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Abstract

Determining kernel sizes of a CNN model is a crucial and
non-trivial design choice and significantly impacts its per-
formance. The majority of kernel size design methods rely
on complex heuristic tricks or leverage neural architecture
search that requires extreme computational resources. Thus,
learning kernel sizes, using methods such as modeling kernels
as a combination of basis functions, jointly with the model
weights has been proposed as a workaround. However, pre-
vious methods cannot achieve satisfactory results or are in-
efficient for large-scale datasets. To fill this gap, we design
a novel efficient kernel size learning method in which a size
predictor model learns to predict optimal kernel sizes for a
classifier given a desired number of parameters. It does so
in collaboration with a kernel predictor model that predicts
the weights of the kernels - given kernel sizes predicted by
the size predictor - to minimize the training objective, and
both models are trained end-to-end. Our method only needs
a small fraction of the training epochs of the original CNN
to train these two models and find proper kernel sizes for it.
Thus, it offers an efficient and effective solution for the kernel
size learning problem. Our extensive experiments on MNIST,
CIFAR-10, STL-10, and ImageNet-32 demonstrate that our
method can achieve the best training time vs. accuracy trade-
off compared to previous kernel size learning methods and
significantly outperform them on challenging datasets such
as STL-10 and ImageNet-32. Our implementations are avail-
able at https://github.com/Alii-Ganjj/EffConv.

Introduction
Convolutional neural network (CNNs) have consistently
shown top performance in image classification tasks in the
last decade (Krizhevsky, Sutskever, and Hinton 2012; Si-
monyan and Zisserman 2015; Szegedy et al. 2016; He et al.
2016; Liu et al. 2022b). They consist of multiple layers of
convolution operators with learnable weights that, combined
with pooling layers and strided convolutions, downsample
an input image gradually. Such a design blended with nor-
malization and nonlinear layers enables them to make an in-
formation bottleneck to extract low-resolution task-relevant
information from high-resolution low-level details such as
pixels’ intensities. Despite their success, developing new
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high-accuracy architectures is a complex task involving nu-
merous hyperparameters. One of the critical design choices
that directly affects the model’s performance is the size of
the kernels for convolutional layers.

A prominent design for CNNs is to use numerous lay-
ers of blocks with predetermined kernel sizes. (Simonyan
and Zisserman 2015; Szegedy et al. 2016; He et al. 2016;
Ding et al. 2022). However, by doing so, the network’s
predictions are not differentiable w.r.t kernel sizes. Thus,
finding the optimal setting for them (given a desired num-
ber of parameters) becomes a hyperparameter tuning prob-
lem that can be solved using cross-validation, casting it as
a constrained discrete optimization problem, or leveraging
heuristic design tricks. Cross-validation gets infeasible as
the number of combinations grows exponentially w.r.t num-
ber of layers and possible kernel sizes. The constrained op-
timization problem should be solved with techniques such
as Neural Architecture Search (NAS) (Zoph and Le 2017)
that require powerful computational resources that may not
be available for low-resourced applications. Although using
heuristic tricks (Ding et al. 2022; Dollár, Singh, and Girshick
2021; Liu et al. 2022b) to design kernel sizes has shown re-
markable results, their intuitions are mainly based on an ar-
chitecture’s performance on ImageNet (Russakovsky et al.
2015), which is shown does not necessarily translate to a
more effective model on other domains, with even negative
correlations between the metrics (Tuggener, Schmidhuber,
and Stadelmann 2021; Girish et al. 2022) in some cases.

Learning a model’s kernel sizes jointly with its weights
during training is a promising direction to overcome the
mentioned challenges. A group of methods take a set of ba-
sis functions (e.g., Delta-Diracs (Dai et al. 2017) or Gaussian
functions (Pintea et al. 2021)) and learn dilation factors for
these functions to alter a kernel size. However, dilation limits
the learned kernels’ bandwidth and hurts the model’s perfor-
mance. Recently, FlexConv (Romero et al. 2022a) proposed
to learn high-bandwidth kernels by defining them as a prod-
uct of a predicted kernel by a neural network (MLP) and a
Gaussian kernel with learnable parameters. For each convo-
lution layer, its corresponding MLP predicts a kernel with
the same spatial dimensions as the input image. Then, the
predicted kernel is multiplied by the Gaussian kernel. Fi-
nally, the resulting kernel is cropped according to a thresh-
old. Nevertheless, doing so has several key drawbacks. First,
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if we denote the input size as N , FlexConv needs to compute
N2 MLP forward passes for each convolution layer in each
iteration. Thus, its training time grows quadratically w.r.t in-
put size, making it highly inefficient even for datasets with
moderate input size such as STL-10 (Coates, Ng, and Lee
2011). It also makes using FlexConv prohibitively expensive
for very deep architectures. Secondly, cropping by thresh-
olding wastes the computations of the MLP and is an ineffi-
cient way to determine kernel sizes.

We propose a new kernel size learning method that has
significantly lower computational requirements than previ-
ous methods and, at the same time, outperforms them on
different tasks. We develop a model called size predictor
that learns to determine optimal kernel sizes for a CNN.
During training, the size predictor collaborates with a hy-
pernetwork (Ha, Dai, and Le 2017) named kernel predic-
tor. In each iteration, at first, the size predictor decides the
size of kernels for the CNN. Then, the kernel predictor adap-
tively predicts kernel weights given the specified sizes by the
size predictor. This scheme prevents wasting computations
by the kernel predictor that is happening in FlexConv after
cropping. Moreover, our method needs orders of magnitude
lower forward passes during training, making our method
dramatically faster than FlexConv. Finally, the weights of
both models are optimized to minimize the classification ob-
jective while keeping the parameter count of the CNN at the
desired number. By doing so, our method can find a high-
performance configuration for kernel sizes of a CNN with
a small fraction of training epochs needed to train it from
scratch. After finding a proper configuration, we discard the
size predictor as well as kernel predictor and train the re-
sulting CNN with the same training settings as the original
CNN. Therefore, our method is able to discover and train a
high accuracy setting for the kernel sizes with much lower
computations than other methods. Our experimental results
on MNIST, CIFAR-10, STL-10, and ImageNet-32 demon-
strate that our method consistently shows better accuracy vs.
training time trade-off compared to other kernel size learn-
ing methods, even outperforming them in both metrics in
most cases. We summarize our contributions as follows:

• We introduce a novel kernel size learning method for
CNNs that requires a significantly lower computational
budget than existing methods.

• We design a size predictor model that is trained jointly
with a kernel predictor model to predict optimal kernel
sizes of a classifier. Training these models requires only
a small fraction of the training epochs of the CNN.

• Our experiments on several benchmark datasets illustrate
that our method can achieve more competent architec-
tures in much lower training epochs than other kernel
size learning methods, providing an efficient and effec-
tive solution for the kernel size learning problem.

Related Works
Innovation of novel performant CNN architectures for dif-
ferent applications is a complicated task consisting of nu-
merous factors. One of the crucial factors is determining
kernel sizes for convolution layers. Most of the proposed

ideas design architectures consisting of multiple layers with
fixed preset sizes. Early works (Krizhevsky, Sutskever, and
Hinton 2012; Simonyan and Zisserman 2015; Szegedy et al.
2016; He et al. 2016) use blocks with kernels of sizes 1-7px.
The main downside of using fixed architectures is that the
training objective will not be differentiable w.r.t kernel sizes.
Thus, an optimal setting should be found by cross validation,
solving a constrained discrete optimization, or developing
heuristic design tricks. However, the number of potential ar-
chitectures increases exponentially w.r.t the number of lay-
ers and kernel sizes range, making cross validation imprac-
tical. The high number of possible architectures also trans-
lates into a vast search space for NAS methods (Zoph and Le
2017; Tan and Le 2019; Howard et al. 2019; Han et al. 2020)
used to solve the constrained discrete optimization problems
for finding optimal kernel sizes. Thus, NAS methods require
an extreme computation budget to find the desired configu-
ration. Using heuristics to design kernel sizes has shown sig-
nificant results recently (Dollár, Singh, and Girshick 2021;
Liu et al. 2022b; Ding et al. 2022; Liu et al. 2022a). Re-
pLKNet. (Ding et al. 2022) introduces five guidelines to de-
sign CNNs with large kernel sizes up to 31px. It uses small
kernels parallel to large ones and achieves comparable re-
sults to Swin Transformer (Liu et al. 2021). ConvNeXt (Liu
et al. 2022b) follows the design of Swin Transformer to
develop large kernel CNNs. However, these models’ intu-
itions and design tricks mainly rely on improving the Top-1
accuracy of the resulting architectures on ImageNet (Rus-
sakovsky et al. 2015). Thus, their superior accuracy on Im-
ageNet may not reflect on other domains, as shown by re-
cent studies (Tuggener, Schmidhuber, and Stadelmann 2021;
Girish et al. 2022).

Learning kernel sizes during training can alleviate the
weaknesses for predesigned architectures. Deformable Con-
vNets (Dai et al. 2017) learn offsets for each pixel of a fil-
ter to obtain deformable kernels. Also, (Pintea et al. 2021;
Tomen, Pintea, and Van Gemert 2021) model kernels as
a learned combination of Gaussian derivative filters with
a tunable variance parameter to control its effective size.
OFS-CNN (Han et al. 2018) use learnable padding oper-
ations, and (Shelhamer, Wang, and Darrell 2019; Xiong
et al. 2020; Tabernik, Kristan, and Leonardis 2020) model
filters as learnable dilated Gaussian functions to learn ker-
nel sizes. Yet, dilated basis functions/kernels result in ker-
nels with limited bandwidths, restricting the final model’s
performance. Recently, FlexConv (Romero et al. 2022a), in-
spired by continuous kernel convolutions (Wang et al. 2018;
Shi et al. 2020; Thomas et al. 2018; Schütt et al. 2017; Si-
monovsky and Komodakis 2017; Romero et al. 2022b), pro-
posed to model kernels of a CNN as a product of a ker-
nel predicted by a continuous function (implemented by a
MLP) and a learned Gaussian kernel. They train a separate
MLP and Gaussian kernel for each kernel. The MLP pre-
dicts kernels with the same resolution of an input. Then, the
Gaussian kernel is multiplied with it, and the resulting ker-
nel is cropped using a tunable threshold. Nevertheless, such
scheme requires multiple forward passes and the cropping
method wastes computations. Our method can effectively
overcome these limitations such that our kernel predictor
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Figure 1: Overview of our method. Our size predictor model learns to predict the kernel sizes for the classifier. It predicts soft
kernel sizes v that are rounded to integer values. Then, our adaptive weight predictor model predicts optimal kernel weights
ŵ given the predicted sizes. We modulate the predicted weights using masks ml parameterized by the soft sizes v to make the
resulting weights w differentiable w.r.t the size predictor’s weights. Finally, the weights w are used as the kernel weights of
the classifier, and the training is guided by the classification objective (Lclass) and the parameters budget loss (Lparam).

adaptively predicts kernels with sizes predicted by the size
predictor. Thus, it only needs forward passes proportional
to predicted sizes and not the size of input images, thereby
making our method much more efficient than FlexConv.

Methodology
We elaborate on different components of our method in the
following sub-sections. We show an overview of our ap-
proach in Fig. 1.

Size Predictor
We develop a size predictor model that dynamically predicts
kernel sizes during training. We implement our size predic-
tor with a GRU (Cho et al. 2014) unit followed by feed for-
ward layers. In each step, it takes a fixed input z and predicts
the kernel sizes as follows:

v = σ(fsp(z; θsp)) (1)

s = round(v) (2)

fsp represents the size predictor, and round(·) rounds the
input to its nearest integer. σ is the nonlinearity that we use
to ensure the predicted kernel sizes are in the designed range.
We implement it with σ(x) = k ∗ tanh(x/τ + b) + k + 1.
With such a design, predicted sizes in s will be in [1, 2k+1].
We set τ to enlarge the active region of tanh and prevent
the vanishing gradients problem. We choose b such that the
initially predicted sizes be close to the original design of the
architectures. Given a predicted size vector s, the number of
parameters for the resulting model will be:

ppr =

L∑
l=1

cl × cl−1 × sl × sl (3)

where cl is the number of output channels for the l-th convo-
lution layer. To regulate the size predictor to fix the param-
eter count of the classifier to the desired number pd, we use
the following objective:

Lparam =

{
log(

ppr

pd
) ppr > pd

log( pd

ppr
) Otherwise

(4)

The regularization in Eq. 4 has also been utilized for net-
work pruning (Ganjdanesh, Gao, and Huang 2022; Gao et al.
2020). As the round(·) function is not differentiable, we cal-
culate the gradients of Lparam w.r.t θsp using the Straight
Through Estimator (Bengio, Léonard, and Courville 2013).

Kernel Predictor
We use a kernel predictor that estimates proper weights for
the CNN given the kernel sizes determined by the size pre-
dictor. Our motivation for such a design is that the kernel
sizes change dynamically during training, and using a fixed
set of trainable parameters for kernel weights is challenging.
Thus, we utilize a model that can effectively adjust its out-
put size given input sizes. We implement our kernel predic-
tor with a GRU (Cho et al. 2014) block for each convolution
layer in the model. We represent the number of input/output
channels of the l-th convolution layer with cl−1/cl. Accord-
ingly, we set the output size of its corresponding GRU being
cl−1 × cl. Now, if the predicted size for this layer is sl, its
GRU can adaptively predict the weights for it by performing
sl × sl time step forward passes, predicting the weights for
each spatial dimension of the kernel one at a time:

ŵl = f l
kp(z

′
l; sl; θ

l
kp) (5)

z′l is the constant input of the GRU. Such a design remark-
ably reduces the computation needed to predict a kernel’s
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weights compared to the continuous convolution kernel of
FlexConv (Romero et al. 2022a). The reason is that our
kernel predictor needs to compute s2l time steps (forward
passes) to predict a kernel’s weights, but FlexConv requires
N2 forward passes (N is the size of the input to the CNN),
regardless of the final size of the kernel, making it extremely
inefficient even for datasets with an average input size such
as STL-10 (Coates, Ng, and Lee 2011). In addition, the train-
ing efficiency can potentially be improved by using model
parallelism algorithms (Xu, Huo, and Huang 2020).
Modulating Kernel Size in the Predicted Weights: De-
spite the efficiency of our kernel predictor in determin-
ing a kernel’s weights, its predictions are neither differen-
tiable w.r.t sl nor vl as sl only determines the number of
time step calculations. Thus, naive usage of our kernel pre-
dictor does not provide any feedback for the size predictor
model during training when using gradient-based optimiza-
tion schemes.

We propose modulating the predicted kernel size into the
predicted weights as a workaround. Inspired by adaptive at-
tention span (Sukhbaatar et al. 2019), we multiply a mask
ml parameterized by the soft kernel size vl to the predicted
weights ŵl. We design ml as:

ml(i, j) = exp(− (i− cl)
2 + (j − cl)

2

v2l
)

cl = vl/2, i, j ∈ {1, 2, · · · sl}
(6)

Finally, we apply the mask ml to the predicted weights ŵl

and use the resulting kernel wl in the classifier for training:

wl = ml ⊙ ŵl l ∈ {1, · · · , L} (7)
where ⊙ means element-wise product. We use our expo-
nential mask instead of the piece-wise linear one proposed
by (Sukhbaatar et al. 2019) as it makes all of the weights of
the resulting kernel differentiable w.r.t vl, making the gradi-
ent flow (Informatik et al. 2003) for vl easier. In contrast, in
the latter, only the weights at the edges have such property,
limiting the flow. Our mask attenuates the edges of kernels
and almost keeps the middle parts intact, encouraging the
model not to predict unnecessarily large kernels.

We train the size predictor, kernel predictor, and the pa-
rameters of the CNN to minimize the classification objec-
tive (Cross-Entropy loss) while keeping the number of pa-
rameters of the CNN at the desired budget. Thus, our final
objective is:

min
θsp,θkp,θc

L = Lclass(θsp, θkp, θc) + λLparam(θsp) (8)

θc represents the parameters of the CNN, and λ is a hyperpa-
rameter. We show in our experiments that our method only
needs a small fraction of the training epochs of a CNN to
train a size predictor for it. Then, we discard the size pre-
dictor as well as kernel predictor models and use the learned
kernel sizes for the CNN to train it with its default training
settings. We summarize our training algorithm in Alg. 1.

Experiments
In this section, at first, we provide our experimental setup.
Then, we evaluate our proposed method against baselines

Algorithm 1: Our Kernel Size Learning Algorithm
Input: Training dataset D = {(xi, yi)}Di=1; CNN fc(.; θc);
size predictor fsp(·; θsp); size predictor nonlinearity param-
eters {k, b, τ}; kernel predictor fkp(·; θkp); size learning
epochs Es; training epochs ET .
Output: CNN with learned kernel sizes and weights.
/* Learning Kernel Sizes of the CNN */

for e := 1 to Es do
1. Sample a mini-batch (x,y) from D.
2. Calculate kernel sizes s and soft predictions v of the
size predictor (Eqs. 1, 2) using fsp(·; θsp) and {k, b, τ}.
3. Calculate ŵl using the predicted sizes s and the kernel
predictor fkp(·; θkp) according to Eq. 5
4. Compute the modulating masks ml using soft predic-
tions v of the size predictor in Eq. 6.
5. Apply the masks ml to ŵl in Eq. 7 and use the result-
ing wl as the weights of the CNN.
6. Use the sampled (x,y) to calculate the classification
loss Lclass of the CNN.
7. Calculate the parameters budget loss Lparam using s
and Eq. 4
8. Compute L in Eq. 8, backpropagate the gradients w.r.t
θsp, θkp, θc, and update them.

end
/* Train the CNN with new kernel sizes */

9. Determine the optimal kernel sizes of the CNN using the
trained size predictor.
10. Initialize the CNN using the predicted kernel sizes.
11. Train the CNN for ET epochs with its standard settings.
Return: Trained CNN with new kernel sizes.

on four different tasks. Finally, we explore the behavior of
our model through two ablation studies.

Experimental Setup
Datasets: We use four datasets in our experiments:
MNIST (LeCun et al. 1998), CIFAR-10 (Krizhevsky and
Hinton 2009), STL-10 (Coates, Ng, and Lee 2011), and
ImageNet-32 (Chrabaszcz, Loshchilov, and Hutter 2017).
Architectures: We mainly focus on finding kernel sizes
for ResNet (He et al. 2016) architectures with depths in
{20, 26, 32, · · · , 56} in our experiments. We explore our
model’s performance for Wide-ResNet (Zagoruyko and Ko-
modakis 2016) for CIFAR-10 experiments as well. For all
models, we learn the kernel sizes for the residual layers and
keep the first input 3× 3 convolution kernel.
Training Details: For all architectures and datasets except
ImageNet, we train the size predictor and kernel predictor
models for 10 epochs. We do so for ImageNet-32 experi-
ments for 5 epochs. Remarkably, we found that training our
size predictor and kernel predictor models does not need hy-
perparameter tuning across architectures and datasets. We
use the AdamW optimizer (Loshchilov and Hutter 2019)
for all models for the kernel size learning stage. We use a
learning rate of 0.0001 with a weight decay of 0.001 for the
size predictor and the CNN’s parameters (the ones other than
convolution kernels such as Batch Normalization (Ioffe and
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Szegedy 2015) and Fully connected layers). For the kernel
predictor, we utilize a learning rate of 0.001 and the same
weight decay. Then, we train the resulting CNN with the
training settings of the original model following the settings
described in FlexConv (Romero et al. 2022a). For all exper-
iments, we set the size predictor nonlinearity parameters to
be (k, τ, b) = (3, 3,−0.35) so that our possible size range
will be [1, 7]. In addition, the initial values of predicted soft
kernel sizes will be close to 3, which is the original design
for ResNet (He et al. 2016) and Wide-ResNet (Zagoruyko
and Komodakis 2016) architectures. We also set the param-
eter λ = 2 for the parameters budget loss in Eq. 8.
Evaluation Metrics: We use the models’ accuracy/training
time per epoch to compare the performance/efficiency of the
models, following FlexConv (Romero et al. 2022a). We cal-
culate the time per epoch of our model as the average of
times for training epochs of the stage for learning kernel
sizes as well as training the resulting CNN from scratch. We
call our method EffConv-X/Wide-EffConv-X-Y, represent-
ing the ResNet-X/Wide-ResNet-X-Y model with the depth
X, widen factor Y, and kernel sizes learned by our method.
We provide other experimental details in supplementary.

Model Size Accuracy Time
(Sec/Epoch)

Efficient-CapsNet 0.16M 99.74±
0.0002 -

Net in Net N/A 99.53 -
VGG-5 3.65M 99.72 -

FlexNet-16 0.67M 99.7±
0.0 ∼2051

EffConv-20 (Ours) 0.66M 99.8±
0.01 35.86

Table 1: Results on the MNIST dataset.

Results
We report a mean and standard deviation of 3 runs of our
model with different random seeds for all experiments.

MNIST
We summarize results on the MNIST dataset in Tab. 1. We
compare our method with Efficient-CapsNet (Mazzia, Sal-
vetti, and Chiaberge 2021), Net in Net (Lin, Chen, and Yan
2013), VGG-5 (Kabir et al. 2022), and FlexConv. As can
be seen, our method can achieve the highest accuracy. Al-
though MNIST is a saturated benchmark, we can observe
that our method can find a performant model in much lower
training time (∼ 6× less) compared to FlexConv.

CIFAR-10
Tab. 2 represents the results of experiments on CIFAR10.
We can observe that our method can perform better than N-
JetNet (Pintea et al. 2021) and DCN (Tomen, Pintea, and
Van Gemert 2021) models with different number of param-
eters. Both of these methods model a convolution kernel
as a truncated Taylor series (called N-Jet (Jacobsen et al.

1The number is provided by the authors by correspondence.

Model Size Acc. Time
(Sec/Epoch)

N-JetNet-ALLCNN
(Pintea et al. 2021) 0.66M 89.91±

0.03 -

N-JetNet-CIFARResNet32
(Pintea et al. 2021) 0.52M 92.28±

0.26 -

DCN-σji 0.47M 89.7±
0.3 -

CKCNN-7
(Romero et al. 2022b) 0.70M 71.7 -

CKCNN-16
(Romero et al. 2022b) 0.63M 72.1±

0.2 68

CKCNNMAGNet-16
(Romero et al. 2022b) 0.67M 86.8±

0.6 102

FlexNet-3
(Romero et al. 2022a) 0.27M 90.4±

0.2 -

FlexNet-5
(Romero et al. 2022a) 0.44M 91.0±

0.5 -

FlexNetGabor-16
(Romero et al. 2022a) 0.67M 91.9±

0.2 161

FlexNet-16
(Romero et al. 2022a) 0.67M 92.2±

0.1 127

CIFARResNet-44
(He et al. 2016) 0.66M 92.83 22

CIFARResNet-44
w/ CKConv (k=3) 2.58M 86.1±

0.9 -

CIFARResNet-44
w/ FlexConv 2.58M 81.6±

0.8 -

EffConv-20 (Ours) 0.20M 91.78±
0.16

EffConv-20 (Ours) 0.50M 92.30±
0.11

EffConv-20 (Ours) 0.66M 92.35±
0.05 17.77

EffConv-32 (Ours) 0.66M 92.99±
0.02 23.82

EffConv-44 (Ours) 0.66M 93.35±
0.17 27.65

Wide-EffConv-28-1 0.66M 93.14±
0.23 15.99

Table 2: Results on the CIFAR10 dataset.

2016)) of Gaussian derivative filters to learn kernel sizes. N-
JetNet-ALLCNN shows significantly worse accuracy com-
pared to our model’s variants with 0.66M parameters. N-
JetNet-CIFARResNet32 shows higher accuracy, which is on
par with our EffConv-20 model with a similar number of
parameters, but our model has much lower depth than it.

Our method significantly outperforms CKCNN (Romero
et al. 2022b) models in terms of both accuracy and train-
ing time with a similar parameter budget. Our conjecture for
the cause of the weak results of CKCNN is that it is mainly
designed for modeling sequential data, not images.

FlexConv (Romero et al. 2022a) can obtain models with
higher accuracy models compared to DCN and CKCNN,
but it does so at the cost of higher training time per epoch.
Our method shows higher accuracy with a similar number
of parameters while having a much lower training time. In
the low parameter regime, FlexConv-3 with 0.27M parame-
ters can achieve an average of 90.4% accuracy. At the same
time, our EffConv-20 model with 0.20M parameters shows
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an average accuracy of 91.78%. In the higher parameter set-
ting, FlexNet-16 with 0.67M parameters shows lower aver-
age accuracy compared to EffConv-16 with 0.66M param-
eters while requiring more than 7× (127 vs. 17.77) train-
ing time per epoch. This result highlights the critical advan-
tage of our model, i.e., finding performant deeper models
with much lower computations than FlexConv. The cost of
training FlexConv models drastically increases with the in-
crease in the model’s depth, which prevents it from training
models deeper than 16 layers. Conversely, we show in our
ablation studies that our model can readily find proper ker-
nel sizes for much deeper models like ResNet-56. One can
also find that directly plugging CKConv and FlexConv lay-
ers into the CIFARResNet-44 model’s blocks severely de-
grades its performance while increasing its number of pa-
rameters by about 4×. In contrast, while keeping the num-
ber of parameters the same as CIFARResNet-44 (0.66M),
our EffConv-44 can find a better configuration for its ker-
nel sizes with a slight increase in its training time with-
out requiring special block designs like CKConv and Flex-
Conv. Finally, we can observe that our Wide-EffConv-28-1
can achieve an average accuracy of 93.14, which is between
EffConv-32 and EffConv-44 while requiring about half the
training time of EffConv-44. This result is congruent with
previous works (Zagoruyko and Komodakis 2016) that ob-
served that Wide-ResNet models perform similarly to deeper
ResNets while having lower training/inference time thanks
to their smaller depth.

Finally, we visualize the learned sizes and weights of the
kernels for our EffConv-20 model with 0.66M parameters in
Fig. 2. As can be seen, in contrast with FlexConv (Romero
et al. 2022a) that puts larger kernels in the deeper layers, our
model does not show such a behavior, and the largest kernel
is set in the 5th layer. We provide the optimal kernel sizes for
other architectures in supplementary.

Model Size Accuracy Time
(Sec / Epoch)

CIFARResNet-18 11.7M 81.0 14.2
FlexNet-16 0.67M 68.6 ± 0.7 ∼18002

EffConv-20 (Ours) 0.66M 73.06 ± 0.53 13.2
EffConv-20 (Ours) 0.71M 73.60 ± 0.58 14.41
EffConv-20 (Ours) 0.78M 74.02 ± 0.27 14.45

Table 3: Results on the STL-10 dataset.
STL-10
We present the results on STL-10 in Tab. 3. It is a challeng-
ing benchmark as it has a small training dataset (5k samples)
and a more extensive test set (8k samples) that can better
show the differences between methods compared to CIFAR-
10 and MNIST. As can be seen, FlexConv becomes a highly
inefficient method on STL-10 even though it has a small
training dataset. The reason is that the input images have a
size of 96px, i.e., 9× larger than 32px images in CIFAR-10.
Thus, FlexConv needs to compute 962 forward passes of the
MLP for each convolution kernel to compute its weights in
each iteration, making it require about 30 minutes to com-
plete each epoch. In contrast, thanks to our adaptive weight

2The number is provided by the authors by correspondence.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12
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Figure 2: Learned sizes (top) and weights (bottom) for the
kernels of our EffConv-20 model with 0.66M parameters on
CIFAR-10.

predictor model design, our method can successfully find
the proper kernel sizes in a significantly lower time show-
ing training time on par with the CIFARResNet-18. In addi-
tion, our method can noticeably shrink the gap between low
parameter models and the high parameter CIFARResNet-18
model. With a similar 0.66M parameter budget, EffConv-
20 can outperform FlexConv with 4.46% accuracy, and at
the same time, finding and training such a model in 136×
less time. Thus, EffConv is more practical compared to Flex-
Conv for applications with large input sizes.

Model Size Accuracy Time
(Sec / Epoch)Top-1 Top-5

CIFARResNet-32 0.53M 26.41±
0.13

49.37±
0.15 -

WRN-28-1 0.44M 32.03 57.51 -

FlexNet-5 0.44M 24.9±
0.4

47.7±
0.6 ∼ 7402

EffConv-20 (Ours) 0.50M 36.07±
0.18

60.96±
0.1 215.27

Table 4: Results on the ImageNet-32 dataset.

ImageNet-32
We provide the results on the ImageNet-32 dataset in Tab. 4.
We can find that WRN-28-1 significantly outperforms
ResNet-32, similar to the results mentioned in CIFAR-10 ex-
periments above and previously shown (Zagoruyko and Ko-
modakis 2016) in the literature. Moreover, FlexConv cannot
achieve a competitive performance compared to baselines.

7609



(a) (b) (c)

Figure 3: Results of our ablation studies.

Due to its computational inefficiency bottleneck, training
deep models on the ImageNet-32 with 1M samples is very
expensive for FlexConv. Thus, it has to resort to training a
model with only 5 layers, resulting in a limited capacity and
unsatisfactory performance. However, EffConv can train a
4× deeper model (20 layers) in 3.4× less time. With slightly
less parameters count, EffConv-20 significantly outperforms
CIFARResNet-32 with 9.66%/11.59% average top-1/top-5
accuracy. It also shows about 4%/3.4% higher average top-
1/top-5 accuracy compared to WRN-28-1.

In summary, our experiments on four benchmarks clearly
demonstrate that our method EffConv can find proper kernel
sizes for a classifier more effectively and efficiently than the
previous kernel size learning methods. It can provide a prac-
tical solution to the problem of determining kernel sizes for
a CNN classifier.

Ablation Studies
We perform two ablation experiments to explore the behav-
ior of our model.
Fixed Parameter Budget, Varying Depth: In the first
experiment, we use our model to find proper kernel
sizes for ResNet (He et al. 2016) models with depths in
{20, 26, · · · , 56} with a fixed parameter budget of 0.66M.
Fig. 3(a) demonstrates the results. The left vertical axis rep-
resents the accuracy of the resulting models, and the right
one shows the training time per epoch. We can observe that,
as expected, the accuracy and training time of the learned
model increases when we increment its depth. However,
the performance almost gets saturated from ResNet-50 to
ResNet-56 when these models should decrease their param-
eters while preserving their depth. Thus, they become thin
and deep models, so increasing their depth does not provide
noticeable performance returns. We also emphasize that our
method can readily find proper kernel sizes for deep mod-
els such as ResNet-56 while requiring ∼ 31 seconds per
epoch. At the same time, FlexConv/CKCNN (Romero et al.
2022b) require about 4×/3× more training time (see Tab. 2)
for their 16-layer models (3.5× fewer layers than ResNet-
56) and achieve much worse performance.
Fixed Depth, Varying Parameter Budget: In our second
experiment, we use a ResNet-20 model (fixed depth) and
change its desired parameter counts when we find its ker-

nel sizes with our model. We set the number of parameters
from 0.1M to 0.5M, roughly half and twice the number of
parameters of the original ResNet-20. We present the results
in Fig. 3(b). We can find that the accuracy increases with the
number of parameters, and the slope of changes is low af-
ter 0.4M parameters. Moreover, with only 0.1M parameters,
our model shows higher performance (90.24±0.05) than N-
JetNet-ALLCNN/DCN-σji (see Tab. 2), while these models
have much higher parameters. One can also notice a nonlin-
ear change in training time. It increases from 0.1M to 0.2M
but then almost remains the same from 0.2M to 0.4M despite
doubling the number of parameters. Then, again it increases
from 0.4M to 0.5M. In contrast, the training time increases
almost linearly with the number of layers (Fig. 3(a)) but with
a slope of less than one. Finally, Fig. 3(c) visualizes the ker-
nel sizes for the EffConv-20 with 0.1M/0.2M parameters. In-
terestingly, we can find that our model determines the same
size configuration for the first layers of two models that are
known to extract low-level general features such as edges,
and the models differ in deeper layers.

Conclusion
In this paper, we introduce a novel kernel size learning
method for a classifier that overcomes the computational
inefficiencies of the previous methods while outperforming
their performance. We develop a size predictor model that
learns to predict the optimal kernel sizes for the classifier
given a desired budget for its parameters’ count. We train the
size predictor using a second model called kernel predictor
that adaptively determines the kernel weights of the classi-
fier given the predicted sizes of the size predictor. Both mod-
els are guided by the classification and our parameter budget
objectives. Our new model can discover the proper configu-
ration for the kernel sizes and train the resulting model with
much lower computations compared to the previous meth-
ods. Experiments on four prominent benchmarks demon-
strate that our method outperforms the baselines in terms of
the classifier’s accuracy and significantly reduces their train-
ing time per epoch given a fixed parameter budget, showing
larger margins on more challenging tasks. Ablation studies
also reveal that our method is able to find kernel sizes for
much deeper architectures that were not feasible for base-
lines due to their inefficiencies.

7610



Acknowledgements
This work was partially supported by NSF IIS 1838627,
1837956, 1956002, 2211492, CNS 2213701, CCF 2217003,
DBI 2225775.

References
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