structures.
Most proposed methods impute with a joint distribution on
the incomplete data. For instance, the joint modeling meth-
ods impute by drawing from the predictive distribution, in-
cluding Bayesian strategies (Murray and Reiter 2016), ma-
trix completion methods (Candès and Recht 2009; Hastie
et al. 2015), and Generative Adversarial Networks (Yoon,
Jordon, and Schaar 2018; Yoon and Sull 2020). Another
way of joint modeling involves iteratively imputing val-
ues of each variable using chained equations (Van Buuren
and Groothuis-Oudshoorn 2011) formulated with other vari-
ables (White, Royston, and Wood 2011; Van Buuren 2018;
Muzellec et al. 2020). Discriminative models such as ran-
dom forests (Xia et al. 2017), distribution constraints using
optimal transport (Muzellec et al. 2020) and causally-aware

imputation (Kyono et al. 2021) tend to depend on strong as-
sumptions, which may result in a lack of flexibility to handle
mixed-mode data. Most importantly, as for graph scenarios,
matrix completion methods are generally limited without
awareness of the underlying graph structures.

Attribute Imputation with Graph Learning. Recently,
graph learning models have been used to tackle the impu-
tation task. GC-MC (Berg, Kipf, and Welling 2017) and
IGMC (Zhang and Chen 2019) construct helpful bipartite
interaction graphs to impute with a given adjacency matrix
as side information. Then a GAE is applied to predict the
absent features. Gaussian mixture model is utilized for impu-
tation stability under a high missing rate (Monti et al. 2017).
GRAPE (You et al. 2020) combines imputation and represen-
tation learning, which can well impute features of continuous
variables but tend not to perform well on datasets containing
nodes with all features missed (Tu et al. 2021). GDN (Li
et al. 2021) can impute from over-smoothed representations
with a given graph structure. In this case, relationships be-
tween nodes are explicitly encoded for further imputation.
Above methods show that graph learning is competent for
feature reconstruction with structure dependencies. Notably,
only GRAPE, GDN and our method are applicable to both
discrete and continuous features. Despite both GDN and
our method focus on mechanistic improvements for existing
GAEs, we explore GAEs with a more general phenomenon
of concentration in a spectral view and not just for recovering
high-frequency details.

3 Preliminary
In this section, we provide the formulation of graph attribute
imputation problem in Section 3.1. Then we introduce the reg-
ularized object, named graph spectral entropy in Section 3.2.
In Section 3.3, we describe wavelet entropy, a core concept
for efficiently approximating the graph spectral entropy.

3.1 Problem Formulation
For an undirected graph G = (A,X), A ∈ RN×N is the
adjacency matrix and X ∈ RN×D is a complete feature
matrix where Xij denotes the graph attribute of i-th node in
the j-th feature dimension. In the problem of graph attribute
imputation, R ∈ {0, 1}N×D is defined as the mask matrix
whose element Rij = 1 if Xij is observed and Rij = 0
otherwise.

The objective of this work is to predict the missing graph
attributes Xij at Rij = 0. Formally, we aim to develop
a mapping f(·) to generate the imputed data matrix X̃ ∈
RN×D defined as

X̃ = f(X,R,A). (1)

3.2 Graph Spectral Entropy
The graph Laplacian is defined as L = I − Ã, where Ã =

D− 1
2AD− 1

2 denotes the normalized adjacency matrix and
D = diag(

∑
k A1k, ...,ANk) denotes the diagonal degree

matrix. With eigen-decomposition, L can be decomposed
into L = UTΛU , where U consists of the eigenvectors
of L. Λ = diag(λ) is the diagonal matrix whose diagonal
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Figure 2: (a) The proposed MEGAE for graph attribute imputation. With tight wavelet filters, the encoder filters the input graph
into ĝ1(L)X, ..., ĝM (L)X (M = 3 here), of which the energies (i.e., blue, orange and green bars) are obtained with the L-2
norm function. We maximize wavelet entropy of M energies, which are encouraged to be more uniform in distributions. This
wavelet entropy maximization induces the same tendency to maximization for the real graph spectral entropy. We apply inverse
wavelet filters to decode the data from the latent (spectral) space for final reconstruction. (b) A diagram to explain the Coverage
and Crossness of given tight wavelet filters. We provide related descriptions in Section 4.1.

elements λ = {λ1, ..., λN} are eigenvalues of L. Consider a
feature vector x = {x1, ..., xN}⊺ ∈ RN as a single feature
dimension of the whole matrix X , the Fourier transform x̂ =
UTx = {x̂1, ..., x̂N}⊺ would be the most proven method
for representing spectrum, of which the entropy is defined as
graph spectral entropy in Definition 3.1.
Definition 3.1 (Graph Spectral Entropy). Given the feature
vector x, its spectral energy at λi is denoted as x̂2

i and to-
tal energy is Es =

∑N
i=1 x̂

2
i =

∥∥UTx
∥∥2
2
. Then, the graph

spectral entropy of x is defined as

ξs(x,L) = −
N∑
i=1

x̂2
i

Es
log

x̂2
i

Es
.

Intuitively, maximizing graph spectral entropy would en-
sure the spectral distribution to be relatively more uniform
and keep information in any spectral pass-band, as opposed to
spectral concentration in existing GAEs (Park et al. 2019; Wu
et al. 2019). However, one notable issue with the computation
of graph spectral entropy is that eigen-decomposition is indis-
pensable, which largely limits the scalability for computing
on large-scale data matrix.

3.3 Wavelet Entropy
We introduce wavelet theory for approximating the graph
spectral entropy with wavelet transform. Unlike Fourier trans-
form that we formulate in section 3.2, wavelet transform (Xu
et al. 2019; Hammond, Vandergheynst, and Gribonval 2011)
is able to cover ranges of spectra via different pass-band
kernels ĝ = {ĝ1, .., ĝM}. It shows the possibility of rep-
resenting graph spectral entropy by wavelet entropy with
well-calibrated kernels.

The wavelet transform employs a set of M wavelets as
bases, defined as W = {Wĝ1 , ...,WĝM }. Mathematically, the

wavelet transform of x is defined as

Wĝm(x) = U ĝm(Λ)UTx, (2)

where ĝm(·) is a wavelet kernel function defined in spectral
domain. For computational efficiency, in many cases, kernel
function ĝm should be smooth and easily approximated by
polynomials such that U ĝm(Λ)UT = ĝm(L).

Definition 3.2 (Wavelet Entropy). Given the feature vector
x and a set of wavelet kernel functions ĝ = {ĝ1, ..., ĝM},
the total wavelet energy of x is Ew =

∑M
m=1 ∥Wĝm(x)∥22.

Then, the wavelet entropy of x is defined as

ξw(x,L, ĝ) = −
M∑

m=1

∥Wĝm(x)∥22
Ew

log
∥Wĝm(x)∥22

Ew
.

4 Maximizing Graph Spectral Entropy
This section describes our main contributions. Following our
motivation to efficiently maximize the graph spectral entropy
while imputing missing attributes, we propose an alternative
method for approximating the graph spectral entropy with-
out eigen-decomposition and provide the upper bound for
approximation error. On this basis, we propose our model
called Max-Entropy Graph AutoEncoder (MEGAE).

4.1 Graph Wavelet for Approximation
In this section, we present our main idea that graph spectral
entropy can be well approximated by wavelet entropy. To
achieve the goal, the crucial issue is how to construct a rough
spectral space for approximation with the efficient graph
convolutions.

Definition 4.1 (Tight Wavelet Frame on Graph). A set of
wavelet kernel functions ĝ = {ĝ1, ..., ĝM} forms a tight
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frame on graph if

G(λi) :=
M∑

m=1

[ĝm(λi)]
2 = 1, ∀λi ∈ λ.

Inspired by the fact that tight wavelet frame can ensure
energy preservation (Definition 4.1) in graph signal process-
ing (Leonardi and Van De Ville 2013), we can smoothly
deduce a key connection between wavelet energy (formu-
lated in Section 3.3) and graph spectral energy (formulated in
Section 3.2), which are both key components in the respective
wavelet and spectral entropy. Proposition 4.2 describes this
connection, indicating that the total wavelet energy is strictly
equivalent to the total graph spectral energy. The proof is
trivial and illustrated in Appendix A.
Proposition 4.2 (Energy Parseval’s Identity). If ĝ is a tight
wavelet frame, the total wavelet energy Ew is equivalent to
total graph spectral energy Es. Thus, the Parseval’s identity
holds for the spectral domain, that is

Ew = Es.

The wavelet energy consists of M energy components and
each of them is derived from the filtered graph features by a
wavelet kernel. Therefore, intuitively, a more distinguishable
kernel function tends to provide accurate approximation of
graph spectral entropy. To quantify the kernel distinguishabil-
ity of tight wavelet, we define Coverage Cm and Crossness
Ri. Formally, Cm is the number of spectrum covered by
kernel function ĝm denoted as

Cm = |{i|ĝm(λi) ̸= 0, i = 1, ..., N}|, (3)

and Ri is the number of activated kernel functions on λi

represented by

Ri = |{m|ĝm(λi) ̸= 0,m = 1, ...,M}|. (4)

A toy example is provided in Figure 2(b) for easier under-
standing. Coverage C3 represents the number of eigenval-
ues (i.e., λ4, λ5, λ6) lying within the domain of 3rd wavelet
kernel (i.e., the green curve). The Crossness R2 represents
number of intersection (red) points of all three wavelet ker-
nels and line λ = λ2.
Proposition 4.3 (Approximation of graph spectral entropy).
If ĝ is a tight frame, the approximation error between graph
spectral entropy ξs(x,L) and wavelet entropy ξw(x,L, ĝ)
is bounded by

|ξs(x,L)− ξw(x,L, ĝ)| ≤ e(ĝ,λ)

where e(ĝ,λ) = max({logCm}Mm=1 ∪ {logRi}Ni=1).
Please see Appendix B for the proof. To better understand

Proposition 4.3, let N = M and all kernels be disjoint, which
means the number of wavelet kernels equals to the number of
nodes in the graph. In this perfect situation, one kernel func-
tion only covers one eigenvalue (i.e., Coverage Cm = 1) and
one eigenvalue is only covered by one kernel function (i.e.,
Crossness Rm = 1). Then, the approximation error is zero.

For applying a tight wavelet frame with high distinguisha-
bility, we follow the mechanisms in (Shuman et al. 2015)
to design a set of wavelet kernel function g = {ĝ1, ..., ĝM}.
The design details are in Appendix C.

4.2 The Proposed MEGAE
Based on the designed tight wavelet kernels, we propose
MEGAE, a deterministic graph autoencoder framework for
graph missing attribute imputation. As demonstrated in Fig-
ure 2, MEGAE consists of two key modules: (1) wavelet
based graph autoencoder and (2) maximum entropy regular-
ization.

Encoder. With the definitions of an undirected graph pro-
vided in Section 3, we employ M tight wavelet kernels de-
scribed in Section 4.1 in parallel to perform graph wavelet
convolution. Specifically, the convolutional layer of m-th
channel is expressed as

E1(Z
(0)
m ,L, ĝm) = ϕ(Wĝm(Z(0)

m )W (0)
m ), (5)

where Z(0)
m = X⊙R and ϕ(·) is the activation function such

as leaky ReLU. To admit a fast algorithm for wavelet trans-
form, Maclaurin series approximation (Li et al. 2021) of order
K is applied such that Wĝm(Z

(0)
m ) =

∑K
k=0 αm,kL

kZ
(0)
m .

We introduce one more layer of perceptron to enrich the
representation in latent space, denoted as

E2(Z
(1)
m ) = ϕ(Z(1)

m W (1)
m ). (6)

The Encoder is thus formulated as

Z(1)
m = E1(Z

(0)
m ,L, ĝm),

Z(2)
m = E2(Z

(1)
m ).

(7)

Decoder. Given the observed information, our decoder
aims to impute missing values from latent space. As the
inverse of graph wavelet convolution, the graph wavelet de-
convolutional layer of m-th channel is expressed as

D1(Z
(2)
m ,L, ĝ−1

m ) = ϕ(Wĝ−1
m

(Z(2)
m )W (2)

m ), (8)

where Wĝ−1
m

(Z
(2)
m ) =

∑K
k=1 βm,kL

kZ
(2)
m is provided by

Maclaurin series. We then aggregate results generated by M
channels to construct the imputation layer as

D2(Z
(3)
1 , ...,Z

(3)
M ) = ϕ(Z

(3)
AGGW

(3)), (9)

where Z(3)
AGG = AGG([Z

(3)
1 , ...,Z

(3)
M ]) and AGG(·) denotes

aggregation function such as concatenation.
The Decoder is thus formulated as

Z(3)
m = D1(Z

(2)
m ,L, ĝ−1

m ),

X̃ = D2(Z
(3)
1 , ...,Z

(3)
M ).

(10)

Optimization. Our network is jointly optimized with re-
spect to two objectives. We start from the imputation pre-
cision, which is the main focus in missing data problem.
Intuitively, the reconstruction loss is defined as

LR =
∥∥∥(X̃ −X)⊙ (1N×D −R)

∥∥∥
2
. (11)

Given our imputation motivation, MEGAE introduces spec-
tral entropy regularization to aid data imputation. Based on
the discussion in Section 4.1, graph spectral entropy can be
well substituted by wavelet entropy. Let Z(2)

m (:, d) be the d-th
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Methods ENZYMES PRO_full QM9 Synthie FRANKE FIRST_DB ENZYMES PRO_full
RMSE with 0.1 missing features ACC. ACC.

MEAN 0.0602 0.0653 0.2983 0.2063 0.3891 0.1500 62.06% 69.96%
KNN 0.0350 0.0329 0.3058 0.1718 0.2010 0.1296 63.53% 72.23%
SVD 0.0783 0.0465 0.2524 0.1697 0.2766 0.1685 61.60% 71.16%

MICE 0.0292 0.0210 0.1986 0.1899 0.1359 0.1036 64.46% 73.50%
GAIN 0.0300 0.0245 0.1973 0.1649 0.1103 0.0909 64.42% 73.21%

OT 0.0323 0.0206 0.2003 0.1865 0.1116 0.0892 64.13% 73.62%
MIRACLE 0.0288 0.0188 0.1846 0.1632 0.1196 0.0889 65.03% 74.07%
GraphVAE 0.0357 0.0199 0.1579 0.1898 0.1099 0.1202 63.46% 73.86%
MolGAN 0.0326 0.0160 0.1478 0.1864 0.1078 0.1379 64.16% 74.20%
GRAPE 0.0302 0.0147 0.1869 0.1798 0.1069 0.0986 64.48% 74.53%

GDN 0.0267 0.0155 0.1598 0.1764 0.1066 0.0869 65.57% 74.50%
Inv_GCN 0.0256 0.0135 0.1773 0.1446 0.1089 0.1032 66.00% 74.98%
Inv_MLP 0.0254 0.0129 0.1499 0.1520 0.1064 0.0872 66.06% 75.07%
MEGAE 0.0223 0.0099 0.1396 0.1203 0.0936 0.0789 66.27% 75.97%

Performance
gain

0.0044
|

0.0560

0.0048
|

0.0554

0.0082
|

0.1662

0.0429
|

0.0860

0.0128
|

0.2955

0.0080
|

0.0896

0.70%
|

4.67%

1.44%
|

6.01%

Table 1: RMSE results on 6 multi-graph datasets and graph classification accuracy on two datasets. After running 5 trials, we
report the mean results of which the best method is bolded and the second best is underlined. Performance gains indicate the
maximum (lower) and minimum (upper) gains of state-of-the-art (MEGAE) compared to other baselines. Note that we abbreviate
’PROTEIN_full’, ’FRANKENSTEIN’ and ’FIRSTMM_DB’ to ’PRO_full’, ’FRANKE’ and ’FIRST_DB’, respectively.

dimension of Z(2)
m , the graph spectral entropy loss is thus

defined as

LS = − 1

D

D∑
d=1

M∑
m=1

P d
m logP d

m, (12)

where

P d
m =

∥∥∥Z(2)
m (:, d)

∥∥∥2
2∑M

m=1

∥∥∥Z(2)
m (:, d)

∥∥∥2
2

. (13)

Finally, by combining the aforementioned losses, the overall
objective function of MEGAE is formulated as

L = LR − γLS , (14)

where γ is a hyperparameter to balance the regularization of
graph spectral entropy and reconstruction loss.

5 Experiments
In this section, we validate the performance of MEGAE
using a variety of datasets. We evaluate the effectiveness
of MEGAE on two categories of graph datasets:

• Type 1: Imputation on multi-graph datasets. We impute
the missing graph attributes on multi-graph datasets, e.g.,
molecules, proteins. In addition, we report graph classifi-
cation performance on graphs with imputed features.

• Type 2: Imputation on single-graph datasets. We impute
the missing values on single-graph datasets, e.g., social
network. We report node classification performance on
the graph with imputed features.

5.1 Imputation on Multi-Graph Datasets
Datasets. We conduct experiments on 6 benchmark
datasets (Morris et al. 2020) from different domains: (1)
bioinformatics, i.e., PROTEINS_full (Borgwardt et al. 2005)
and ENZYMES (Schomburg et al. 2004); (2) chemistry, i.e.,
QM9 (Ramakrishnan et al. 2014) and FIRSTMM_DB (Neu-
mann et al. 2013); (3) computer vision, i.e., FRANKEN-
STEIN (Orsini, Frasconi, and De Raedt 2015); (4) synthesis,
i.e., Synthie (Morris et al. 2016). The detailed statistics is
provided in Table 6 in Appendix E.1.

Baselines. We compare the performance of MEGAE
against baselines in three categories: (1) statistical impu-
tation methods including MEAN, KNN (Zhang 2012) and
SVD (Troyanskaya et al. 2001); (2) deep learning-based im-
putation models including MICE (Van Buuren and Groothuis-
Oudshoorn 2011), GAIN (Yoon, Jordon, and Schaar 2018),
OT (Muzellec et al. 2020) and MIRACLE (Kyono et al.
2021); (3) graph learning-based models including Graph-
VAE (Simonovsky and Komodakis 2018), MolGAN (De Cao
and Kipf 2018), GRAPE (You et al. 2020) and GDN (Li et al.
2021). For further details, please refer to Appendix E.3.

Setup. We use a 70-10-20 train-validation-test split and
construct random missingness only on the test set. Each run
has a different dataset split and the mask for feature miss-
ingness. After running for 5 trials, we report the Root Mean
Squared Error (RMSE) results for imputation and mean accu-
racy on the test set for graph classification. For all baselines,
we use a 2-layer GCN for downstream classification. For
more setup details, please refer to Appendix E.2.

Results. In Table 1 we show the experiment results for 10%
of missing features. Results indicate that our method has the
lowest RMSE in the 5 real-world datasets and the synthetic
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Methods PubMed (RMSE) AmaPhoto (RMSE)

0.1 Miss 0.3 Miss 0.5 Miss 0.7 Miss 0.99 Miss 0.1 Miss 0.3 Miss 0.5 Miss 0.7 Miss 0.99 Miss

sRMGCNN 0.0170 0.0186 0.0258 0.0309 0.0435 0.3191 0.3261 0.3282 0.3359 0.3660
GC-MC 0.0220 0.0233 0.0253 0.0270 0.0403 0.3154 0.3221 0.3340 0.3574 0.3913
GRAPE 0.0187 0.0198 0.0234 0.0303 0.0368 0.3207 0.3295 0.3357 0.3489 0.3896
VGAE 0.0196 0.0229 0.0298 0.0354 0.0525 0.3064 0.3196 0.3462 0.3684 0.3991
GDN 0.0168 0.0202 0.0239 0.0254 0.0319 0.3006 0.3168 0.3308 0.3372 0.3617

MEGAE 0.0157 0.0171 0.0185 0.0199 0.0218 0.2966 0.3121 0.3204 0.3243 0.3305

Performance
gain

0.0011
|

0.0063

0.0015
|

0.0062

0.0049
|

0.0113

0.0055
|

0.0155

0.0101
|

0.0307

0.0040
|

0.0241

0.0047
|

0.0174

0.0078
|

0.0258

0.0116
|

0.0441

0.0312
|

0.0686

Table 2: Mean RMSE results of attribute imputation with different missing rates on PubMed and AmaPhoto.

Methods PubMed (Acc. = 77.11% with full features) AmaPhoto (Acc. = 92.03% with full features)

0.1 Miss 0.3 Miss 0.5 Miss 0.7 Miss 0.99 Miss 0.1 Miss 0.3 Miss 0.5 Miss 0.7 Miss 0.99 Miss

GCNMF 75.96% 74.42% 74.03% 70.09% 41.46% 91.64% 91.46% 91.05% 90.16% 73.03%
PaGNN 76.55% 75.77% 74.45% 72.15% 43.63% 91.81% 91.70% 91.02% 90.12% 71.51%

sRMGCNN 75.96% 74.74% 72.79% 71.14% 21.17% 91.36% 91.19% 91.02% 90.12% 66.56%
GC-MC 74.44% 74.06% 72.87% 72.67% 36.69% 91.46% 91.26% 90.22% 89.82% 60.13%
GRAPE 75.53% 74.51% 73.65% 71.75% 38.18% 91.22% 91.05% 90.33% 89.63% 68.28%
VGAE 75.21% 73.69% 71.64% 69.96% 16.66% 91.53% 91.43% 89.23% 88.82% 63.24%
GDN 75.87% 74.22% 73.36% 73.15% 38.93% 91.83% 91.63% 91.10% 90.01% 66.62%

MEGAE 76.66% 76.30% 75.03% 74.47% 49.58% 91.92% 91.85% 91.41% 90.58% 81.88%

Performance
gain

0.11%
|

1.45%

0.53%
|

2.61%

0.58%
|

3.39%

1.32%
|

4.51%

5.95%
|

32.92%

0.09%
|

0.70%

0.15%
|

0.80%

0.31%
|

2.18%

0.42%
|

1.76%

8.85%
|

21.75%

Table 3: Test accuarcy with different missing rates on PubMed and AmaPhoto node classification benchmarks.

dataset. Moreover, almost all graph learning-based methods
outperform non-graph learning ones, demonstrating the effec-
tiveness of modeling the dependencies between graph nodes.
In addition, we introduce two more baselines – Inv_MLP
denotes our tight wavelet encoder with Multi-Layer Percep-
tron (MLP) decoder (Simonovsky and Komodakis 2018) and
Inv_GCN denotes our encoder with GCN decoder (Kipf and
Welling 2017). MEGAE achieves 12.4% lower RMSE than
the second best baselines on average over all the datasets. For
a more comprehensive and realistic consideration for miss-
ing mechanisms, we provide the evaluation for evaluating
MEGAE in two less common scenarios. We obtain similar
gains across three missing machanisms, MEGAE obtains the
lowest errors in all cases, which shows the strong generaliza-
tion among the three missing mechanisms.

As for downstream classifications, we show the test accu-
racy of different models on imputed graph features with 10%
missing. We observe that smaller imputation errors are more
likely to lead to higher test accuracy. This is relatively ex-
pected, as data with less distribution shift easily yields better
representation. MEGAE outperforms all other baselines on
accuracy conditioning on the effectiveness imputation results.

5.2 Imputation on Single-Graph Datasets
Dataset. We evaluate the effectiveness of MEGAE on four
commonly used datasets including three citation network
datasets—Cora, Citeseer, Pubmed (Sen et al. 2008) and a
co-purchase network dataset—AmaPhoto (McAuley et al.
2015). We show the dataset statistics in Table 7 in Appendix
E.1.

Baselines. We compare the imputation performance
of MEGAE against competitive methods including sR-
MGCNN (Monti, Bronstein, and Bresson 2017), GC-
MC (Berg, Kipf, and Welling 2017), GRAPE (You et al.
2020), VGAE (Kipf and Welling 2016) and GDN (Li et al.
2021). For evaluating node classification performance of
MEGAE, we additionally experiment with GCNMF (Taguchi,
Liu, and Murata 2021) and PaGNN (Jiang and Zhang 2020)
that directly implement graph learning without imputation.

Setup. We closely follow (Kipf and Welling 2017) to per-
form standard dataset split. For all datasets, each run has a
different train-validation-test split and the mask for random
missingness across all feature dimensions. After running for
5 trails, we report the results of mean RMSE for imputation
and mean accuracy on the test set for node classification.
For all baselines, we use a 2-layer GCN for downstream
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classification.

Results. Table 2 shows the mean RMSE results for imputa-
tion under different missing rates on PubMed and AmaPhoto,
we also provide the results on Cora and Citeseer in Table 8 in
Appendix. MEGAE consistently outperforms other baselines.
Moreover, MEGAE tends to have greater performance gains
when faced with a more severe missingness, which demon-
strates MEGAE’s robustness. It is noteworthy that under an
extremely high missing rate (0.99), MEGAE obtains margins
of 31.66% on PubMed, 8.63% on AmaPhoto, 34.24% on
Cora and 19.54% on Citeseer compared to the second best
imputation methods. In Table 3, we show the mean accuracy
for node classification on PubMed and AmaPhoto with im-
puted attributes (results on Cora and Citeseer are in Table 9
in Appendix). We observe that most methods work well with
less than 0.3 missing rates. Moreover, MEGAE’s robustness
and effectiveness are better as its accuracy gains tend to be
positively correlated with missing rates. With the consistent
imputation improvements on all datasets, MEGAE has accu-
racy gains of 5.95% on PubMed, 8.85% on AmaPhoto, 7.90%
on Cora and 6.97% on Citeseer under a 0.99 missing rate.

5.3 Effectiveness of Wavelet and Regularization
Graph Wavelet Autoencoders. We study the role of tight
wavelet frames with the configuration of regularization in
MEGAE. Another two paradigms are deployed to get wavelet
frames ĝ = {ĝ1, ..., ĝM}, including GWNN (Xu et al. 2019)
with heat kernels and SGWT (Hammond, Vandergheynst,
and Gribonval 2011) with highly-localized kernels.

Dataset GWNN SGWT Ours

ENZYMES +0.0042 +0.0044 0.0223
PROTEINS_full +0.0070 +0.0052 0.0099

QM9 +0.0102 +0.0166 0.1396
Synthie +0.0203 +0.0126 0.1203

FRANKENSTEIN +0.0103 +0.0185 0.0936
FIRST_DB +0.0036 +0.0073 0.0789

Table 4: RMSE with three graph wavelet paradigms. We
report the mean RMSE of MEGAE and show the increase
w.r.t. RMSE of GWNN and SGWT compared to ours.

Here we provide experiments on 6 multi-graph datasets un-
der 0.1 missing rate (in Table 4), reporting the increases w.r.t.
RMSE using another two graph wavelet paradigms compared
to ours, all three wavelet paradigms have 9 channels. Also, we
execute experiments on 2 datasets (in Figure 3) assembling
various channel numbers on three graph wavelet paradigms.
Three paradigms all share the same computational complex-
ity O(K × |E|), where K is the order of polynomials and |E|
is the number of edges. Table 4 verifies the effectiveness of
the proposed tight wavelet kernels. Figure 3 shows the influ-
ence of the number of wavelet kernels M . We observe that a
larger M value harms the performance of GAEs with GWNN
and SGWT paradigms. As for our proposed MEGAE, the
RMSE first drops and then increases along w.r.t. the number
of wavelet kernels, which shows there is a tradeoff between
entropy approximation error and model generalization.

Figure 3: RMSE with different numbers of wavelet kernels.
We show how the kernel number influences the performance
of GAEs with different wavelet paradigms.

Entropy Regularization. We study the role of entropy reg-
ularization with the configuration of tight wavelet in MEGAE.
We execute experiment on 6 datasets under 10% missing rates.
In Table 5 we provide the increase of RMSE by removing en-
tropy regularization and the change in graph spectral entropy
w.r.t. the original graph spectral entropy (denoted as ∆). We
observe that GAE without regularization will seriously lead
to a decrease in spectral entropy (i.e., aforementioned spectral
concentration) of the imputed graphs, and more importantly,
LS improves the performance of the proposed MEGAE with
a substantially maintenance of the real entropy.

Dataset LR ∆1 LR + LS ∆2

ENZYMES +0.0069 -29% 0.0223 +3%
PROTEINS_full +0.0061 -26% 0.0099 +2%

QM9 +0.0188 -18% 0.1396 -1%
Synthie +0.0316 -23% 0.1203 +3%

FRANKENSTEIN +0.0229 -33% 0.0936 -2%
FIRSTMM_DB +0.0086 -21% 0.0789 -2%

Table 5: RMSE with/without entropy regularization. ∆1 and
∆2 denote the entropy changes with/without the regulariza-
tion w.r.t. the original graph spectral entropy.

Discussion. The effectiveness of our proposed tight wavelet
and entropy regularization has been shown in Table 4 and
Table 5, from which we can easily find that both have obvious
improvements for decreasing imputation errors. Importantly,
we believe the entropy regularization contributes the most
to the performance of MEGAE. By analogizing MEGAE to
the variational autoencoders, we provide intuitions on why
MEGAE works. The proof can be found in Appendix D.

6 Conclusion.
In this paper we show that graph spectral entropy is a good op-
timizable proxy for graph attribute imputation. Motivated by
eliminating the spectral concentration of GAEs and retaining
all spectral components, we propose MEGAE with a graph
spectral entropy regularization for imputation. We develop
a theoretical guarantee that our proposed MEGAE could
maximize the target entropy without eigen-decomposition.
Experimental results of various datasets on imputation and
downstream classification tasks show the effectiveness of
MEGAE for handling missing attributes on graphs.
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