
Fast Counterfactual Inference for History-Based Reinforcement Learning

Haichuan Gao1, Tianren Zhang1, Zhile Yang2,
Yuqing Guo1, Jinsheng Ren1, Shangqi Guo1,3*, Feng Chen1,4∗

1Department of Automation, Tsinghua University, Beijing, China
2School of Computing, University of Leeds, Leeds, UK

3Department of Precision Instrument, Tsinghua University, Beijing, China
4LSBDPA Beijing Key Laboratory, Beijing, China

{ghc18, zhang-tr19}@mails.tsinghua.edu.cn, sczy@leeds.ac.uk, {gyq18, rjs17}@mails.tsinghua.edu.cn,
shangqi guo@foxmail.com, chenfeng@mail.tsinghua.edu.cn

Abstract

Incorporating sequence-to-sequence models into history-based
Reinforcement Learning (RL) provides a general way to ex-
tend RL to partially-observable tasks. This method compresses
history spaces according to the correlations between historical
observations and the rewards. However, they do not adjust
for the confounding correlations caused by data sampling
and assign high beliefs to uninformative historical observa-
tions, leading to limited compression of history spaces. Coun-
terfactual Inference (CI), which estimates causal effects by
single-variable intervention, is a promising way to adjust for
confounding. However, it is computationally infeasible to di-
rectly apply the single-variable intervention to a huge number
of historical observations. This paper proposes to perform CI
on observation sub-spaces instead of single observations and
develop a coarse-to-fine CI algorithm, called Tree-based His-
tory Counterfactual Inference (T-HCI), to reduce the number
of interventions exponentially. We show that T-HCI is com-
putationally feasible in practice and brings significant sample
efficiency gains in various challenging partially-observable
tasks, including Maze, BabyAI, and robot manipulation tasks.

Introduction
Integrating historical observations into states provides a
general way to scale up Reinforcement Learning (RL) to
partially-observable tasks (Majeed and Hutter 2018). Never-
theless, a core problem in this setting is that the large scale of
history spaces (Joelle, Geoffrey, and Thrun 2003; Smith and
Simmons 2005) leads to sample-inefficient policy learning.
Prior works encode historical observations into hidden states
by sequence-to-sequence (seq2seq) models (Graves et al.
2016; Hausknecht and Stone 2015; Parisotto et al. 2020).
Seq2seq models assign high beliefs on the historical observa-
tions of high correlations with learning signals and attenuate
those with low correlation (Zhu et al. 2018b; Ramos et al.
2021; Zhang et al. 2022b). However, they do not adjust for
confounding correlations, i.e., the high correlation of uninfor-
mative historical observations induced by the biases in data
sampling, which limits their compression capability.
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Figure 1: Key-to-door example. The high correlation on TV
caused by sampling can be eliminated by do-calculus which
separates confounders (key and ball).

It is promising to mine the historical observations with
causality using Counterfactual Inference (CI) (Pearl 2013)
to eliminate confounding correlations caused by data sam-
pling. Consider the key-to-door example shown in Figure 1,
whether the agent can open the door only depends on whether
the key is collected. However, if the current sampling policy
is that when the agent starts from the key, the agent tends
to pass through the TV, then the TV will have a high cor-
relation with opening the door, i.e., p(Open |TV) = 0.88.
This is because the effect estimation is influenced by the con-
founding correlation between Key and TV. This confound-
ing can be eliminated by do-calculus (Pearl 2013) which
separates the variables (key and ball) that may cause con-
founding (i.e., the backdoor variables following backdoor
adjustment formula (Pearl 2009)) and estimates the causal ef-
fect of TV by integrating the probabilities of Open, resulting
in p(Open | do(TV)) = 0.5. Since historical observations
with causality are often relatively sparse, mining them by CI
can greatly compress history spaces.

Prior researchers perform CI on Markovian RL tasks for
feature selection (Zhang et al. 2021; Tomar et al. 2021) or
credit assignment (Mesnard et al. 2021), where the states
are Markovian. However, for history-based RL, we should
intervene for each non-Markovian observation-and-time com-
bination ot and estimate its causal effect. CI estimates causal
effects by single variable intervention, leading to high com-
putational complexity due to the large scale of historical
observations.

This paper proposes to perform CI on observation sub-
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spaces by simultaneously intervening in all historical obser-
vations belonging to an observation sub-space instead of on
a single time-specific historical observation. However, the
challenge of this CI regime lies in that multiple simultane-
ously intervened historical observations have no common
backdoor variable. To overcome this challenge, we propose
a novel step-backdoor adjustment tailored to history-based
RL to estimate the causal effect. We develop a coarse-to-fine
CI algorithm, called Tree-based History Counterfactual In-
ference (T-HCI), based on the CI on observation sub-spaces.
We prove that T-HCI exponentially reduces the number of
interventions and is computationally feasible to be combined
with RL.

We empirically verify the effectiveness of T-HCI on var-
ious popular history-based tasks and show that 1) T-HCI
substantially improves computational efficiency compared
with vanilla CI, making it computationally feasible to per-
form CI in history-based RL; 2) T-HCI eliminates confound-
ing correlations and mines semantically causal observations,
bringing significant sample efficiency gains compared with
representative seq2seq approaches.

Preliminaries
HDP. We consider a History-based Decision Process (HDP)
(Majeed and Hutter 2021) tuple ⟨O,H,A, T, P,R, γ⟩, where
O is the observation space, H is the history space, A is
the action space, T is the horizon, P (ot+1|ht, at) is the
history-action transition probability, R : H → [0, 1] is
the reward function, and γ is the discount factor. Following
commonly used benchmarks (Parisotto et al. 2020; Loynd
et al. 2020; Chen et al. 2021b), this paper assumes that
the causal effects of historical actions are reflected in his-
torical observations and denotes ht ∈ H by a sequence
of observations {o1, · · · , ot}. We denote a policy by π :
H × A → [0, 1]. Let Qπ : H×A → R denote the Q
function and Vπ : H → R denote the value function, i.e.,
Vπ(h) := Eπ

[∑T
i=t γ

i−tR(hi)
∣∣ht = h

]
. We use Ht to de-

note the history subspace containing all histories ht at time
step t. We use | · | to denote the cardinality of a set and use
Ω(·) as the complexity notation: for two non-negative se-
quences {an}, {bn}, an = Ω(bn) means that there exists a
positive constant C such that an ≤ Cbn.

Do-calculus and Backdoor Formula. In causal inference,
the random variables constituting the nodes of a causal di-
agram G can be divided into a set of covariates X :=
{X1, · · · , Xn} and a response variable Y of interest. To esti-
mate the causal effect, the intervention operation do(Xj = x)
is adopted by imposing a certain value x on one of the co-
variates Xj . Then, the causal effect of do(Xj = x) can be
estimated with the well-known backdoor formula, which sep-
arates the backdoor variables to adjust for confounders (Pearl
2013):

p
(
Y |do(Xj = x)

)
=

∫
p
(
Y |Xj = x,Xba

)
dp(Xba),

(1)
where Xba ⊆ X are the backdoor variables relative to
(Xj , Y ), if 1) Xba contains no descendant of Xj , and 2)

Xba blocks each path between Xj and Y .

Fine-Grained History Counterfactual Inference
Prior research performs CI in the setting of Markovian
RL (Seitzer, Schölkopf, and Martius 2021; Mesnard et al.
2021). This section extends CI to history-based RL by in-
vestigating dynamics changes. We treat the past observa-
tions, the current observation, and the action {ht−1, ot, at}
as covariates, where ht−1 denotes the historical observations
from o1 to ot−1, and the immediate reward and next observa-
tion {rt+1, ot+1} as response variables. We use timestamped
symbols (e.g., ot) for variables and non-timestamped sym-
bols (e.g., o) for values. Then, for any historical observation
oj(j < t), the history hj−1 meets the backdoor formula:
Proposition 1 (Fine-grained CI). Given ot and at, hj−1

satisfies the backdoor formula relative to (oj , {ot+1, rt+1})
for any historical observation oj(j < t), and the causal
effect of do(oj = o) can be estimated with

p
(
ot+1, rt+1|do(oj = o), ot, at

)
(2)

=

∫
hj−1∈Hj−1

p
(
ot+1, rt+1|oj = o, hj−1, ot, at

)
dp(hj−1).

All the proofs of the propositions and theorems are pro-
vided in Appendix C. We approximate p(hj−1) with history
distribution in the replay buffer.

A common approach of causal inference developed based
on the do-calculus is CI (Zhang et al. 2017), which performs
counterfactual intervention by assigning treatment to a certain
value to assess its effect. Following the method of (Chen et al.
2021a), we perform CI by assigning zero vectors 0 to some
values of a historical observation oj of interest. Then, the
resulting counterfactual probability is

p
(
ot+1, rt+1|do(oj = 0), ot, at

)
(3)

=

∫
hj−1∈Hj−1

p(ot+1, rt+1|oj = 0, hj−1, ot, at)dp(hj−1).

The effect of the counterfactual intervention is estimated
by comparing the counterfactual distribution p(·|do(oj =
0), ot, at) with the factual distribution p(·|oj , ot, at). For ex-
ample, in the task shown in Figure 1, the factual distribution
is that p(open|key, door) = 1 and p(open|ball, door) =
0. After setting the observation values key and ball as
zero vectors, we can get a counterfactual probability
p(open|0, door) = 0.5 × 1 + 0.5 × 0 = 0.5. The differ-
ence between the counterfactual and factual distributions is
referred to as the Average Treatment Effect (ATE) (Liu, Ma,
and Wang 2018; Pearl 2009). For simplicity, we begin by
considering that any two values o and o′ of oj are set as zero

vectors and use oo,o
′

j to denote that the observation values o
and o′ of an observation variable oj are set as zero vectors.
Then, the ATE is

ATE(oo,o
′

j ) :=

T∑
t=j+1

E oj ∈ {o, o′},
ot ∈ O, at ∈ A

(4)∣∣∣∣p(·|oj , ot, at)− p( · |do(oj = 0), ot, at
)∣∣∣∣

1
.
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Causal observations can be mined by repeating the above
CI, e.g., with the wiped-out o and o′, continually setting a new
value o′′ from oj as zero vectors (i.e., o, o′, o′′) and estimating

its corresponding ATE(oo,o
′,o′′

j ) until all observation values
inO are traversed. Values that cause ATE to be zero have no
causal effect and should be eliminated from memory.

However, performing CI on historical observations leads
to high computational complexity in complex tasks with long
time horizons and numerous observations. The time span is
from 0 to T , and at each time step the observation scale is
Ω(|O|). The number of interventions has a complexity of
Ω(T · |O|), making CI computationally infeasible.

Coarse-to-Fine History Counterfactual
Inference

In this section, we introduce a coarse-to-fine CI method to
reduce the computational complexity of fine-grained CI. Our
method is based on two mild assumptions: the observations
with causality are sparse in the observation space and causal
effects are independent of time steps. Note that the two as-
sumptions hold in many popular history-based RL bench-
marks (Oh et al. 2016; Chevalier-Boisvert et al. 2019; Botea,
Müller, and Schaeffer 2002). However, the causal historical
observations are commonly not sparse in the time dimen-
sion, e.g., a key state may be observed at many time steps,
which hinders us from performing coarse-grained CI. Thus,
we aim to eliminate this redundancy in the time dimension for
causal effect estimation and, further, develop a fast CI method
through the following two steps. First, we estimate the causal
effects of observations without timestamps, which reduces
the number of interventions from Ω(T · |O|) to Ω(|O|). Sec-
ond, we perform CI on observation sub-spaces, which reduces
the number of interventions from Ω(|O|) to Ω(log|O|).

Counterfactual Inference on Observations
This section proposes a method to estimate the causal ef-
fects of observations without timestamps. We use Do(o)
to represent the interventions on all the historical observa-
tions with the value o. Let oIm := {ot1 , ot2 , · · · , otm} de-
note m historical observations with the same value, where
Im := t1, t2 · · · tm denotes m timestamps belonging to
[1, t− 1]. Since m observations at different timestamps Im
may have different causal effects, we first need to estimate
the average causal effect of the interventions at different sets
of m timestamps. Given the number of timestamps m, we
use Ξm to denote the complete collection of m time stamps.
Meanwhile, m takes values in the range [1, t− 1]. Then, the
causal effect of Do(o) is the weighted average of each causal
effect of simultaneous intervention do(oIm = o):

p
(
ot+1, rt+1|Do(o), ot, at

)
(5)

=
t−1∑
m=1

∑
Im∈Ξm

w(oIm)p
(
ot+1, rt+1|do(oIm = o), ot, at

)
,

where each weight w(oIm) is a weighting factor defined on
the histories that contain historical observations with value
o, i.e., w(oIm) = p(Im)/

∑t−1
m′=1

∑
Im′∈Ξm′ p(Im′) where

…
Condition Step-backdoor Intervention

…
Backdoor Intervention

Step 1

Step 2 …

…

Figure 2: Step-backdoor in the HDP causal diagram of inter-
vened oi and oj .

p(Im) denotes the probability of historical observations on
timestamps Im taking the value o. If each component of
the overall causal effect p(ot+1, rt+1|do(oIm = o), ot, at) is
estimated, we can obtain the overall causal effect.

However, the estimation of these components is difficult
because multiple intervened historical observations have no
common backdoor variables: as shown in Figure 2, for any
two intervened historical observations oi and oj (i < j),
a part of the backdoor variables of oj are the children of
oi, which conflicts with the backdoor formula relative to oi.
While many general adjustment formulas for single-variable
intervention exist (Pearl 2013; Chernozhukov, Fernández-
Val, and Melly 2013; Schochet 2010), for multi-variable in-
tervention, there are currently only task-specific adjustment
formulas requiring additional assumptions, such as the inde-
pendence between feature dimensions (Lu 2016b; Witte and
Didelez 2019; Lu 2016a), which do not apply to our setting.
For multiple variable interventions in the history-based RL
domain, this paper proposes a step-backdoor adjustment for-
mula to estimate the causal effect. For two variables Xi and
Xj (i < j) and a response variable Y , we consider backdoor
variables Xba

i and Xba
j relative to (Xi, Y ) and (Xj , Y ), re-

spectively. We first define the backdoor adjustment formula
for two-variable intervention as follows:

Definition 1 (Step-backdoor adjustment formula). Xs−ba
j =

Xba
j \ (X

ba
i ∪ {Xi}) is step-backdoor relative to (Xj , Y ) if

1) Xs−ba
j has no descendant of Xj , 2) Xba

i , Xi, and Xs−ba
j

block each path between Xj and Y , and 3) conditioned on
Xi and Xba

i , the distribution of Xs−ba
j is identifiable.

With the step-backdoor adjustment formula, we further
estimate the causal effects of more than two intervened vari-
ables: considering a new variable Xk intervened together
with Xi and Xj (i < j < k), then the overall causal effect
can be estimated by additionally estimating the causal ef-
fect of do(Xk = x′′) conditioned on (Xi,X

ba
i , Xj ,X

s−ba
j )

with new step-backdoor Xs−ba
k , as the following theorem:

Theorem 1. Given a set of intervened variables with differ-
ent timestamps, if every two temporally adjacent variables
meet the step-backdoor adjustment formula, then the overall
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causal effect can be estimated with

p
(
Y |do(Xi = x,Xj = x′, Xk = x′′, · · · )

)
=

∫
· · ·

∫
p
(
Y |Xba

i ,X
s−ba
j ,Xs−ba

k , · · · ,

Xi = x,Xj = x′, Xk = x′′, · · ·
)

dp(Xba
i )

dp(Xs−ba
j |Xi = x,Xba

i )

dp(Xs−ba
k |Xi = x,Xba

i , Xj = x′,Xs−ba
j ) · · ·

(6)

Here we analyze why the causal effect of do(oIm = o)
can be estimated with the step-backdoor adjustment formula.
We notice the forward nature of the causal effects in the HDP
causal diagram: an earlier historical observation has a causal
effect on the latter one, but the latter has no causal effect on
the earlier so conditions 1) and 2) in Definition 1 are satisfied.
Meanwhile, the distributions of later historical observations
conditioned on the earlier are identifiable. As shown in Figure
2, for two simultaneously intervened historical observations
oi and oj(i < j), the distributions of the step-backdoor vari-
ables (hj−1 \ hi) conditioned on do(oi = o) and hi−1 are
identifiable. For intervention do(oIm = o), we can use the
historical observations between every two adjacent interven-
tion time steps as the step backdoor. Based on this, the causal
effect of Do(o) can be calculated with the following theorem.
Theorem 2 (CI on observations). Given ot and at, the causal
effect of Do(o) can be estimated by

p
(
ot+1, rt+1|Do(o), ot, at

)
(7)

=

∫
ht−1∈Ho

t−1

p
(
ot+1, rt+1|ht−1, ot, at

)
dp(ht−1|Ho

t−1),

whereHo
t−1 denotes the history sub-space where each history

ht−1 ∈ Ho
t−1 contains at least one observation with value o.

Theorem 2 enables estimating the causal effect of observa-
tions in HDPs, which can change the number of interventions
from Ω(T · |O|) to Ω(|O|). However, this is still unsatisfying
because |O| is often large in complex tasks. In the next sec-
tion, we will introduce the CI on observation sub-spaces and
develop a coarse-to-fine CI method to exponentially reduce
the number of interventions.

Counterfactual Inference on Sub-Spaces
Based on the method proposed in the previous section, we
further exploit the sparsity of causal observations to perform
CI at different scales of observation sub-spaces. We begin
by extending Do(o) to Do(Oi), which is the simultaneous
intervention of historical observations belonging to an obser-
vation sub-spaceOi ⊆ O. We show that the causal effect can
be estimated in a similar way to Theorem 2, as follows:
Proposition 2 (CI on observation sub-spaces). Given ot and
at, the causal effect of Do(Oi) can be estimated by

p
(
ot+1, rt+1|Do(Oi), ot, at

)
(8)

=

∫
ht−1∈HOi

t−1

p
(
ot+1, rt+1|ht−1, ot, at

)
dp(ht−1|HOi

t−1),

T-HCI Environment

Replay 
Pool

action

new 

memory
 

 

Observation Space

 

new 

Figure 3: T-HCI Algorithm framework. The blue and orange
lines respectively mark the CI loop and RL loop.

whereHOi

t−1 represents the history subspace where each his-
tory ht−1 ∈ HOi

t−1 contains at least one observation belong-
ing to the observation subspace Oi.

Coarse-to-fine CI is developed by continually performing
CI on observation sub-spaces. Let OCa denote the obser-
vation sub-space with historical causality. Suppose that an
observation space is divided into Z ≥ |OCa| sub-spaces and
there are at least Z − |OCa| parts containing no causal obser-
vation. We eliminate them and continue the process: dividing
the rest observation space and carrying on CI. The process
terminates until the observation space contains less than Z
observations. This regime exponentially reduces the number
of interventions, as shown by the following proposition:
Proposition 3 (Coarse-to-fine CI). IfZ ≥ |OCa|, the number
of interventions for coarse-to-fine CI is Ω(log|O|).

Considering that Proposition 3 holds for any division
method, we choose a simple one, i.e., evenly dividing the
observation space. Proposition 3 implies a tractable com-
putational complexity, which will also be verified by some
numerical experiments in Appendix J.

Combining RL and Coarse-to-Fine
Counterfactual Inference

The coarse-to-fine CI forms a tree with depth Ω(log|O|) and
width Ω(Zlog|O|); we thus name it Tree-based History Coun-
terfactual Inference (T-HCI). This section combines T-HCI
with RL to develop a concrete algorithm, of which the struc-
ture is illustrated in Figure 3 and its details are shown in
Appendix A. Our algorithm includes two loops, the T-HCI
loop and the RL loop, which are executed alternately. In the
RL loop, an RL algorithm is performed for a certain number
of episodes, and the roll-outs are stored in a replay pool; in
the T-HCI loop, T-HCI is performed on the replay pool.

T-HCI is built on discrete observations but can also han-
dle continuous observation spaces by using observation dis-
cretization techniques such as hashing (Zhu et al. 2018a;
Hong et al. 2021; Burda et al. 2019b). The detailed obser-
vation discretization techniques are provided in Appendix
A.2. We use Ô to denote the constructed discrete observation
space, Oi to denote the current intervened observation sub-
space from Ô, and Ow to denote the observations that have
been eliminated by previous inference. We set observations
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Level-1 Maze Level-2 Maze Level-3 Maze Level-4 Maze Level-1 Jigsaw puzzle

Level-2 Jigsaw puzzleLevel-1 BabyAI Level-2 BabyAI Level-3 BabyAI Level-4 BabyAI

Figure 4: Environments of Maze, BabyAI, and Jigsaw Puzzle tasks.

from Oi ∪ Ow in ht−1 as zero vectors and get hO
i,Ow

t−1 , and
use a dynamics predictor pζ parameterized with ζ to estimate
the counterfactual distribution. Let p̂(·|ht, at) denote the fac-
tual distributions of (ot+1, rt+1) on the samples in the replay
buffer. Then, we can get the ATE by optimizing ζ with

ATE(Oi,Ow) (9)

= min
ζ

T∑
t=1

E ht ∈ Ht

at ∈ A

∣∣∣∣pζ(·|hOi,Ow

t−1 , ot, at)− p̂(·|ht, at)
∣∣∣∣
1
.

As samples increase, the empirically constructed obser-
vation space and the estimated ATE will approach the true
space and the true value, respectively. In practice, ATE can be
estimated by inverse dynamics to avoid the reconstruction of
high-dimensional observations p(at|ht, ot+1) (Pathak et al.
2017; Jordan and Rumelhart 1992; Sun et al. 2019; Burda
et al. 2019a).Appendix A.2 shows the detailed derivation of
ATE, as well as the techniques for further speeding up CI.

If Oi includes observations with causality, ATE cannot be
optimized to zero; otherwise, the ATE will approach zero. A
threshold ξ is set to determine whether an ATE is significant.
If ATE≤ ξ, Oi are assigned to the set of observations Ow

without causality, i.e., Ow ← Ow ∪ Oi. Based on Ow, we
can construct a memory of causal historical observations.
The memory for policy learning is realized recurrently with
a gate function Gateϑ parameterized by ϑ, with Gateϑ(oj)
taking value 1 if oj belongs to Ow and 0 otherwise. The gate
function is trained with the following loss function:

LGate(ϑ) =
1

|Ô|

∑
o∈Ô

|Gateϑ(o)− I(o ∈ Ow)|, (10)

where I(·) is the indicator function. Policy learning is built
on the memories of causal historical observations, which are
constructed by a function mapping ϕ : {o0, · · · , ot−1, ot}
7→ {Gate(o0) ⊖ o0, · · · ,Gate(ot−1) ⊖ ot−1, ot}, w.r.t. ϕ :
h 7→ ψ. The operator ⊖ denotes whether oj is removed: oj

is removed when Gate(oj) = 1 and retained vice versa. We
name ψ as causal memory. The Gateϑ leads to a parameter-
ized causal mapping ϕϑ, upon which a policy πθ(at|ϕϑ(ht))
parameterized by θ is built. Since causal memories are com-
pact, we use a classic LSTM model to encode them in prac-
tice. The policy is trained with three representative algo-
rithms, Deep Monte Carlo (DMC) (Sutton and Barto 2018),
A2C (Mohammad et al. 2017), and PPO (Schulman et al.
2017). The loss functions are provided in Appendix A.1.

At the cost of computational complexity, the main advan-
tage of CI is filtering information without causality to greatly
compress histories for sample efficiency gaining. This can
be further verified by some theoretical analysis of sample
complexity, which is provided in Appendix C.6. In the next
section, we experimentally verify the effectiveness of T-HCI
in terms of sample efficiency and computational feasibility.

Experiments
In this section, we evaluate T-HCI on various RL tasks with
partial observability. Our experiments are designed to answer
the following three questions: 1) Can T-HCI improve the
sample efficiency of RL methods? 2) Is the computational
overhead of T-HCI acceptable in practice? 3) Can T-HCI
mine observations with causal effects?

Environmental Settings
Three popular types of tasks are used to evaluate T-HCI’s
effectiveness to adjust for confounding: Maze, BabyAI, and
Jigsaw puzzle. Maze and BabyAI tasks are commonly used
as grid-like partially-observable tests (Oh et al. 2016; Loynd
et al. 2020; Chevalier-Boisvert et al. 2019). To validate T-
HCI under different degrees of causal sparsity, we employ
four levels of Maze and BabyAI sub-tasks as shown in Fig-
ure 4. In the Maze tasks, the agent needs to navigate to the
exit. The exit location and the signposts near the entrance
are randomly generated at the beginning of each episode.
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Figure 6: Learning curves of the Jigsaw puzzle tasks.

The narrow terrain in the maze and the sparsity of causal
observations increase the confounding correlations of his-
torical observations. As for BabyAI tasks, we focus on Un-
lockToUnlock (Chevalier-Boisvert et al. 2019), including
key-to-door, key-to-box, and go-to-ball navigation tasks. In
these tasks, the agent needs to depart and return from the mid-
dle room, which increases the confounding correlations for
bottleneck states near the doors and makes memories abun-
dant and hinders sample-efficient RL. Tasks of the puzzle
domain (Kristensen, Valdivia, and Burelli 2020; Jain, Szot,
and Lim 2020; Kulharia et al. 2016; Botea, Müller, and Scha-
effer 2002; Kapturowski et al. 2019) are commonly used for
high-level challenges for partially-observable tests due to rich
environmental factors. As shown in Figure 4, we focus on
3D Jigsaw puzzle with continuous observation spaces built
on Coppeliasim (Rohmer, Singh, and Freese 2013; Bogaerts

et al. 2020; Gao et al. 2022). Its challenges are two-fold,
i.e., the uncertainty of robot grasping and inserting and the
huge scale of history spaces caused by vast observations and
long-term horizons.

Comparative Experiments
We compare T-HCI with three different styles of baselines
to evaluate the performance. The three styles of baselines
include LSTM and GRU (Hausknecht and Stone 2015) of
Gated RNN style, Neural Map (NM) (Parisotto and Salakhut-
dinov 2018) of Neural Turing Machine (NTM) style, and
Working Memory Graph (WMG) (Loynd et al. 2020) of
recurrent Transformer style. Herein, NM and WMG are re-
spectively the state-of-the-art algorithms for Maze tasks and
BabyAI tasks. More details of the baselines and parameter
settings are in Appendix E.
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Figure 7: Training times at first 10 CI rounds and training losses in some representative rounds.

Task Maze BabyAI
Level-1 Level-2 Level-3 Level-4 Level-1 Level-2 Level-3 Level-4

LSTM 277 2361 10950 13950 1560 6846 18909 22506
GRU 213 2180 9442 11080 1743 6496 16683 20442
NM 405 1043 4339 6951 1684 4725 10846 14730

WMG 363 1797 5163 5152 1723 3982 7683 10155
HCI 23146 33714 >70000 >70000 36775 64330 >70000 >70000

T-HCI 4627 6169 10663 12570 7166 10846 14822 19804

Table 1: Average training wall-clock time (second) to complete the Maze tasks and BabyAI tasks.

TAIE Level-3 Maze Level-3 BabyAI
HAI 0.38 0.32

SAI:head-1 0.17 0.16
SAI:head-2 0.15 0.17
SAI:head-3 0.11 0.18
SAI:head-4 0.19 0.16

T-HCI 0.00 0.00

Table 2: Quantitative evaluation of inference results of vari-
ous algorithms based on TAIE.

To evaluate sample complexity, we average the number
of samples over ten independent trials for each task. Figure
5 shows that T-HCI achieves the best sample efficiency in
every sub-task. The sample efficiency of T-HCI is almost
five times higher than that of advanced NM and WMG in
the complex Level 3-4 sub-tasks. The learning curves are
provided in Appendix G. Because T-HCI improves sample
efficiency at the cost of computational overhead, we propose
to apply T-HCI in robotic Jigsaw puzzle tasks where sample
overhead is more expensive. We add an oracle baseline to
compare the effect of utilizing complete observation. Figure
6 shows the learning curves for the Level 1-2 Jigsaw puzzle
tasks. Only T-HCI and Oracle can complete these complex
tasks, and T-HCI yields similar performance to Oracle, which
indicates the adaptability of T-HCI to more realistic and
complex problems. Videos of the T-HCI agent playing Jigsaw
puzzle are provided in the supplementary material.

To evaluate computational complexity, we deploy T-HCI
and vanilla HCI (CI on observations) in the Maze and BabyAI
tasks. We average the training wall-clock times over ten inde-
pendent trials for each algorithm. Figure 7 and Table 1 show
that the high computational complexity of HCI prevents its
direct use for complex tasks, while T-HCI can significantly

reduce computational complexity. Although T-HCI exhibit
higher computational complexity in Level 1-2 tasks, its com-
plexity grows slower when the task complexity increases
than the compared methods; for Level 3-4 tasks T-HCI is
more efficient than some of the baselines, showing that the
computational cost of T-HCI is acceptable.

Ablation Study and Visualization
We also compare T-HCI with the following variants to quali-
tatively and quantitatively evaluate the inference results. (1)
Oracle: a variant that leverages causal historical observations
provided by experts and needs no memory. (2) SAI: a variant
that implements reasoning with a soft-attention mechanism
(Vaswani et al. 2017) on the replay buffer instead of CI. SAI
is with four attention heads and one transformer layer for
visualization of the attention weights of these heads. (3) HAI:
a variant that mines informative observations with a hard-
attention mechanism (Xu et al. 2015) on the replay buffer.

We visualize the heatmaps of inference results in Figure 8,
which indicate that T-HCI does mine the observations with
semantic causality. In comparison, the attentions of SAI and
HAI are distracted by the uninformative historical observa-
tions, e.g., those around the doorway. As shown in Table 2,
we propose Timely Averaged Inference Error (TAIE) to quan-
titatively evaluate the difference between the inference results
and ground truth. Let Pπ∗ denote the distribution of the tra-
jectories followed by π∗, and Tτ denote the length of a trajec-

tory. We then define TAIE = Eτ∼Pπ∗

[∑Tτ
t=0 |ν(ot)−ν∗(ot)|

Tτ

]
,

where ν is the attention weight, and ν∗ is the ground truth (the
weights of observations with causal effects are 1 while others
are 0, labeled by humans). We show the average training
times and numbers of samples in Level-3 BabyAI in Figure
9. Although HAI and SAI use the replay buffer, the lack
of adjustment for confounders causes high computational
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Figure 8: Heatmaps of positions on the illustrated trajectory in the Level-3 BabyAI task, where warmer yellow
colors represent larger attention weights and the brown colors represent hard attention.
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Figure 9: Ablation study of sample complexity and
computational complexity.

and sample complexity. The sample efficiency of T-HCI ap-
proaches that of Oracle, suggesting that T-HCI infers causal
observations with a small number of samples.

Related Work
Unlike traditional sliding-window-like history-based RL (Oh
and Kaneko 2018; Mnih et al. 2015; Jiang et al. 2017), ad-
vanced seq2seq-based methods encode complete histories
into hidden states (Majeed and Hutter 2018; Hutter 2008).
The mainstream seq2seq models in the RL community can
be divided into three categories: Gated RNN (Hausknecht
and Stone 2015; Peng et al. 2018; Gao et al. 2020), NTM
(Graves et al. 2016; Yang and Rush 2017), and Attention
(Etchart, Ladosz, and Mulvaney 2019; Oriol Vinyals et al.
2019; Zhong, Rocktäschel, and Grefenstette 2019; Mishra
et al. 2018). In earlier research, NTM-style methods outper-
form Gated RNN-style methods in grid-like tasks such as
Maze (Oh et al. 2016; Parisotto and Salakhutdinov 2018).
Recently, transformer-style methods achieve good results in
many partially-observable tasks (Goyal et al. 2021; Parisotto
et al. 2020; Chen et al. 2021b,c). However, learning a com-
pact historical representation with seq2seq models remains a
challenge (Mishra et al. 2018; Oh and Kaneko 2018).

In POMDPs, the hidden states (James, Singh, and Littman
2004; Monahan 1982) in general symbolize sufficient statis-
tics for optimal decision-making, which are commonly not
observable but estimable. These hidden states correspond to
more compact subsets of histories than the causal historical
observations mined by T-HCI. To further learn a historical
representation of these hidden states, T-HCI resorts to per-
forming LSTM methods over the mined causal historical
observations. Since T-HCI filters out those historical obser-
vations without causality in a gating way, T-HCI can learn
more compact representation than encoding complete histo-
ries with seq2seq models.

Our work draws inspiration from state abstraction and CI
over time. Specifically, state abstraction methods that use CI
(Zhang et al. 2021, 2020; Suau et al. 2020) mainly analyze the
Structural Causal Model (SCM (Pearl 2013)) and construct
loss functions so that the factored states with causality can be
directly obtained through gradient descent, following the idea
of Invariant Causal Prediction (ICP (Peters, Buhlmann, and
Meinshausen 2016)). The main challenge of CI for history
abstraction compared to CI for state abstraction is that histor-
ical observations have a posteriori effect on the distributions
of multi-step dynamics transitions. Instead, our approach
counts the causal effects on future transition probabilities, as
shown in our ATE losses that are built upon the dynamics
model-invariant metrics (Tomar et al. 2021). The methods
of CI over time (Bica et al. 2020; Zhang et al. 2022a) have
been developed, and recently a few studies prove that causal
inference in partially observable environments is theoreti-
cally feasible in imitation learning domains (Kumor, Zhang,
and Bareinboim 2021; Zhang, Kumor, and Bareinboim 2020;
Etesami and Geiger 2020; de Haan, Jayaraman, and Levine
2019). However, these studies rely on sufficient expert data,
which is not available in RL domains. Besides, these methods
are built on single-variable intervention and cannot control
the computational complexity of CI when being applied to
complex RL tasks with long histories.

Discussions
One of the main challenges of history-based RL is that some
historical information is cause for confounding but is hard to
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be adjusted. T-HCI successfully combines CI with history-
based RL to effectively adjust for confounders. This tech-
nique is helpful in developing more efficient RL methods.
We show that T-HCI exponentially reduces the number of
interventions and is computationally feasible to be combined
with RL in practice. We believe this work would potentially
benefit both RL and causality communities (Bica et al. 2020;
Zhang et al. 2022a).

T-HCI is built upon two mild assumptions, i.e., the sparsity
and the time independence of the causal historical obser-
vations. To our knowledge, they hold in a wide range of
applications and benchmarks including Maze, BabyAI, and
Puzzle domains (Oh et al. 2016; Chevalier-Boisvert et al.
2019; Botea, Müller, and Schaeffer 2002). Additionally, T-
HCI has two extra limitations that can be relaxed in future
work. First, although we use historical observations to esti-
mate the hidden state instead of historical observation-action
pairs, this paper assumes that the effects of historical actions
are reflected in the historical observations, and thus the his-
torical observations are sufficient for decision-making. We
would also like to note that T-HCI can be applied to tasks
with observation-action histories by redefining the historical
observation as the historical observation-action pair. We will
test T-HCI in these tasks in future work. Second, the tech-
nique of setting certain values to zero vectors in T-HCI is an
approximate CI method followed by this paper and other re-
search (Chen et al. 2021a). Empirically, we found it effective
to assess the treatment effect in our tasks.
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