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Abstract

Area Under the ROC Curve (AUC) is a widely used ranking
metric in imbalanced learning due to its insensitivity to label
distributions. As a well-known multiclass extension of AUC,
Multiclass AUC (MAUC, a.k.a. M-metric) measures the aver-
age AUC of multiple binary classifiers. In this paper, we argue
that simply optimizing MAUC is far from enough for imbal-
anced multi-classification. More precisely, MAUC only fo-
cuses on learning scoring functions via ranking optimization,
while leaving the decision process unconsidered. Therefore,
scoring functions being able to make good decisions might
suffer from low performance in terms of MAUC. To over-
come this issue, we turn to explore AUCµ, another multiclass
variant of AUC, which further takes the decision process into
consideration. Motivated by this fact, we propose a surrogate
risk optimization framework to improve model performance
from the perspective of AUCµ. Practically, we propose a two-
stage training framework for multi-classification, where at the
first stage a scoring function is learned maximizing AUCµ,
and at the second stage we seek for a decision function to
improve the F1-metric via our proposed soft F1. Theoreti-
cally, we first provide sufficient conditions that optimizing
the surrogate losses could lead to the Bayes optimal scoring
function. Afterward, we show that the proposed surrogate risk
enjoys a generalization bound in order of O(1/

√
N). Exper-

imental results on four benchmark datasets demonstrate the
effectiveness of our proposed method in both AUCµ and F1-
metric.

Introduction
Over the past few decades, learning with imbalanced
data has been attracting researchers’ attention in the ma-
chine learning community (Japkowicz and Stephen 2002;
Cárdenas and Baras 2006; He and Garcia 2009; Li, Chaud-
huri, and Tewari 2016; Wang et al. 2021). In some real-world
tasks like disease prediction tasks (Hao et al. 2020; Zhou
et al. 2020) and rare event detection tasks (Liu et al. 2020a,
2018; Wu et al. 2020), the data distributions are largely
skewed, i.e., a few categories occupy the vast majority of
observations, whereas the rest account for a small fraction.

*Corresponding author.
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In this case, commonly used classification metrics like ac-
curacy are not ideal choices to evaluate classifiers since they
might ignore the important minority categories. Hence, eval-
uating the model performance in the case of imbalanced data
is critical for imbalanced classification problems.

For binary classification tasks, Area Under the ROC
Curve (AUC) has been widely used as one of the standard
metrics since it is insensitivity to label distributions. Due
to its importance, researchers have made efforts to direct
AUC optimization (Rakotomamonjy 2004; Zhang, Saha,
and Vishwanathan 2012; Ying, Wen, and Lyu 2016; Liu
et al. 2020b). Since several real-world classification tasks
involve more than two classes, it is natural to extend AUC to
multiclass such that classifiers over imbalanced multiclass
datasets can be measured and optimized similarly. More re-
lated work is presented in the Appendices.

One simple extension is Multiclass AUC (MAUC), which
takes the average AUC between classes in a one-vs-one or
one-vs-all manner (Hand and Till 2001; Yang et al. 2021a).
Despite the success of the MAUC in imbalanced learning,
we argue that it is not an ideal metric for imbalanced multi-
classification. Specifically, multi-classification can be solved
with two stages: scoring and decision process, where the for-
mer is predicting continuous score for each category, and
the latter is mapping scores to discrete categories. MAUC
focuses on the scoring, but leaves the decision process un-
considered. This might lead to inconsistency of MAUC w.r.t.
the same decision results, i.e., even if two scoring functions
have same predictions, MAUC might be different, while an-
other multiclass extension AUCµ(Kleiman and Page 2019)
outputs consistent results.

As shown in Fig.1, given two examples (x1, 1), (x2, 2)
and a scoring function f with two components f1, f2, de-
note ∆1 = f1(x1) − f1(x2),∆2 = f2(x1) − f2(x2). For
any f̃ with f̃(x1) = f(x1) + b1, f̃(x2) = f(x2) + b2,
these two scoring functions output the same predictions,
and ∆1,2 might be different with b1, b2 changing. However,
MAUC measures ∆1,∆2 independently, leading to differ-
ent evaluation results for f and f̃ . Since AUCµ measures
∆margin = ∆1 − ∆2 invariable w.r.t. b1, b2, it is able
to avoid this issue. To this end, we turn to explore AUCµ

(Kleiman and Page 2019) which takes both scoring and
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Figure 1: Illustration on inconsistency of MAUC w.r.t.
same decisions. Left: f . Right: f̃ with f̃(x1) = f(x1) +

b1, f̃(x2) = f(x2) + b2. We have MAUC(f) = 1 ̸=
MAUC(f̃) = 0.5, AUCµ(f) = AUCµ(f̃) = 1.

decision process into consideration. First of all, on top of
Kleiman and Page’s work, we further analyze AUCµ under
the imbalanced multi-classification setting. Specifically, we
show that AUCµ could efficiently avoid the imbalanced is-
sue and the decision challenge by considering ranking pairs
and sub-classifier pairs simultaneously. Therefore, AUCµ is
more reasonable to measure performance of scoring func-
tions for imbalanced classification problems, and it is neces-
sary to study direct optimization of AUCµ.

Based on the above considerations, we propose to train a
multi-classifier with two-stages: 1) learn a scoring function
with AUCµ and 2) search optimal thresholds.

At the first stage, we propose to directly optimize AUCµ.
The main challenge is that AUCµ is non-differentiable,
which makes gradient-based optimization methods infea-
sible. To overcome this problem, we investigate replacing
the non-differentiable 0-1 loss with differentiable surrogate
losses. We provide sufficient conditions that the surrogate
losses are Fisher consistent with AUCµ, i.e., optimizing the
surrogate risk will lead to Bayes optimal scoring function
under the AUCµ criterion. On top of this, we further pro-
pose an empirical surrogate risk of AUCµ. In this way, the
AUCµ of models can be optimized without acknowledging
the data prior. Additionally, we provide generalization error
bounds to ensure the expected risk could be optimized.

At the second stage, we target to find a set of thresh-
olds such that the macro F1-metric is maximized. Since the
argmax operation is non-differentiable, it is replaced by
softmax, leading to a differentiable soft F1-metric. By op-
timizing the thresholds such that the soft F1-metric is mini-
mized, we obtain a better decision function.

In short, the main contribution of this paper is three-fold:
• From the view of decision process, we show that AUCµ

is a more ideal metric compared to MAUC since both the
imbalance issue and the decision process are taken into
account.

• We propose a two-stage training framework for imbal-
anced multi-classification. The key components include:
learning a scoring function by optimizing AUCµ, and
searching a decision function with soft F1-metric.

• We propose an empirical surrogate risk minimization
framework to directly optimize AUCµ. Theoretically,
we provide consistency analysis and generalization error
bounds.

Learning Multi-Classifier with AUCµ

In this section, we provide the formal definition of MAUC
and AUCµ, and then analyze the properties of both in multi-
classification problems.

Preliminary
Notations Denote the sample space as Z = X ×Y , where
X ⊂ Rd is the feature space with d dimensions and Y is
the label space. Under the context of multi-classification,
Y = {1, . . . , NC}, where NC is the number of categories.
Given two examples z1 = (x1, y1) and z2 = (x2, y2),
we denote the proposition that y1 = i, y2 = j or y1 =
j, y2 = i as ε(i,j). Denote a scoring function for multi-
classification as f 7→ RNC , where the i-th component
f i : X 7→ R predicts the score of an instance being i-
th category, and the hypothesis space of f i is denoted as
F =

{
f i : X 7→ R is a measurable function

}
. I(·) is the

indicator function, which returns 1 if argument (·) is true
and returns 0 otherwise. We define the 0-1 loss function
Ĩ(x) = I(x > 0) + 1

2 I(x = 0).

Multiclass extensions of AUC The main idea of MAUC
is to decompose the multi-class problem into several binary
problems in a one-vs-one (ovo) or one-vs-all (ova) manner.
As suggested in (Yang et al. 2021a), ovo is more compre-
hensive, thus we only discuss MAUC decomposed in an ovo
manner. Formally, MAUC formulates multiclass AUC met-
ric as the average AUC of each class pair (i, j):

MAUC(f) =
1

NC(NC − 1)

NC∑
i

NC∑
j ̸=i

AUC(i,j)(f), (1)

where

AUC(i,j)(f) = E
z1,z2

[
Ĩ(f i(x1)− f i(x2))

∣∣∣ε(i,j)] .
Intuitively, AUC(i,j)(f) equals the probability that scores
of positive examples are higher than negative ones, thus it is
insensitive to the distribution skew.

Similarly, AUCµ decomposes a multi-class problem in an
ovo manner. The main difference from MAUC is the defini-
tion of binary AUC:

AUCµ(f) =
1

NC(NC − 1)

NC∑
i

NC∑
j ̸=i

AUC(i,j)
µ (f), (2)

where

AUC(i,j)
µ (f) = E

z1,z2

[
Ĩ(∆margin(i, j,x1,x2, f))

∣∣∣ε(i,j)] ,
and

∆margin(i, j,x1,x2, f)

=
(
f i(x1)− f i(x2)

)
−

(
f j(x1)− f j(x2)

)
.

More information about how it is defined could be found in
(Kleiman and Page 2019).
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Multi-classification Given a sample space Z = X ×Y , a
classifier could be viewed as a compound of a scoring func-
tion f : X 7→ RNC and a decision process g : RNC 7→ Y .
Typically, g could be implemented as an argmax operation:

g(f(x)) = arg max
i∈[NC ]

f i(x).

AUCµ in Decision Process
In this subsection, we provide detailed explanations that
compared with MAUC, showing that both AUCµ and
MAUC could measure the ability of ranking. However in
classification problems, AUCµ is a more ideal metric con-
sidering the decision process. To begin with, we show the
necessity of considering the decision process by the follow-
ing example.

Example 1 (Decision bias of MAUC & AUCµ). Given a
dataset {(x1, 1), (x2, 2)} and a scoring function f(·) with
f(x1) = [0.9, 0.1], f(x2) = [0.8, 0.2]. Obviously we have
MAUC(f) = AUCµ(f) = 1. However, if implementing the
decision process g as an argmax operation, then the pre-
dicted categories are g(f(x1)) = g(f(x2)) = 1.

The above phenomenon stems from the fact that AUC
only constrains the relative scores for example pairs. There-
fore, even if we have an optimal scoring function with
MAUC = AUCµ(f) = 1, the classifier might still fail when
using the argmax. To avoid this issue, it is necessary to in-
troduce thresholds into the decision process as follows.

Definition 1 (Decision process with thresholds). Given an
NC-class scoring function f and a set of thresholds τ =
{τ i ∈ R}NC

i=1, the decision function g is defined as

g(f(x); τ ) = arg max
i∈[NC ]

(
f i(x) + τ i

)
.

By introducing thresholds into the decision process, the
decision bias can be addressed. For example, by setting τ =
{0, 0.7} in Example 1, we have g(f(x1)) = 1, g(f(x2)) =
2, where both x1,x2 are correctly classified.

Based on the above observation, we argue that the evalua-
tion of scoring functions should take the above defined deci-
sion process into consideration. For the sake of the presenta-
tion, we propose two concepts to measure scoring functions
as follows.

Definition 2 (Equivalent scoring function). Given two NC-
class scoring functions f, f̃ , and a feature space X , if for
any thresholds τ ∈ RNC and x ∈ X , the following condi-
tion holds:

g(f(x); τ ) = g(f̃(x); τ ),

then it is said that f̃ is equivalent to f .

Definition 3 (Optimal scoring function). Given anNC-class
scoring functions f , and a sample space Z , if there exists a
set of thresholds τ ∈ RNC , such that the predictions are
correct for any (x, y) ∈ Z:

g(f(x); τ ) = y,

then it is said that f is an optimal scoring function.

Intuitively, if two scoring functions are equivalent, they
always lead to same predictions no matter how the decision
function is chosen. This motivates us to propose two princi-
ples for evaluating scoring functions from the decision per-
spective:
Claim 1. An appropriate evaluation metric should:

• Output same results for equivalent scoring functions;
• Achieve score 1 for an optimal scoring function.

However, it is easy to give an example that MAUC vio-
lates the above principles, while AUCµ satisfies them.

Example 2 (Failure case of MAUC). Consider a dataset
{(x1, 1), (x2, 2), (x3, 3)} and two scoring functions f, f̃
with

f(x1) = [0.30, 0.45, 0.25], f̃(x1) = [0.10, 0.25, 0.05],

f(x2) = [0.20, 0.50, 0.30], f̃(x2) = [0.20, 0.50, 0.30],

f(x3) = [0.31, 0.40, 0.29], f̃(x3) = [0.31, 0.40, 0.29].

Obviously, f̃ is an optimal scoring function (by setting τ =
[0.17, 0.01, 0.2]), and f̃ is equivalent to f . According to the
definition we have MAUC(f) = 2/3, MAUC(f̃) = 0.5. As
opposed to MAUC, we have AUCµ(f) = AUCµ(f̃) = 1.

Besides the above intuitive explanation, we further pro-
vide a formal presentation that AUCµ satisfies our principle
in the following propositions. See Appendices for proofs.

Proposition 1. Given two equivalent scoring function f, f̃ ,
we have AUCµ(f) = AUCµ(f̃).

Proposition 2. Given an optimal scoring function f , we
have AUCµ(f) = 1.

In a nutshell, AUCµ is more consistent with the prediction
of a classifier.

Methodology
As analyzed in the last section, we can learn a classifier in
a two-stage manner: 1) train a scoring function f such that
AUCµ(f) is maximized; 2) optimize the thresholds τ , such
that the F1-metric of g ◦ f is maximized. In this section, we
first propose a training framework for maximizing AUCµ.
Then we optimize Soft F1 to derive thresholds τ . By our
proposed methods, one could get a classifier that has great
ranking and classification performances simultaneously.

Maximization of AUCµ

In this subsection, we focus on the minimization of expected
risk AUC↓

µ = 1− AUCµ:

R(f) = AUC↓
µ(f) =

1

NC(NC − 1)

NC∑
i=1

NC∑
j ̸=i

E
z1,z2

[
Ĩ(−∆margin(y1, y2,x1,x2, f))

∣∣∣ε(i,j)] .
(3)
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Surrogate Risk of AUC↓
µ Since the 0-1 loss Ĩ(·) is non-

differentiable, gradient-based methods are infeasible to op-
timize the above objective function. To overcome this prob-
lem, we replace Ĩ(·) with a differentiable surrogate loss ℓ(·),
and construct the following surrogate risk:

Rℓ(f) =
1

NC(NC − 1)

NC∑
i

NC∑
j ̸=i

E
z1,z2

[
ℓ(∆margin(i, j,x1,x2, f))

∣∣∣ε(i,j)] .
However, this brings up another problem: can R(f) be min-
imized by minimizing Rℓ(f)? In search of an answer to this
problem, we introduce the concern of Fisher consistency.
Definition 4 (Consistency of Rℓ(f)). Surrogate loss ℓ(·) is
consistent with AUC↓

µ if for any distributions over sample
space and any sequence {ft}t∈N+

, the following condition
holds:

R(ft) → inf
f∈FNC

R(f) , if Rℓ(ft) → inf
f∈FNC

Rℓ(f).

This definition gives conditions that a surrogate loss is
helpful to original optimization problem. To investigate what
kinds of surrogate loss are consistent, we first focus on the
Bayes optimal scoring functions what kinds of scoring func-
tion f∗ can minimize R(f). Specifically, a scoring function
f∗ is a Bayes optimal scoring function of R(f) if

f∗ ∈ arg inf
f∈FNC

R(f).

And the following theorem provides sufficient conditions of
Bayes optimal scoring functions:
Theorem 1 (Bayes Optimal Scoring Functions). A scor-
ing function f is Bayes optimal if ∀i ̸= j ∈ Y , ∀x1,x2 ∈
X s.t. ηi(x1)ηj(x2) ̸= ηi(x2)ηj(x1), we have

[ηi(x1)ηj(x2)− ηj(x1)ηi(x2)]∆margin > 0,

where

ηi(x) := P
z
(y = i|x),

∆margin := ∆margin(i, j,x1,x2, f).

Based on the above theorem, we provide a sufficient con-
dition for consistency of surrogate losses as follows:
Theorem 2 (Consistent Surrogate Loss of AUC↓

µ). A sur-
rogate loss ℓ is consistent with AUC↓

µ if it is convex, differ-
entiable at 0 and ℓ

′
(0) < 0.

Remark 1. Note that the derivation of the above theorem
is non-trivial. Previous work (Gao and Zhou 2015; Yang
et al. 2021a) provides proofs of binary AUC’s and MAUC’s
consistency by contradiction. However, since AUCµ involves
relative scores between different components of the score
function, we find it hard to follow existing techniques. In-
stead, we propose a new proof. See Appendices for details.

From the above theorem, we find that most of widely-used
surrogate loss functions are consistent with AUC↓

µ.

Corollary 1. These surrogate losses are consistent with
AUC↓

µ according to Thm.2.
Exp loss: ℓ(x) = exp(−ax);
Square Loss: ℓ(x) = (1− x/a)2;
Generalized Hinge Loss:

ℓϵ(x) =

 1− x if x ≤ 1− ϵ
(x− 1− ϵ)2/4ϵ if 1− ϵ ≤ x ≤ 1

0 otherwise

Remark 2. Note that Hinge Loss max(1 − x, 0) equals to
Generalized Hinge Loss ℓϵ by taking ϵ → 0, which means
Hinge Loss is an asymptotically consistent surrogate loss.

Empirical Risk Minimization So far, we have found
many proper surrogate losses for surrogate risk minimiza-
tion. Unfortunately, even with a proper surrogate loss, there
is still a challenge to optimize Rℓ(f). Concretely, the mini-
mization of Rℓ(f) is intractable due to the sample distribu-
tion is unavailable. This requires us to estimate Rℓ(f) over
a finite training set. The following proposition gives an un-
biased estimation of Rℓ(f) over a sample set S. The proof
could be found in Appendices.

Proposition 3 (Unbiased Empirical Estimation ofRℓ(f)).
Consider a sample set S = {(xi, yi)}Ni=1, where N is the
number of samples. We denote {xj |yj = i, (xj , yj) ∈ S} as
Si and |Si| as Ni. The unbiased estimation of Rℓ(f) on S is
given by

R̂ℓ,S(f) =
1

NC(NC − 1)
NC∑
i=1

NC∑
j ̸=i

∑
x1∈Si

∑
x2∈Sj

ℓ(∆margin(i, j,x1,x2, f))

NiNj
.

This allows gradient-based optimization technologies to
come into play. By plugging the above empirical risk into
the standard optimization framework, we can obtain an ap-
proximately optimal scoring function in the sense of AUCµ.

Decision Thresholds Learning
After learning a scoring function with the above framework,
we still need to determine a set of decision thresholds τ to
form a classifier. The decision thresholds are expected to
maximize the F1-metric corresponding to the decision re-
sults. Formally, given a fixed scoring function f and a train-
ing set S, we target to solve the following problem:

max
τ∈RNC

F (f, τ ) =

1

NC

NC∑
i=1

1

[Preci(f, τ )]
−1

+ [Reci(f, τ )]
−1 + α∥τ∥22,

where α is a hyperparameter to control the norm of τ , and

Preci(f, τ ) =

∑
z∈S I (g(f(x); τ ) = i) I (y = i)∑

z∈S I (g(f(x); τ ) = i)
,

Reci(f, τ ) =

∑
z∈S I (g(f(x); τ ) = i) I (y = i)∑

z∈S I (y = i)
.
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However, optimizing the above target involves complicated
discrete programming problems. To avoid this, we replace
the non-differentiable argmax operation with softmax,
and the term I (g(f(x); τ ) = i) is softened to the i-th com-
ponent of the predicted score f(x) + τ after softmax:

exp
(
λ · (f i(x) + τ i)

)∑
j exp (λ · (f j(x) + τ j))

,

where λ is a tunable hyperparameter. In this way, we can
optimize τ with gradient-based methods.

Generalization Analysis
In the previous section, we have proposed a training frame-
work to minimize the empirical risk of AUCµ. In this sec-
tion, we explore whether the expected risk could be opti-
mized by minimizing the empirical surrogate risk with suf-
ficient examples. Formally, we target to find out an upper
bound of the gap

R(f) ≤ Rℓ(f) ≤ R̂ℓ.S(f) + ϵ(N),

such that the upper bound ϵ(N) → 0 when N → ∞. By
choosing surrogate loss ℓ ≥ Ĩ , the first inequality is obvious,
thus we focus on the second inequality in the rest of this
section. All details of proof could be found in Appendices.

Following the standard analysis framework of Probably
Approximately Correct (PAC) learning, given fixed labels
Y , we denote

sup
f

[
E
S

[
R̂ℓ,S |Y(S) = Y

]
− R̂ℓ,S

]
,

then we have the following conclusion:
Lemma 1. Assume dom(ℓ) = [0, B], then ∀f ∈ FNC , δ ∈
(0, 1), we have

P
S

[
Rℓ,S(f) ≥ R̂ℓ,S(f) + E

S′

[
Φ(S

′
)
∣∣∣Y(S

′
) = Y

]
+

2B

NC
ψ(Y )

√
log(1/δ)

2N

∣∣∣∣∣Y(S) = Y

]
≤ δ,

where ψ(Y ) =
√∑

i
N
Ni

, Ni =
∑

y∈Y I(y = i).

The above lemma shows that the generalization error
could be upper bounded by bounding

E
S′

[
Φ(S

′
)
∣∣∣Y(S

′
) = Y

]
.

To this end, we introduce the concept of Rademacher Com-
plexity (Mohri, Rostamizadeh, and Talwalkar 2018), which
is a kind of complexity measure of hypothesis space. Unfor-
tunately, the standard Rademacher Complexity is infeasible
here since it required the risk to be expressed as a summation
of independent terms, while the risk of AUCµ is a pair-wise
form which couples many examples. To handle this problem,
similar to the pair-wise Rademacher Complexity of MAUC
(Yang et al. 2021a), we propose the Rademacher Complexity
of AUCµ as follows:

Definition 5 (Rademacher Complexity of AUC↓
µ). The em-

pirical Rademacher Complexity of AUC↓
µ over the dataset S

is

R̂S

[
ℓ ◦ FNC

]
=

1

NC(NC − 1)

E
σ

 sup
f∈FNC

NC∑
i

NC∑
j ̸=i

∑
xm∈Si

∑
xn∈Sj

T i,j,m,n

 ,
where

T i,j,m,n =
σm
i + σn

j

2

ℓ(∆margin(i, j,xm,xn, f))

NiNj
,

∀i ∈ [NC ], {σm
i }i,m are i.i.d. Rademacher random vari-

ables taking −1 or 1 uniformly. Here xm ∈ Si represents
that xm is the m-th example of category i in dataset S.

With the above definition, ES′

[
Φ(S

′
)
∣∣∣Y(S

′
) = Y

]
can

be bounded by the expected Rademacher Complexity of
AUCµ as shown in Lem.2. The proof follows techniques of
(Usunier, Amini, and Gallinari 2005; Agarwal et al. 2005;
Yang et al. 2021a).
Lemma 2 (Symmetrization of Rademacher Complexity
for AUC↓

µ). For sake of the presentation, we denote Y(S)
as labels of dataset S. We have the the following condition
holds:

E
S

[
Φ(S)

∣∣∣Y(S) = Y
]
≤ 4RY

[
ℓ ◦ FNC

]
,

where RY

[
ℓ ◦ FNC

]
is the conditional expected

Rademacher Complexity when the labels Y of dataset
S is fixed, i.e.,

RY

[
ℓ ◦ FNC

]
= E

S|Y
R̂S

[
ℓ ◦ FNC

]
.

By combining the Lem.1 and Lem.2, we get a close form
to the final result. The last two steps are: 1). bound ex-
pected Rademacher Complexity by the empirical form. 2).
replace the conditional expectation with the general expec-
tation. The final generalization error bound is given by the
following theorem:
Theorem 3 (Generalization Error Bound of AUC↓

µ). As-
sume dom(ℓ) = [0, B], then ∀f ∈ FNC , δ ∈ (0, 1), we have

P
S

[
Rℓ,S(f) ≥ R̂ℓ,S(f)+

4R̂S [ℓ ◦ FNC ] +
10B

NC
ψ(Y )

√
log(2/δ)

2N

]
≤ δ.

Remark 3. According to the literature (Yang et al. 2021a;
Golowich, Rakhlin, and Shamir 2018; Long and Sedghi
2019), the Rademacher Complexity could be bounded in or-
der of O(1/

√
N) for a wide range of models including deep

neural networks. Therefore, we can draw the conclusion that
the following fact holds with high probability:

Rℓ(f)− R̂ℓ,S(f) = O(1/
√
N).

Remark 4. From the above result, it can be seen that
AUCµ enjoys an imbalance-aware generalization bound
like MUAC, showing both AUCµ and MAUC metric are
imbalance-friendly.
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Type Method CIFAR-10 CIFAR-100 TinyImageNet ImageNet

50 100 200 50 100 200 100 50 100 200

Baseline CE 93.90 93.01 92.44 93.20 92.32 91.42 89.54 96.40 95.52 94.97

Imbalanced
methods

Focal 94.82 94.90 90.86 93.10 92.43 92.30 88.79 96.26 95.53 94.16
CBFocal 95.48 94.40 91.16 92.85 92.71 89.88 88.72 96.04 94.90 94.46
CBCE 94.44 93.99 92.25 92.48 91.94 91.63 89.87 96.68 95.91 94.78
LDAM 94.49 94.60 92.36 92.38 92.75 91.88 90.68 96.66 95.85 94.58

TL 94.99 94.45 92.83 93.40 91.15 92.20 89.49 96.69 96.00 94.92
IHT 95.31 95.13 91.31 93.16 91.52 92.76 89.88 96.71 95.53 95.08
NM 93.62 92.58 92.55 92.96 92.04 89.75 89.40 96.31 95.99 95.18

AUC-based
losses

MAUC + Square 95.15 95.05 90.05 93.28 92.15 92.12 89.71 96.67 95.88 95.08
MAUC + Exp 94.59 94.15 91.18 93.26 92.41 92.49 89.76 96.51 95.93 95.04

MAUC + Hinge 93.82 93.96 91.94 93.06 92.11 91.70 89.36 96.42 95.71 95.18

Ours + Square 95.68 94.54 91.81 94.51 93.54 93.53 90.90 96.75 95.99 95.13
Ours + Exp 94.87 94.55 93.28 92.96 92.53 92.44 89.12 96.67 96.02 95.30

Ours + Hinge 95.68 95.61 92.20 93.73 92.56 92.41 89.88 96.57 95.79 95.14

Table 1: Performance comparison on AUCµ. The best results and the best competitors of each type are marked as bold and
underline.
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Figure 2: Sensitivity analysis of our method on CIFAR-10 with an imbalance ratio of 50. (a) and (c): sensitivity of the warm-up
epochs K. (b) and (d): sensitivity of the hyperparameter a in surrogate losses. More results could be found in Appendices.

Experiments
To demonstrate the effectiveness of our proposed frame-
work, we conduct a series of experiments in four benchmark
datasets for imbalanced multi-classification: CIFAR10, CI-
FAR100 (Krizhevsky 2012), TinyImageNet (Russakovsky
et al. 2015) and ImageNet (Deng et al. 2009). These datasets
are resampled with imbalance ratios of 50, 100, 200.

Experimental Settings
Network Architecture For all experiments, we imple-
ment the scoring function as ResNet-18 trained from scratch.
To normalize the scores into [0, 1], we add a softmax func-
tion after the last linear layer of the model.

Competitors We compare popular methods for the imbal-
anced classification task. We set up standard Cross Entropy
loss (CE) as a baseline. Other competitors are divided into
two technical routes: 1) AUC-based loss functions includ-
ing MAUC (Yang et al. 2021a) and ours using square loss,
exponential loss and hinge loss respectively; 2) imbalanced
methods including, Focal loss (Focal) (Lin et al. 2017),
Class-Balanced CE loss (CB-CE), Class-Balanced Focal
loss (Cui et al. 2019, CB-Focal), LDAM (Cao et al. 2019).

Besides these loss functions, we also compare sampling-
based methods including Instance Hardness Threshold sam-
pling (Smith, Martinez, and Giraud-Carrier 2014, IHT),
Near Miss sampling (Mani and Zhang 2003, NM) and
Tomek Links sampling (Tomek 1976, TL). All sampling-
based methods are coupled with the CE loss.

Training Strategy Limited by the space, we only present
a part of key training settings, and more details are provided
in Appendices. We utilize the Adam optimizer (Kingma
and Ba 2017) for all methods. The initial learning rates are
searched in [10−4, 10−3], and decays by 0.99 per epoch. We
keep the models with the highest AUCµ in the validation set
and report the corresponding AUCµ and F1-metric on the
test set. The training epochs are set to 25 for ImageNet and
80 for other datasets.

Experimental Results
In our experiments, evaluation metrics including AUCµ,
MAUC, precision, recall, and F1-metric are reported. Due to
the limitation of the space, only test AUCµ and F1-metric of
all methods are shown in Tab.1 and Tab.2 respectively, and
more results of other metrics are provided in Appendices.
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Type Method CIFAR-10 CIFAR-100 TinyImageNet ImageNet

50 100 200 50 100 200 100 50 100 200

Baseline CE 56.21 49.37 49.14 22.21 25.24 21.04 9.50 11.23 10.28 9.15

Imbalanced
methods

Focal 60.39 58.26 50.23 26.92 23.40 16.91 10.72 9.40 7.85 6.41
CBFocal 61.07 56.92 46.31 23.28 20.87 21.67 9.24 9.48 6.94 6.47
CBCE 59.38 52.23 46.24 24.89 22.21 16.96 12.88 13.29 11.19 7.85
LDAM 58.34 54.31 45.91 24.11 19.64 21.07 12.88 10.76 9.35 8.58

TL 60.49 53.85 48.07 25.16 22.71 22.69 9.33 12.50 11.11 9.22
IHT 60.25 58.70 44.68 22.83 22.59 19.85 11.61 13.85 10.20 10.12
NM 47.32 42.31 35.11 23.25 25.86 19.18 9.91 10.54 10.55 8.62

AUC-based
losses

MAUC + Square 61.03 57.79 46.01 27.28 22.96 22.40 11.69 14.43 12.51 11.19
MAUC + Exp 58.32 51.29 48.06 24.92 25.56 22.85 13.94 13.88 12.62 11.02

MAUC + Hinge 56.15 53.46 43.89 24.91 23.12 23.72 11.66 13.51 11.76 11.30

Ours + Square 61.12 55.23 45.89 28.18 28.04 23.92 13.04 15.27 12.85 10.69
Ours + Exp 59.66 52.55 50.73 29.42 26.92 21.78 11.71 15.04 12.89 11.96

Ours + Hinge 60.68 59.42 45.82 29.45 23.34 18.48 14.35 14.94 13.14 11.64

Ours∗ + Square 61.24 55.64 46.17 28.26 28.08 23.95 13.34 15.39 12.90 10.73
Ours∗ + Exp 60.28 53.05 50.73 29.42 27.26 22.01 12.01 15.15 13.02 12.07

Ours∗ + Hinge 61.98 59.61 46.41 29.53 23.53 18.64 14.42 15.08 13.26 11.74

Table 2: Performance comparison on F1-metric.

For our method, we report the F1-metric with and without
learning decision thresholds, denoted as Ours∗ and Ours,
respectively. We have the following observations from Tab.1
and 2: 1). Our method shows great superiority in terms of
both F1-metric and AUCµ, which validates the effectiveness
of the proposed framework in promoting AUCµ. 2). Com-
pared with MAUC in the perspective of F1, ours outperforms
MAUC with a large margin in most cases. This supports
our claim that AUCµ taking scoring and decision thresholds
into consideration simultaneously, thus learning with AUCµ

could significantly promote the classification performance.
3). The AUC-based methods are usually outperforms other
competitors. We attribute this to insensitivity of AUC to la-
bel distributions and argue AUC-based methods are more
suitable for imbalance learning.

Sensitivity Analysis
To study sensitivity of our method to hyperparameters, we
conduct a series of empirical studies. Specifically, we study
two key hyperparameters: the hyperparameter a control-
ling surrogate losses and the number of warm-up epochs
K. We conduct experiments by grid searching, where
K is set in {1, 5, 10, 15, 20, 25, 30, 35, 50, 45}, a is set
in {0.8, 1.0, 1.25, 1.66, 2.0, 2.5} for the Square loss and
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. Afterward, we study the effect
of a hyperparameter by fixing the other one. The results are
shown in Fig.2, where the horizontal and vertical axis repre-
sent the hyperparameters, the corresponding F1-Metric, re-
spectively. The length of each box shows the variation of the
corresponding parameter.

Effect of a For a of Square Loss, one can observe a clear
trend from Fig.2 (b) that the classifier achieves optimal per-

formance when a is around 1 and 1.25. For a of Exp Loss,
the trend is not so clear. As Fig.2 (d) shown, when we tune
a in [0.5, 3.0], F1-metric do not show any obvious change.
The difference comes from the gradient of Square Loss and
Exp Loss. The gradient of Square Loss at 0 is very sensitive
to a, so choosing the appropriate a is crucial for training.
While it does not affect gradient of Exp Loss at 0 that much.

Effect of K According to Fig.2 (a) and (c), the number
of warm-up epochs K has a huge impact on training. If K
is too small, the classifier cannot be trained well. For both
surrogate losses, increasing K from 1 to 30 makes a great
improvement in terms of F1-metric. This demonstrates the
importance of the warm-up phase for AUC training.

Conclusion
In this work, we argue that MAUC metric only considers
the ranking of a classifier, leaving the classification deci-
sion process unconsidered. This leads to the phenomenon
that a classifier enjoying a high MAUC may have poor clas-
sification ability. We turn to study another form of multi-
class AUC, AUCµ. Through simple analysis, we find that
AUCµ is more consistent with the prediction of a classifier.
Inspired by this, we propose an empirical surrogate risk min-
imization framework to optimize AUCµ directly. The main
challenge of optimizing AUCµ is the 0-1 loss is not differen-
tiable. To overcome this difficulty, we replace 0-1 loss with
surrogate loss. Then, we find optimizing surrogate risk of
AUCµ using some widely-used surrogate losses can lead to
Bayes optimal scorer. Moreover, we provide generalization
analysis of our training framework. Finally, experiments on
four datasets consistently show advantages of our methods.
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