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Abstract
Existing Cross Modal Hashing (CMH) methods are mainly
designed for balanced data, while imbalanced data with long-
tail distribution is more general in real-world. Several long-
tail hashing methods have been proposed but they can not
adapt for multi-modal data, due to the complex interplay
between labels and individuality and commonality informa-
tion of multi-modal data. Furthermore, CMH methods mostly
mine the commonality of multi-modal data to learn hash
codes, which may override tail labels encoded by the indi-
viduality of respective modalities. In this paper, we propose
LtCMH (Long-tail CMH) to handle imbalanced multi-modal
data. LtCMH firstly adopts auto-encoders to mine the indi-
viduality and commonality of different modalities by mini-
mizing the dependency between the individuality of respec-
tive modalities and by enhancing the commonality of these
modalities. Then it dynamically combines the individuality
and commonality with direct features extracted from respec-
tive modalities to create meta features that enrich the repre-
sentation of tail labels, and binaries meta features to generate
hash codes. LtCMH significantly outperforms state-of-the-art
baselines on long-tail datasets and holds a better (or compa-
rable) performance on datasets with balanced labels.

Introduction
Hashing aims to map high-dimensional data into a series
of low-dimensional binary codes while preserving the data
proximity in the original space. The binary codes can be
computed in a constant time and economically stored, which
meets the need of large-scale data retrieval. In real-world
applications, we often want to retrieval data from multiple
modalities. For example, when we input key words to in-
formation retrieval systems, we expect the systems can effi-
ciently find out related news/images/videos from database.
Hence, many cross-modal hashing (CMH) methods have
been proposed to deal with such tasks (Wang et al. 2016;
Jiang and Li 2017; Yu et al. 2022a; Liu et al. 2019a).

Most CMH methods aim to find a low-dimensional shared
subspace to eliminate the modality heterogeneity and to
quantify the similarity between samples across modalities.
More advanced methods leverage extra knowledge (i.e., la-
bels, manifold structure, neighbors coherence) (Jiang and Li
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2017; Yu et al. 2021; Liu et al. 2019b) to more faithfully
capture the proximity between multi-modality data to in-
duce hash codes. However, almost all of them are trained
and tested on hand-crafted balanced datasets, while imbal-
anced datasets with long tail labels are more prevalence in
real-world. Some recent studies (Chen et al. 2021; Cui et al.
2019) have reported that the imbalanced nature of real-world
data greatly compromises the retrieval performance.

Real-world samples typically have a skewed distribution
with long-tail labels, which means that a few labels (a.k.a.
head labels) annotate to many samples, while the other la-
bels (a.k.a. tail labels) have a large quantity but each of them
is only annotated to several samples (Liu et al. 2020; Chen
et al. 2021). It is a challenging task to train a general model
from such distribution, because the head labels gain most
of the attention while the tail ones are underestimated. An-
other inevitable problem of long-tail hashing is the ambi-
guity of the generated binary codes. Due to the dimension
reduction, information loss is unavoidable. In this case, hash
codes learned from data-poor tail labels more lack the dis-
crimination, which seriously confuses the retrieval results.

Several efforts have been made toward long-tail single-
modal hashing via knowledge transfer (Liu et al. 2020) and
information augmentation (Chu et al. 2020; Wang et al.
2020b; Kou et al. 2022). LEAP (Liu et al. 2020) augments
each instance of tail labels with certain disturbances in the
deep representation space to provide higher intra-class vari-
ation to tail labels. OLTR (Liu et al. 2019c) and LTHNet
(Chen et al. 2021) propose a meta embedding module to
transfer knowledge from head labels to tail ones. In addition,
these long-tail hashing methods cannot be directly adapted
for multi-modal data, due to the complex interplay between
tail labels and heterogeneous data modalities. The head la-
bels can be easily represented by the commonality of mul-
tiple modalities, but the tail labels are often represented by
individuality of a particular modality. For example, in the
left part of Figure 1, tail label ‘Hawaii’ can only be read
out from the text-modality. On the other hand, head label
‘Sea’ can be consolidated from the commonality of image
and text modality, and head label ’Island’ comes from the
image modality alone. From this example, we can conclude
that both the individuality and commonality should be used
for effective CMH on long-tail data, which also account for
the complex interplay between head/tail labels and multi-
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Figure 1: The schematic framework of LtCMH. The di-
rect image/text features Fx/Fy are first extracted by CNN-F
and FC (fully-connected) networks with two layers. LtCMH
then uses different auto-encoders to mine the commonality
C∗ and individuality Px/Py of multi-modal data via cross-
modal regularization and Hilbert-Schmidt independence cri-
terion (HSIC). After that, it creates meta features Mx/My

by fusing C∗, Px/Py and Fx/Fy . Next, LtCMH binarizes
meta features into hash codes. The head label ‘Sea’ can
be consolidated from the commonality of image and text
modality, while tail label ‘Hawaii’ can only be obtained from
the text-modality. The complex relations between labels and
heterogeneous modalities can be more well explored by the
commonality and individuality.

modal data. Unfortunately, most CMH methods solely mine
the commonality (shared subspace) to learn hashing func-
tions and assume balanced multi-modal data (Wang et al.
2016; Jiang and Li 2017; Yu et al. 2022a).

To address these problems, we propose LtCMH (Long-
tail CMH) to achieve CMH on imbalanced multi-modal
data, as outlined in Figure 1. Specifically, we adopt differ-
ent auto-encoders to mine individuality and commonality
information from multi-modal data in a collaborative way.
We further use the Hilbert-Schmidt independence criterion
(HSIC) (Gretton et al. 2005) to extract and enhance the in-
dividuality of each modality, and cross-modal regulariza-
tion to boost the commonality. We model the interplay be-
tween head/tail labels and multi-modal data by meta fea-
tures dynamically fused from the commonality, individuality
and direct features extracted from respective modalities. The
meta features can enrich tail labels and preserve the corre-
lations between different modalities for more discriminate
hash codes. We finally binarize the meta features to generate
hash codes. The contributions of this work are summarized
as follows:
(i) We study CMH on long-tail multi-modal data, which is a
novel, practical and difficult but understudied topic. We pro-
pose LtCMH to achieve effective hashing on both long-tail
and balanced datasets.
(ii) LtCMH can mine the individuality and commonality
information of multi-modal data to more comprehensively
model the complex interplay between head/tail labels and
heterogeneous data modalities. It further defines a dynamic

meta feature learning module to enrich labels and to induce
discriminate hash codes.
(iii) Experimental results show the superior robustness
and performance of LtCMH to competitive CMH methods
(Wang et al. 2020a; Li et al. 2018; Yu et al. 2021) on bench-
mark datasets, especially for long-tail ones.

Related Work
Cross Modal Hashing
Based on using the semantic labels or not, existing CMH
can be divided into two types: unsupervised and supervised.
Unsupervised CMH methods usually learn hash codes from
data distributions without referring to supervised informa-
tion. Early methods, such as cross view hashing (CVH)
(Kumar and Udupa 2011) and collective matrix factoriza-
tion hashing (CMFH) (Ding, Guo, and Zhou 2014), typi-
cally build on canonical correlation analysis (CCA). UD-
CMH (Wu et al. 2018) keeps the maximum structural simi-
larity between the deep hash codes and original data. DJSRH
(Su, Zhong, and Zhang 2019) learns a joint semantic affinity
matrix to reconstruct the semantic affinity between deep fea-
tures and hash codes. Supervised CMH methods addition-
ally leverage supervised information such as semantic labels
and often gain a better performance than unsupervised ones.
For example, DCMH (Jiang and Li 2017) optimizes the joint
loss function to maintain the label similarity between uni-
fied hash codes and feature representations of each modal-
ity. BiNCMH (Sun et al. 2022) uses bi-direction relation rea-
soning to mine unrelated semantics to enhance the similarity
between features and hash codes.

Although these CMH methods perform well on balanced
datasets, they are quite fragile on long-tail datasets, in which
samples annotated with head labels gain more attention than
those with tail labels when jointly optimizing correlation
between modalities (Zhou et al. 2020). Given that, we try
to enrich the representation of tail labels by mining the in-
dividuality and commonality of multi-modal data. This en-
riched representation can more well model the relation be-
tween head/tail labels and multi-modal data.

Long-Tail Data Learning
Long-tail problem is prevalence in real-world data min-
ing tasks and thus has been extensively studied (Chawla
2009). There are three typical solutions: re-sampling, re-
weighting and transfer-learning. Re-sampling based solu-
tions use different sampling strategies to re-balance the dis-
tribution of different labels (Buda, Maki, and Mazurowski
2018; Byrd and Lipton 2019). Re-weighting solutions give
different weights to the head and tail labels of the loss func-
tion (Huang et al. 2016). Transfer-learning based techniques
learn general knowledge from the head labels, and then use
these knowledge to enrich tail labels. Liu et al. (2019c) pro-
posed a meta feature embedding module to combine direct
features with memory features to enrich the representation
of tail labels. Liu et al. (2020) proposed the concept of ‘fea-
ture cloud’ to enhance the diversity of tail ones.

Most of these long-tail solutions manually divide samples
into head labels and tail ones, which compromises the gen-
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eralization ability. In contrast, our LtCMH does not need to
divide head and tail labels beforehand, it leverages both indi-
viduality and commonality as memory features, rather than
directly stacking direct features (Liu et al. 2019c; Chen et al.
2021), to reduce information overlap. As a result, LtCMH
has a stronger generalization and feature representation ca-
pability.

The Proposed Methodology
Problem Overview
Without loss of generality, we firstly present LtCMH based
on two modalities (image and text). LtCMH can also be
applied to other data modality or extended to ≥ 3 modal-
ities (Liu et al. 2022). Suppose X = {x1,x2, · · · ,xn}
and Y = {y1,y2, · · · ,yn} are the respective image and
text modality with n samples, and L = {l1, l2, · · · , ln} is
the label matrix of these samples from c distinct labels. A
dataset is called long-tail if the numbers of samples anno-
tated with these c labels conform to Zipf’s law distribution
(Reed 2001): za = z1×a−µ, where za is the number of sam-
ples with label a in decreasing order (z1 > z2 > · · · ≫ zc)
and µ is the control parameter of imbalance factor (IF for
short, IF=z1/zc). The goal of CMH is to learn hash functions
(hx and hy) from X and Y , and to generate hash codes via
bx = hx(x) and by = hy(y), where bx/by ∈ {0, 1}k is
the length-k binary hash code vector. For ease presentation,
we denote v as any modality, x/y as the image/text modality
indicator.

The whole framework of LtCMH is illustrated in Fig-
ure 1. LtCMH firstly captures the individuality and com-
monality of multi-modal data, and takes the individuality
and commonality as the memory features. Then it intro-
duces individuality-commonality selectors on memory fea-
tures, along with the direct features extracted from respec-
tive modality, to create meta features, which not only enrich
the representation of tail labels, but also automatically bal-
ance the head and tail labels. Finally, it binaries meta fea-
tures into binary codes through the hash learning module.
The following subsections elaborate on these steps.

Individuality and Commonality Learning
Before learning the individuality and commonality of multi-
modal data, we adopt Convolutional Neural Networks
(CNN) to extract direct visual features Fx = CNN(X ) ∈
Rn×dx and fully connected nerworks with two layers (FC) to
extract textual features Fy = FC(Y) ∈ Rn×dy . Other fea-
ture extractors can also be adopted for modality adaption.
Due to the prevalence of samples of head labels, these di-
rect features are more biased toward head labels and under-
represent tail ones. To address this issue, long-tail single
modal hashing solutions learn label prototypes to summa-
rize visual features and utilize them to transfer knowledge
from head to tail labels (Wei et al. 2022; Tang, Huang, and
Zhang 2020; Chen et al. 2021). But they can not account
for the complex interplay between head/tail labels and indi-
viduality and commonality of multi-modal data, as we ex-
ampled in Figure 1 and discussed in the Introduction. Some

attempts have already explored the individuality and com-
monality of multi-view data to improve the performance of
multi-view learning (Wu et al. 2019; Yu et al. 2022b), and
Tan et al. (2021) empirically found the classification of less
frequent labels can be improved by the individuality. In-
spired by these works, we advocate to mine the individuality
and commonality of multi-modal data with long-tail distri-
bution. We then leverage the individuality and commonal-
ity to create meta features, which can enrich the representa-
tion of tail labels and model the interplay between labels and
multi-modal data .

Because of the information overlap of multi-modal high-
dimensional data, we want to mine the shared and spe-
cific essential information of different modalities in the low-
dimensional embedding space. Auto-encoders (AE) (Good-
fellow, Bengio, and Courville 2016) is an effective tech-
nique that can map high-dimensional data into an informa-
tive low-dimensional representation space. AE can encode
unlabeled/incomplete data and disregard the non-significant
and noisy part, so it has been widely used to extract disen-
tangled latent representation. Here, we propose a new struc-
ture for learning the individuality and commonality of multi-
modal data. The proposed individuality-commonality AE
(as shown in Figure 1) is similar to a traditional AE in both
the encoding end of the input and the decoding end of the
output. The new ingredients of our AE are the regularization
of learning individuality and commonality, and the decod-
ing of each modality via combining the individuality of this
modality and commonality of multiple modalities.

As for the encoding part, we use view-specific encoders
{fv

enI} to initialize the individuality information matrix of
each modality as follows:

Px = fx
enI(F

x),Py = fy
enI(F

y) (1)

where Px and Py encode the individuality of image and text
modality, respectively. To learn the commonality of multi-
modal data, we concatenate Fx and Fy and then input them
into commonality encoder fenC as:

C∗ = fenC([F
x,Fy]) (2)

Although C∗ can encode the commonality of multi-modal
data by fusing Fx and Fy , it does not concretely consider
the intrinsic distribution of respective modalities. Hence, we
further define a cross-modal regularization to optimize C∗

and to enhance the commonality using the shared labels of
samples and data distribution within each modality as:

J1(C
∗) =

1

2
(

c∑
a,b=1

∥C∗
·a −C∗

·b∥
2
(Rx

ab +Ry
ab))

= tr(C∗((Dx −Rx) + (Dy −Ry))(C∗)T)

(3)

Here C∗
·a is the a-th column of C∗, tr(·) denotes the ma-

trix trace operator, Dv is a diagonal matrix with Dv
aa =∑c

b=1 R
v
ab. Rv quantifies the similarity between different
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labels, it is defined as follows:

Rv
ab = e

−Hv
ab

(σv)2

Hv
ab =

∑
fvi ∈χv

a
minfvj ∈χv

b
d(fvi , f

v
j )

|χv
a|+ |χv

b |

+

∑
fvj ∈χv

b
minfvi ∈χv

a
d(fvi , f

v
j )

|χv
a|+ |χv

b |

(4)

where Hv
ab is the average Hausdorff distance between two

sets of samples separately annotated with label a and b,
d(fvi , f

v
j ) is the Euclidean distance between fvi and fvj . |χv

a|
counts the number of samples annotated with a. σv is set to
the average of Hv .

Eq. (3) aims to learn the commonality of each label across
modalities, it jointly considers the intrinsic distribution of
samples annotated with a particular label within each modal-
ity, thus C∗ can bridge X and Y and enable CMH. We want
to remark that other distance metrics can also be used to
setup Hv . Our choice of Hausdorff distance is for its intu-
itiveness and effectiveness on qualifying two sets of samples
(Hausdorff 2005). For the variants of Hausdorff distance,
we choose the average Hausdorff distance because it con-
siders more geometric relations between samples of two sets
than the maximum and minimum Hausdorff distances (Zhou
et al. 2012). By optimizing Eq. (3) across modalities, we
can enhance the quality of extracted commonality of multi-
modal data.

Px and Py may be highly correlated, because they are
simply obtained from the individuality auto-encoders with-
out any contrast and collaboration, and samples from differ-
ent modalities share the same labels. As such, the individual-
ity of each modality cannot be well preserved and tail labels
encoded by the individuality are under-represented. Here,
we minimize the correlation between Px and Py to capture
the intrinsic individuality of each modality. Meanwhile, C∗

can include more shared information of multi-modal data.
For this purpose, we use HSIC (Gretton et al. 2005) to

approximately quantify the correlation between Px and Py ,
for its simplicity and effectiveness on measuring linear and
nonlinear interdependence/correlation between two sets of
variables. The correlation between Px and Py is approxi-
mated as:
J2(P

v) = HSIC(Px,Py) = (n− 1)−2tr(KxAKyA)

s.t. Kv
ab = κ(Pv

a·,P
v
b·) = e(

−∥Pv
a· −Pv

b·∥
2

σv )

(5)
where Kx and Ky are the kernel-induced similarity ma-
trix from Px and Py , respectively. A is a centering matrix:
A = I− eeT/n, where e = (1, · · · , 1)T ∈ Rn and I is the
identity matrix.

For the decoding part, we use the extracted commonality
C∗ shared across modalities and the individuality of each
modality to reconstruct this original modality as follows:

J3(C
∗,Pv) =

∑
v=x,y

∥Fv − fv
de([C

∗,Pv])∥2F
ndv

(6)

where {fv
de} is the corresponding decoder of each modality.

Then we can define the loss function of the individuality-
commonality AE as:

min
θz

Loss1 = αJ1(C
∗) + βJ2(P

v) + J3(C
∗,Pv) (7)

θz are the parameters of the individuality-commonality AE.
α and β (∈ (0, 1]) are the parameters to control the weight
of individuality and commonality. To this end, LtCMH
can capture the commonality and individuality of different
modalities, which will be used to create dynamic meta fea-
tures in the next subsection.

Dynamic Meta Features Learning

For long-tail datasets, the head labels have abundant repre-
sentations while the tail labels don’t (Cui et al. 2019). As a
result, head labels can be easily distinguished but tail labels
can not. To enrich label representation and transfer knowl-
edge of head labels to tail ones, we propose the dynamic
meta memory embedding module using direct features of
Fx and Fy , and the commonality C∗ and individuality Pv .

The modality heterogeneity is a typical issue in cross
modal information fusion, which means that different
modalities may have completely different feature represen-
tations and statistical characteristics for the same semantic
labels. This makes it difficult to directly measure the similar-
ity between different modalities. However, multi-modal data
that describe the same instance usually have close semantic
meanings. In the previous subsection, we have learnt a com-
monality information matrix C∗ by mining the geometric
relations between samples of two labels in the embedding
space. Therefore, C∗ can be seen as a bridge between differ-
ent modalities. Meanwhile, different modalities often have
their own individual information, so we learn Pv to capture
the individuality of each modality. We take C∗ and Pv as the
memory features, and obtain the meta features of a modality
as follows:

Mv = Fv +E1 ⊙C∗ +E2 ⊙Pv (8)

Data-poor tail labels need more memory features to enrich
their representations than data-rich head labels, we design
two adaptive selection factors E1 and E2 on C∗ and Pv

for this purpose, which can be adaptive computed from Fv

to derive selection weights as E1 = Tanh(FC(Fv)) and
E2 = Tanh(FC(Fv)). ⊙ is the Hadamard product. To
match the general multi-modal data in a soft manner, we
adopt the lightweight ‘Tanh+FC’ to avoid complex and inef-
ficient parameters adjusting. Different from long-tail hash-
ing methods (Kou et al. 2022) that use prototype networks
(Snell, Swersky, and Zemel 2017) or simply stack the di-
rect features to learn meta features for each label, our Mv

is created from both individuality and commonality, and di-
rect features of multi-modal data. In addition, the dynamic
factors can integrate both the enhanced commonality across
modalities and individuality of each modality for cross-
modal hashing, thus Mv has a good interpretability and en-
ables a better performance without the clear division of head
and tail labels.
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Hash Code Learning
After obtaining the dynamic meta features, the information
across modalities is reserved and each sample’s represen-
tation is enriched. Alike DCMH (Jiang and Li 2017), we
use S ∈ Rn×n to store the similarity of n training samples.
Sij = 1 means that xi and yj are with the same label, and
Sij = 0 otherwise. Based on Mx, My and S, we can define
the likelihood function as follows:

p(S|Mx,My) =

{
σ(ϕxy) Sij = 1

1− σ(ϕxy) Sij = 0
(9)

where ϕxy = 1/2(Mx)TMy and σ(ϕxy) = 1
1+e−ϕxy . The

smaller the angle between Mx and My is, the larger the ϕxy

is, which makes it a higher probability that Sij = 1 and vice
versa. Then we can define the loss function for learning hash
codes as follows:

min
B,θx,θy

Loss2 = −
n∑

i,j=1

(Sijϕ
xy
ij − log(1 + eϕ

xy
ij ))

+γ(∥B−Mx∥2F + ∥B−My∥2F ) + η(∥Mx1∥2F + ∥My1∥2F )
s.t. B ∈ {+1,−1}c×n

(10)
ϕxy
ij means the i-th row and j-th column of ϕxy . B is the

unified hash codes and 1 is a vector with all elements be-
ing 1. θx and θy are the parameters of image and text meta
feature learning module. The first term is the negative log
likelihood function, it aims at minimizing the inner prod-
uct between Mx and My and preserving the semantic simi-
larities of samples from different modalities. The Hamming
distance between similar samples will be reduced and be-
tween dissimilar ones will be enlarged. The second term
aims to minimize the difference between the unified hash
codes and meta features of each modality. Due to the simi-
larity preservation of Mx and My in S, enforcing the uni-
fied hash codes closer to Mx and My is expected to preserve
the cross modal similarity to match the goal of cross modal
hashing. The last term pursues balanced binary codes with
fixed length for a larger coding capacity.

Optimization
There are three parameters θx, θy , B in our hash learning
loss function in Eq. (10), it is difficult to simultaneously op-
timize them all and find the global optimum. Considering
that, we adopt a canonically-used alternative strategy that
optimizes one of them with others fixed, and give the opti-
mization as below.

Optimize θx with fixed θy and B: We first calculate the
derivative of the loss function Loss2 with respect to Mx

for image modality and then we take the back-propagation
(BP) and stochastic gradient decent (SGD) to update θx until
convergence or the preset maximum epoch. ∂Loss2

∂Mx can be
calculated as:

∂Loss2

∂Mx
∗i

=
1

2

∑n

j=1
(σ(ϕij)M

y
∗j − SijM

y
∗j)

+ 2γ(Mx
∗i −B∗i) + 2ηMx1

(11)

Dataset Nbase Nquery z1 (zc) c
Flicker25K 18015 2000 3000(60) 24
NUS-WIDE 195834 2000 5000(100) 21

Table 1: Statistics of long-tail datasets. za is the number of
samples annotated with label a, which conforms to Zipf’s
law distribution; c is the number of distinct labels.

where Mx
∗i represents the i-th column of Mx. By the chain

rule, we update θx based on BP algorithm.
The way to optimize θy is similar as that to optimize θx.
Optimize B with fixed θx and θy: When θx and θy are

fixed, the optimization problem can be reformulated as:

max
B

tr(B(Mx +My)T )

s.t. B ∈ {+1,−1}c×n
(12)

To maximize Eq. (12), B should have the same sign as
(Mx + My) and B can only take values 1 or -1. Opposite
sign leads to the decreased value.

B = sign(Mx +My) (13)

We illustrate the whole framework of LtCMH in Figure 1,
and defer its algorithmic procedure into the Supplementary
file.

Experiments
Experimental Setup
There is no off-the-shelf benchmark long-tail multi-modal
dataset for experiments, so we pre-process two hand-crafted
multi-modal datasets (Flickr25K (Huiskes and Lew 2008)
and NUS-WIDE (Chua et al. 2009)), to make them fit
long-tail settings. We do not directly use the original NUS-
WIDE dataset since it contains many meaningless samples,
which does not well match the cross modal hashing task
and long-tail setting. The statistics of pre-processed datasets
are reported in Table 1, and more information of the pre-
processings are given in the Supplementary file. We also
take the public Flickr25K and NUS-WIDE as the balanced
datasets for experiments.

Alike DCMH (Jiang and Li 2017), we use a pre-trained
CNN named CNN-F with 8 layers, to extract the direct im-
age features Fx, and another network with two fully con-
nected layers to extract direct text features Fy . These two
networks are with the same hyper-parameters as DCMH.
Other networks can also be used here, which is not the main
focus of this work. SGD is used to optimize model param-
eters. Learning rate of image and text feature extraction is
set as 1e-1.5, the learning rate of individuality-commonality
AE is set as 1e-2. Other hyper-parameters are set as: batch
size=128, α=0.05, β=0.05, γ=1, η=1, dx and dy is equal to
hash code length k, the max epoch is 500. Parameter sensi-
tivity is studied in the Supplementary file.

We compare LtCMH against with six representative and
related CMH methods, which include CMFH (Ding, Guo,
and Zhou 2014), JIMFH (Wang et al. 2020a), DCMH (Jiang
and Li 2017), DGCPN (Yu et al. 2021), SSAH (Li et al.
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2018), and MetaCMH (Wang et al. 2021). The first two are
shallow solutions, and latter four are deep ones. They all fo-
cus on the commonality of multi-modal data to learn hash
codes. CMFH, JIMFH and DGCPN are unsupervised solu-
tions, while the others are supervised ones. We also take
the recent long-tail single-modal hashing method LTHNet
(Chen et al. 2021) as another baseline. For fair evaluation
with LTHNet, we solely train and test LtCMH and LTH-
Net on the image-modality. The parameters of compared
methods are fixed as reported in original papers or selected
by a validation process. All experiments are independently
repeated for ten times. The code of LtCMH is shared at
www.sdu-idea.cn/codes.php?name=LtCMH. We implement
LtCMH in Python 3.7 with the MindSpore deep learning
framework.

Result Analysis
We adopt the typical mean average precision (MAP) as the
evaluation metric, and report the average results and stan-
dard deviation in Table 2 (long-tailed), Table 3 (balanced)
and Table 4 (single-modality). From these results, we have
several important observations:
(i) LtCMH can effectively handle long-tail multi/single-
modal data, this is supported by the clear performance gap
between LtCMH and other compared methods. DCMH and
SSAH have greatly compromised performance on long-
tailed datasets, because they use semantic labels to guide
hash codes learning, while tail labels do not have enough
training samples to preserve the modality relationships in
both the common semantic space and Hamming space. Al-
though unsupervised CMH methods give hash codes with-
out referring to the skewed label distributions, they are also
misled by the overwhelmed samples of head labels. Another
cause is that they all focus the commonality of multi-modal
data, while LtCMH considers both the commonality and in-
dividuality. We note each compared method has a greatly
improved performance on the balanced datasets, since they
all target at balanced multi-modal data. Compared with re-
sults on long-tail datasets, the performance drop of LtCMH
is the smallest, this proves its generality. LtCMH sometimes
slightly loses to SSAH on the balanced datasets, that is be-
cause the adversarial network of SSAH can utilize more se-
mantic information in some cases.
(ii) LtCMH can learn more effective meta features and
achieve better knowledge transfer from head labels to tail la-
bels than LTHNet and MetaCMH. The latter two stack direct
features as memory features to transfer knowledge, they per-
form better than other compared methods (except LtCMH),
but the stacked features may cause information overlap and
they only enrich tail labels within each modality, and suffer
the inconsistency caused by modality heterogeneity. LtCMH
captures both individuality and commonality of multi-modal
data, and the enhanced commonality helps to keep cross-
modal consistency. We further separately measure the per-
formance of LtCMH, MetaCMH and LTHNet on the head
labels and tail ones, and report the results in Figure 2 and
Supplementary file. We find that LtCMH gives better results
than MetaCMH and LTHNet on both head and tail labels,
which further suggest the effectiveness of our meta features.
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Figure 2: Performance comparison of LtCMH and LTHNet
on head(-h) and tail(-t) labels. For Flicker, the first 14 labels
are head; and for NUS-WIDE, the first 15 labels are head.

(iii) The consideration of label information and data distri-
bution improve the performance of CMH. We notice that
most supervised methods perform better than unsupervised
ones. Deep neural networks based solutions also perform
better than shallow ones. Besides deep feature learning,
SSAH and MetaCMH leverage both the label information
and the data distribution, they obtain a better performance
than other compared methods. LtCMH leverages these infor-
mation sources in a more sensible way, and thus achieves a
better performance on both long-tail and balanced datasets.

Ablation Experiments
To gain an in-depth understanding of LtCMH, we introduce
five variants: LtCMH-w/oC, LtCMH-w/oI, LtCMH-w/oIC,
LtCMH-w/oMI, LtCMH-w/oMT, which separately disre-
gards the individuality, commonality and the both, dynamic
meta features from the image modality and text modality.
Figure 3 shows the results of these variants on Flicker25K
and NUS-WIDE. We have several important observations.
(i) Both the commonality and individuality are important
for LtCMH on long-tail datasets. This is confirmed by
clearly reduced performance of LtCMH-w/oC and LtCMH-
w/oI, and by the lowest performance of LtCMH-w/oIC. We
find LtCMH-w/oI performs better than LtCMH-w/oC, since
commonality captures the shared and complementary infor-
mation of multi-modal data, and bridges two modalities for
cross-modal retrieval. (ii) Both the meta features from the
text- and image-modality are helpful for hash code learning.
We note a significant performance drop when meta features
of target query modality are unused.

Besides, we also study the impact of input parameters α,
β, γ and η, which control the learning loss of commonality,
individuality, consistency of hash codes across modalities,
balance of hash codes. We find that a too small α or β cannot
ensure to learn commonality and individuality across modal-
ities well, but a too large of them brings down the validity
of AE. A too small γ and η cannot keep consistency of hash
codes across modalities and generate balanced hash codes.
Given these results, we set α=0.05, β=0.05, γ=1, η=1.

Conclusion
In this paper, we study how to achieve CMH on the preva-
lence long-tail multi-modal data, which is a practical and
important, but largely unexplored problem in CMH. We pro-
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Flicker25K NUS-WIDE
16-bits 32-bits 64-bits 16-bits 32-bits 64bits

I→T

CMFH .354±.030 .377±.005 .382±.003 .254±.010 .256±.007 .261±.020
JIMFH .400±.009 .414±.010 .433±.026 .308±.032 .323±.027 .347±.016

DGCPN .538±.008 .551±.013 .579±.005 .379±.006 .381±.007 .409±.004
DCMH .477±.020 .492±.003 .506±.017 .347±.014 .367±.003 .376±.010
SSAH .571±.004 .588±.005 .603±.009 .371±.007 .383±.006 .418±.004

MetaCMH .608±.016 .621±.009 .624±.025 .409±.016 .421±.004 .430±.007
LtCMH .687± .015 .732±.004 .718±.014 .433±.004 .475±.008 .532±.017

T→I

CMFH .366±.015 .382±.005 .396±.010 .269 ±.025 .279±.004 .287±.001
JIMFH .433±.008 .449±.007 .448±.014 .368±.009 .372±.018 .379±.020

DGCPN .529±.014 .541±.007 .577±.016 .377±.003 .388±.008 .420±.012
DCMH .500±.010 .510±.007 .514±.005 .348±.020 .380±.008 .401±.009
SSAH .566±.012 .579±.006 .630±.008 .382±.005 .415±.013 .426±.007

MetaCMH .624±.002 .640±.006 .643±.032 .416±.004 .433±.003 .438±.009
LtCMH .729±.008 .738±.015 .750±.006 .441±.008 .458±.012 .463±.006

Table 2: Results (MAP) of each method on long-tail Flickr25K and NUS-WIDE. The best results are in boldface.

Flicker25K NUS-WIDE
16-bits 32-bits 64-bits 16-bits 32-bits 64bits

I→T

CMFH .597±.037 .597±.036 .597±.037 .409±.041 .419±.051 .417±.062
JIMFH .621±.038 .635±.050 .635±.045 .503±.051 .524±.062 .529±.064

DGCPN .732±.010 .742±.004 .751±.008 .625±.003 .635±.007 .654±.020
DCMH .710±.022 .721±.017 .735±.014 .573±.027 .603±.003 .609±.002
SSAH .738±.018 .750±.010 .779±.009 .630±.001 .636±.010 .659±.004

MetaCMH .708±.007 .716±.005 .724±.013 .612±.011 .619±.005 .644±.018
LtCMH .745±.018 .753±.012 .781±.011 .635±.010 .654±.020 .678±.003

T→I

CMFH .598±.048 .602±.055 .601±.065 .412±.072 .417±.061 .418±.068
JIMFH .650±.042 .662±.064 .657±.059 .584±.081 .604±.052 .655±.069

DGCPN .729±.015 .741±.008 .749±.014 .631±.008 .648±.013 .660±.004
DCMH .738±.020 .752±.020 .760±.019 .638±.010 .641±.011 .652±.012
SSAH .750±.028 .795±.023 .799±.008 .655±.002 .662±.012 .669±.009

MetaCMH .741±.009 .758±.014 .763±.004 .594±.004 .611±.007 .649±.008
LtCMH .770±.008 .795±.004 .802±.023 .608±.029 .644±.010 .688±.007

Table 3: Results (MAP) of each method on balanced Flickr25K and NUS-WIDE. The best results are in boldface.
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Figure 3: Results of LtCMH and its variants on long-tailed Flicker25K and NUS-WIDE.

16bits 32bits 64bits

Flickr25K LTHNet .602 .573 .610
LtCMH .651 .647 .654

NUS-WIDE LTHNet .401 .411 .420
LtCMH .473 .508 .513

Table 4: Results of LtCMH and LTHNet on long-tailed
Flickr25K and NUS-WIDE. Better results are in boldface.

pose an effective approach LtCMH that leverages the in-
dividuality and commonality of multi-modal data to create
dynamic meta features, which enrich the representations of
tail labels and give discriminant hash codes. The effective-
ness and adaptivity of LtCMH are verified by experiments
on long-tail and balanced multi-modal datasets.
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