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Abstract

Over recent years, graph convolutional networks emerged as
powerful node clustering methods and have set state of the art
results for this task. In this paper, we argue that some of these
methods are unnecessarily complex and propose a node clus-
tering model that is more scalable while being more effec-
tive. The proposed model uses Laplacian smoothing to learn
an initial representation of the graph before applying an ef-
ficient self-expressive subspace clustering procedure. This is
performed via learning a factored coefficient matrix. These
factors are then embedded into a new feature space in such a
way as to generate a valid affinity matrix (symmetric and non-
negative) on which an implicit spectral clustering algorithm
is performed. Experiments on several real-world attributed
datasets demonstrate the cost-effective nature of our method
with respect to the state of the art.

Introduction
An attributed-graph is a type of graph that contains two in-
formation sources, a topology or structure and node- and/or
edge-level features. Under different approaches, they are
used to model a wide variety of structured data (Fettal,
Labiod, and Nadif 2023, 2022b), with applications in the
fields of recommender systems (Fan et al. 2019; Ying et al.
2018), computer vision (Satorras and Estrach 2018; Yang
et al. 2018), Natural language processing (Marcheggiani and
Titov 2017) and physical systems (Hoshen 2017).

With the advent of the Graph Convolutional Network
(GCN) (Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2016), graph related tasks such as graph repre-
sentation learning (Wu et al. 2019; Zhu and Koniusz 2021)
and graph clustering (Anton Tsitsulin and Müller 2020) have
received a lot of attention. We observe, however, that for the
task of graph clustering, few approaches (Cai et al. 2020)
based on the subspace clustering principle have been pro-
posed despite it being, at first sight, well-suited to attributed-
graph data. We argue that this is mostly due to subspace
clustering models suffering from high spatial and/or compu-
tational complexity. In a nutshell, the goal of subspace clus-
tering is to group data points according to the subspaces in
which they lie within a dataset. For example, subspace clus-
tering models that use the self-expressive property, whereby

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Coefficient Matrix 
(may not be symmetric,

may contain negative entries)

Affinity Matrix 
(symmetric with non-

negative entries)

k-means 

Spectral Clustering of the affinity matrix

Normalize Eigendecomposition

Solve an optimization
problem of the following

form

Input

Input Data Partition

Time complexity of

post-processing

Figure 1: The traditional subspace clustering pipeline. A co-
efficient matrix C is initially learned. An affinity matrix M
is then generated based on the magnitudes of C, e.g., a com-
mon choice is M = (|C| + |C⊤|)/2. Finally, a partition of
the data is created via applying spectral clustering on M.

every data point can be represented as an approximate linear
combination of other points, have to learn a square matrix
called the coefficient or self-representation matrix. This co-
efficient matrix has a size that is quadratic in the number of
points. Once this matrix is learned, an affinity matrix is con-
structed from it and spectral clustering is performed on said
affinity matrix. We can see the classical subspace clustering
pipeline in figure 1.

In this paper, we argue that subspace clustering is well-
suited to attributed-graph representations generated with
GCN-based models due the neighborhood averaging mak-
ing the data points closer and thus helping with the self-
expressiveness of the data points. To leverage this property
and in order to avoid the complexity problems associated
with traditional subspace clustering, we propose an efficient
variant to learn an initial representation of the graph be-
fore applying an efficient self-expressive subspace cluster-
ing procedure via learning a factored coefficient matrix and
then projecting these factors into a new feature space in such
a way as to generate a valid affinity matrix (symmetric with
non-negative entries) on which to perform implicit spectral
clustering. A schema for our model is available in figure
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3. To showcase the efficacy and efficiency of our proposal,
we perform extensive experimentation on six widely used
attributed-networks. We can see a preview of the results in
figure 2, these are the clustering results of our model on the
Arxiv open graph benchmark, our model yields a 14% im-
provement over the second best model in terms of perfor-
mance and 16% improvement in terms of speed. Code for
our paper can be found in 1.

This paper is organized as follows: Section 2 reviews re-
lated works. Section 3 presents the necessary previous work.
Section 4 is devoted to the proposed model and its computa-
tional complexity study. In section five, we carry out our ex-
perimental study. Finally we present our conclusion in sec-
tion 6.

Related Work
Subspace Clustering
Subspace clustering methods based on the self-expressive
property are commonly used on image data and have set
state-of-the-art results on the task of image clustering. One
of the earlier approaches was the Least-Square Regression
subspace clustering (LSR) that leverages a grouping effect
in the data. Newer models that make up the state-of-the-
art include the Elastic-net Subspace Clustering (EnSC) (You
et al. 2016) that uses a mix of l1- and l2-norm regularization,
and the Subspace Clustering through the Orthogonal Match-
ing Pursuit (SSC-OMP) (You, Robinson, and Vidal 2016)
which possesses a subspace-preserving affinity under broad
conditions. There are also deep learning approaches like the
deep Subspace clustering network (Ji et al. 2017) and but
these models have received some critique to the effect that
their good performances are the result of an ad-hoc post pro-
cessing step instead of the actual self-representation learning
process (Haeffele, You, and Vidal 2021). More recently, a
new efficiency trend has appeared, and some scalable mod-
els have also been proposed e.g. k-Factorization Subspace
Clustering (k-FSC) (Fan 2021) which was put forward as a
scalable subspace clustering model that factorizes data into
subsets via structured sparsity.

Attributed-Graph Clustering
In this paper, attributed-graph clustering refers to the pro-
cess of grouping nodes into clusters according to the graph
topology and node features. We can classify attributed-graph
clustering models into two subsets. A first one, where the
goal is to learn graph representations and then use tradi-
tional clustering models such as k-means. Examples of mod-
els that use this approach include Simplified Graph Convolu-
tion (SGC) (Wu et al. 2019) which proposes a neighborhood
averaging process that corresponds to a fixed low-pass filter,
and the Simple Spectral Graph Convolution (S²GC) which
uses a new method for the aggregation of K-hop neighbor-
hoods that is a trade-off of low- and high-pass filter bands.
(Zhu and Koniusz 2021). On the other hand, the second class
of attributed-graph clustering models proposes to include the
clustering objective into the representation learning process

1https://github.com/chakib401/sagsc
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Figure 2: Clustering accuracy scores (%) plotted against
the execution time (s) for our method and the state-of-the-
art attributed-graph clustering models on the OGBN-arXiv
dataset.

to learn better results, e.g., Graph InfoClust (GIC) (Mavro-
matis and Karypis 2021) which generates clusters by maxi-
mizing mutual information between nodes contained in the
same cluster, and Graph Convolutional Clustering (GCC)
(Fettal, Labiod, and Nadif 2022a) that performs clustering
by minimizing the difference between convolved node rep-
resentations and their reconstructed cluster representatives.

Preliminaries
Let G = (V , E ,A,X) be an undirected attributed-graph
where V is the vertex set consisting of nodes {v1, . . . , vn},
E is the set of edges that connects the nodes, A ∈ Rn×n

is a symmetric adjacency matrix where aij denotes the edge
weight between nodes vi and vj , if aij = 0 then there is
no edge between vi and vj , and X ∈ Rn×d is a node-level
feature matrix. Our goal is to partition this graph into k in-
dependent subsets in an unsupervised manner.

Graph Convolutional Networks
The Graph Convolutional Network consists in a sequence of
propagation layers. It can be formalized recursively as

H(l+1) ← σ
(
D̂−1/2ÂD̂−1/2H(l)W(l)

)
with H(0) = X

(1)

where Â = A + I is the adjacency matrix with added self-
loop the, D̂ is its diagonal matrix of degrees, σ is some ac-
tivation function and W(l) is the weight matrix of the l-th
layer. These weight matrices are optimized for some down-
stream task like semi-supervised classification, link predic-
tion, etc.

Simplified Graph Convolutional Networks
Authors in (Wu et al. 2019) argued that the non-linearities
in the GCN are superfluous and that most of its performance
comes from the feature propagation. With this, the recursive
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Figure 3: Diagram of our proposal. We have as input an attributed-graph characterized by an adjacency matrix A and a feature
matrix X. An initial representation H of the attributed-graph is learned through neighborhood propagation. Then, subspace
clustering is performed using a latent factor matrix U where C = UU⊤ is the subspace coefficient matrix that we project using
a quadratic kernel feature map Φ so that M = Φ(U)Φ(U)⊤ ≥ 0. With this we obtain the final partition by using the k-means
algorithm on Z, the first k singular vectors (not counting the first one) of D−1/2Φ(U)⊤.

definition of a p-layer GCN collapses into
H← SpXW

where S = D̂−1/2ÂD̂−1/2 is called the propagation matrix.
Here, we can see how the weights matrices collapsed into a
single weight matrix W while the graph propagation steps
collapsed into the p-th power of the propagation matrix S.

Subspace Clustering
The goal of subspace clustering is to group data points ac-
cording to the subspaces that support them. A popular for-
mulation uses the self-expressive property where it is as-
sumed that a data point can be written as a linear combi-
nation of the data points that belong to the same subspace.
A possible formulation is

min
C∈C

∥X−CX∥2 + Ω(C) (2)

where X ∈ Rn×d is a matrix of d-dimensional data points,
C ∈ Rn×n is known as the self-representation or coefficient
matrix, Ω(C) is a regularization term introduced to establish
certain properties for C e.g. to avoid trivial solutions (such
as C = I), and C is the feasible region.

Once a solution C is found, an affinity matrix is gener-
ated based on the magnitudes of the entries of C, a popular
choice for this is (|C| + |C⊤|)/2. Finally, a clustering of
the data points is obtained using some graph clustering al-
gorithm such as the spectral clustering algorithm (Shi and
Malik 2000).

Proposed Approach
In this paper, we propose the following generic formulation
for the attributed-graph subspace clustering problem

min
C∈C

∥agg(A,X)−C agg(A,X)∥2 + Ω(C) (3)

where agg is an aggregation function whose role is to merge
the two information sources the topology information and
the feature information present in the graph.

Simple Graph Convolutional Encoder
We propose to use a GCN-based encoder. More particularly,
we use the convolution operation proposed in the simplified
graph convolutional network along with the normalization
of the adjacency matrix used in (Fettal, Labiod, and Nadif
2022a)

min
C∈C

∥SpX−CSpX∥2 + Ω(C). (4)

Now that we have our initial graph representation, we can
present our clustering step.

Efficient Subspace Clustering
Learning the implicit coefficient matrix We set con-
straints on C in order to obtain a decomposition of C into
the Gramian product UU⊤ where U ∈ Rn×k is a semi-
orthogonal matrix i.e. U⊤U = I. This will allow us to sig-
nificantly speed up the subspace clustering process. Thus,
our problem becomes

min
U

∥SpX−UU⊤ SpX∥2 such that U⊤U = I.

(5)
As we can see, we have no need for any form of regulariza-
tion. This problem can be efficiently solved through a sin-
gular value decomposition of the convolved features SpX.
With this we obtain a solution C which corresponds to a
subspace coefficient matrix from which we can derive a clus-
tering of the nodes.

Learning the implicit affinity matrix Once we have a
coefficient matrix C = UU⊤, we have to derive a non-
negative matrix that reflects the magnitudes of the entries
of C. As already mentioned the common way is to com-
pute (|C| + |C⊤|)/2 but this will result in a spectral clus-
tering step which has a quadratic complexity in the number
of nodes. In this paper, we propose to use a nonnegative ker-
nel with feature map Φ to embed U into its feature space
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explicitly
M = Φ(U)Φ(U)⊤ ≥ 0. (6)

Here the feature map is applied row-wise, for example, in
our experiments, we used the quadratic kernel

M = C◦2 = (mij) = (c2ij). (7)

It is also possible to introduce a bias term b to the kernel
such as

mij = (cij + b)2.

Hence, we have implicitly derived a Gramian decomposi-
tion through Φ(U) similarly to what was done for C. This
will allow us to efficiently perform the last step which corre-
sponds to spectral clustering. Note that M is symmetric by
construction.

Spectral clustering the implicit affinity matrix Through
the previous step we can now efficiently perform the NJW
spectral clustering (Ng, Jordan, and Weiss 2002) on matrix
M by:

• Projecting the factor U using feature map Φ, i.e., Q ←
Φ(U)

• Computing Q̃ ← QD− 1
2 where D is a diagonal matrix

such that dii is the sum of M i-th row.
• Constructing Z using the left singular vectors corre-

sponding to the second to k + 1-largest singular values
of Q̃.

• Performing a clustering of the rows of Z and assigning
node i to cluster j if the i-th row of Z was assigned to
cluster j.

Complexity Analysis
Our overall algorithm is presented in algorithm 1. In what
follows, we will analyze the computational complexity of
our proposal

Graph representation learning step To compute the p-th
order graph convolution, we need O(p|E|d) operations.

Learning the implicit coefficient matrix Getting the left
singular values of the convolved data requiresO(nd log(k))
operations using the randomized singular value decomposi-
tion (Halko, Martinsson, and Tropp 2011).

Learning the implicit affinity matrix The projection
of the data using a feature kernel of dimensionality m
takes O(nm). The computation of the diagonal matrix D
and its multiplication with Q takes O(nm) operations.
The truncated singular value decomposition of Q̂ is in
O(nm log(k)). Finally, the k-means algorithm applied on
Z costs roughly O(nk2). The overall computation time of
this step O(nm log(k) + nk2).

Overall complexity. The totality of our algorithm cost
O
(
p|E|d+ n(m+ d) log(k) + nk2

)
. Generally, we have

that k << d. The dimension m generally depends on k, for
example in the case of the quadratic kernel m =

(
k+2
2

)
=

(k+2)(k+1)
2 . In other cases, when wishing to use nonnega-

tive infinite dimensional kernels such as the RBF kernel or

Algorithm 1: Scalable Attributed-Graph Subspace
Clustering (SAGSC).

Input : X data matrix, S propagation matrix, p
propagation order, k number of clusters, Φ
nonnegative kernel feature map.

Output: π partition of the nodes.
1 H← SpX;
2 Form the matrix U containing the first k left singular

vectors of H in its rows;
3 Q← Φ(U);
4 r← Q⊤1;
5 D← diag(Qr);
6 Q̂← QD− 1

2 ;
7 Form the matrix Z containing left singular vectors

corresponding to the second to k + 1-th largest
singular values of Q̂ in its rows;

8 Apply a clustering algorithm on the rows of Z to
obtain π a partition of the data;

higher order polynomial kernels, feature map approxima-
tion techniques such as Nyströem method (Zhang, Tsang,
and Kwok 2008) or the polynomial count sketch (Pham and
Pagh 2013) can be used and m becomes a variable hyper-
parameter.

In table 1, we can see how the complexity of our algorithm
compares with that of the other models. Despite our model
being using subspace clustering, it is significantly more effi-
cient than the other subspace clustering models both in terms
of computational and spatial complexity. When comparing
with the SOTA attributed-graph clustering models, we can
see that when m ∈ O(d) then our model has the same com-
plexity as them. Which means that when taking a smaller m,
e.g., m ∈ O(k), then our model should be more computa-
tionally efficient.

Experiments
In this section, we conduct experimentation to showcase the
effectiveness and efficiency of our SAGSC model.

Datasets and Metrics
In our experiments, We use six commonly used benchmark
datasets to compare the different models including three ci-
tation network datasets (ACM, DBLP (Wang et al. 2019);
PubMed (Sen et al. 2008); and Wiki (Yang et al. 2015)), an
Amazon sales dataset (Computers) (Shchur et al. 2018) and
one large scale dataset (OGBN-arXiv) (Hu et al. 2020). The
summary statistics of the datasets are shown in table 2.

We adopt three popular clustering evaluation metrics:
clustering accuracy (CA), normalized mutual information
(NMI) (Strehl and Ghosh 2002), adjusted rand index (ARI)
(Hubert and Arabie 1985).

Baseline Models and Algorithms
The following are the baselines we used in our experiments:

• k-Means will serve as the simplest baseline.
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Method Time complexity Space complexity
k-means O(ndk) O(n(k + d))
LSR O(n2k) O(n2)
EnSC O(n2k) O(n2)
SSC-OMP O(n2k) O(n2)
SGC O(p|E|d+ ndk) O(n(k + d))
S²GC O(p|E|d+ ndk) O(n(k + d))
GCC O(p|E|d+ ndk) O(n(k + d))

SAGSC O
(
p|E|d+ n(d+m) log(k) + nk2

)
O (n(k + d+m))

Table 1: Complexity of the different models. For k-FSC, m refers to the dimension of subspaces. For k-FSC, many possible
complexities are possible depending on the chosen algorithm, please see (Fan 2021) for a discussion on its complexity. For
simplicity, we suppose that the embedding dimension in SGC, S²GC and GCC is in O(k).

Dataset Nodes Edges Features Classes Imbalance
ACM 3025 16,153 1870 3 1.1
Wiki 2405 14,001 4973 17 45.1
DBLP 4057 2,502,276 334 4 1.6
Amazon Computers 13,381 259,159 767 10 17.5
Pubmed 19,717 64,041 500 3 1.9
OGBN-arXiv 169,343 1,327,142 128 40 942.1

Table 2: The datasets statistics. The imbalance is quantified via the ratio between the majority and minority classes.

• LSR is a subspace clustering model with an l2-norm reg-
ularization.

• EnSC is a subspace clustering model with an elastic net
regularization (mix of l1- and l2-norm regularization).

• SSC-OMP has a subspace-preserving affinity under
broad conditions.

• k-FSC is a scalable subspace clustering model that fac-
torizes model in subsets via structured sparsity.

• SC refers to the classical spectral clustering algorithm
applied on the original adjacency matrix of the graph.

• SGC proposes a neighborhood averaging process that
corresponds to a fixed low-pass filter.

• GIC generates clusters by maximizing mutual informa-
tion between nodes contained in the same cluster.

• S²GC proposes a new method for the aggregation of K-
hop neighborhoods that is a trade-off of low- and high-
pass filter bands.

• GCC performs clustering by minimizing the difference
between convolved node representations and their recon-
structed cluster representatives.

We use the implementations of the authors when possible.

Experimental Settings
All experiments were implemented in TensorFlow and con-
ducted on a standard computer with a 12GB memory GPU
an a RAM of 12GB. In all experiments, we ran the mod-
els ten times, and report the average performance along with
the corresponding standard deviation. We use the implemen-
tations of the authors when possible but optimized them to

run on GPU. We used hyper-parameters prescribed by au-
thors when possible. For fairness, for the remaining hyper-
parameters, we ran grid searches and reported the results
corresponding to the best accuracy for all models. For k-
FSC, we use the LARGE implementation. All results are the
averages of ten runs.

For our model, we use a quadratic kernel feature map with
a bias term equal to 1√

2
. This leads to the following kernel

feature map:

φ : Rk → R
(
k+2
2

)
x 7→ ⟨x2

k, . . . , x
2
1, xkxk−1, . . . , xkx1, xk−1xk−2,

. . . , xk−1x1, . . . , x2z1, xk, . . . , x1,
1√
2
⟩

(8)

for the power hyper-parameter, similarly to the other bench-
marks, we use a grid search over the accuracy and report the
best results. We do however propose a heuristic to adaptively
select this hyper-parameter.

Node Clustering Results
Performance Clustering performances of the different
methods are reported in tables 3 and 4. Best performances
are highlighted in bold while second best results are under-
lined. In table 3, there is a general trend that the methods that
use both A and X perform better than those that use A or X
individually, except on DBLP where they perform well. Our
model has the best performance over the three datasets with
respect to all three metrics. The GCC has the second best re-
sults in all but one case, i.e., ARI on Wiki where it is outper-
formed by S²GC. In table 4, the three datasets are of larger
sizes, our model has the best results in eight out of nine
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Method Input ACM DBLP Wiki
CA NMI ARI CA NMI ARI CA NMI ARI

k-means X 87.8 ± 0.9 61.7 ± 1.5 67.4 ± 2.1 67.9 ± 0.0 37.3 ± 0.0 31.5 ± 0.1 47.6 ± 1.4 48.6 ± 0.2 26.6 ± 0.2

LSR X 78.6 ± 0.0 43.1 ± 0.0 48.3 ± 0.0 69.4 ± 0.1 34.7 ± 0.1 36.4 ± 0.2 17.8 ± 0.5 2.8 ± 1.7 0.3 ± 0.2

EnSC X 83.8 ± 0.0 53.0 ± 0.0 58.6 ± 0.0 30.0 ± 0.1 0.8 ± 0.2 0.1 ± 0.0 47.5 ± 0.0 45.2 ± 0.2 30.2 ± 0.1

SSC-OMP X 82.1 ± 0.0 49.4 ± 0.1 55.3 ± 0.0 29.4 ± 0.1 0.4 ± 0.1 -0.1 ± 0.0 37.8 ± 8.5 34.4 ± 9.1 21.2 ± 7.9

k-FSC X 59.7 ± 7.2 25.2 ± 7.1 27.2 ± 7.2 51.3 ± 11.1 17.4 ± 7.3 17.3 ± 9.6 38.2 ± 5.1 35.6 ± 3.9 17.7 ± 4.4

SC A 36.5 ± 0.2 1.0 ± 0.2 0.7 ± 0.1 91.0 ± 0.0 73.0 ± 0.1 78.3 ± 0.1 30.7 ± 1.1 24.0 ± 0.8 6.0 ± 0.2

SGC A,X 83.7 ± 0.0 55.7 ± 0.0 58.8 ± 0.0 88.8 ± 0.0 69.5 ± 0.0 73.2 ± 0.0 51.9 ± 0.8 49.6 ± 0.2 28.6 ± 0.1

GIC A,X 90.1 ± 0.3 68.2 ± 0.6 73.2 ± 0.6 90.2 ± 0.2 72.4 ± 0.4 77.4 ± 0.3 48.0 ± 0.7 48.4 ± 0.3 31.0 ± 0.3

S²GC A,X 84.1 ± 0.1 56.8 ± 0.1 59.6 ± 0.2 88.3 ± 0.0 69.2 ± 0.0 71.9 ± 0.0 52.1 ± 1.0 52.2 ± 0.1 33.0 ± 0.4

GCC A,X 91.3 ± 0.0 71.2 ± 0.1 76.0 ± 0.1 91.8 ± 0.0 74.5 ± 0.0 80.5 ± 0.0 53.7 ± 1.4 53.5 ± 0.5 31.6 ± 1.1

SAGSC A,X 93.3 ± 0.1 75.1 ± 0.2 80.9 ± 0.1 93.1 ± 0.1 78.1 ± 0.2 83.2 ± 0.2 56.0 ± 2.1 53.5 ± 1.2 34.1 ± 2.7

Table 3: Clustering performance of the different models over ACM, DBLP and Wiki. Best results are highlighted in bold font
and second best results are underlined.

Method Input Amazon Computers PubMed OGBN-arXiv
CA NMI ARI CA NMI ARI CA NMI ARI

SGC A,X 65.5 ± 0.0 52.2 ± 0.0 45.7 ± 0.0 69.6 ± 0.0 29.3 ± 0.0 29.9 ± 0.0 34.6 ± 0.4 39.2 ± 0.1 25.2 ± 0.6

GIC A,X 46.8 ± 2.2 47.5 ± 0.9 31.3 ± 3.5 64.5 ± 0.4 26.2 ± 0.3 23.8 ± 0.4 16.0 ± 0.8 17.9 ± 0.5 5.8 ± 0.2

S²GC A,X 65.4 ± 0.0 55.4 ± 0.0 49.5 ± 0.0 71.0 ± 0.0 32.9 ± 0.0 33.7 ± 0.0 41.9 ± 0.3 45.9 ± 0.1 36.9 ± 0.5

GCC A,X 67.6 ± 0.0 56.0 ± 0.0 46.5 ± 0.0 70.5 ± 0.0 32.2 ± 0.0 33.1 ± 0.0 40.5 ± 1.7 46.8 ± 0.2 35.1 ± 2.0

SAGSC A,X 69.0 ± 1.0 58.2 ± 0.4 48.2 ± 1.8 71.1 ± 0.0 32.9 ± 0.0 34.1 ± 0.0 47.8 ± 1.7 47.1 ± 0.5 38.4 ± 1.6

Table 4: Clustering performance of the SOTA models over the larger networks; Amazon Computers, Pubmed and OGBN-arXiv.
Best results are highlighted in bold font and second best results are underlined.

Method ACM DBLP Wiki Pubmed Computers OGBN-arXiv
k-means 4.29 ± 0.7 6.05 ± 0.7 24.25 ± 0.3 - - -
LSR 20.14 ± 0.26 5.2 ± 0.64 46.55 ± 1.61 - - -
EnSC 590.31 ± 63.93 120.66 ± 0.28 232.58 ± 3.04 - - -
SSC-OMP 201.78 ± 34.8 37.1 ± 2.87 293.78 ± 9.63 - - -
k-FSC 3.72 ± 0.87 8.45 ± 0.73 34.29 ± 1.86 - - -
SC 2.15 ± 0.32 18.54 ± 1.30 2.86 ± 0.44 - - -
SGC 0.56 ± 0.13 0.19 ± 0.04 1.68 ± 0.14 1.18 ± 0.39 1.00 ± 0.11 37.30 ± 2.66

GIC 3.67 ± 0.16 268.96 ± 63.17 5.96 ± 0.66 12.0 ± 1.50 22.38 ± 1.51 155.7 ± 13.34

S²GC 0.44 ± 0.04 0.23 ± 0.06 1.56 ± 0.10 0.82 ± 0.10 1.33 ± 0.28 42.98 ± 3.10

GCC 1.73 ± 2.96 0.33 ± 0.10 1.66 ± 0.14 1.26 ± 0.11 1.92 ± 0.13 62.45 ± 6.40

SAGSC 0.40 ± 0.05 0.18 ± 0.05 1.07 ± 0.09 0.79 ± 0.05 0.88 ± 0.12 35.64 ± 2.41

Table 5: Execution time of all methods in seconds. Best results are highlighted in bold.

cases. Our model has the second best result on the remain-
ing case (ARI over Amazon Computers). Note that for NMI
over PubMed, we have a tie between S²GC and our model.
On the largest dataset OGBN-arXiv, our model shows a 14%
improvement over the second best model, S²GC.

Efficiency In table 5, we report the training times of all
the baselines over ACM, DBLP and Wiki, and report those
of the SOTA over PubMed, Computers and OGBN-arXiv.
Our model is the fastest one on all datasets. Two main obser-
vations can be made. First, our model is significantly faster

than other subspace clustering models including the more
efficient ones like k-FSC. Second, our model is as fast the
SOTA attributed-graph clustering models despite it being
based on subspace clustering which is know to be compu-
tationally heavy.

Analysis Overall, our model is as fast as the fastest
attributed-graph clustering models while consistently yield-
ing the best overall performance on all six datasets. This
shows the cost-effective nature of our model with respect
to the state of the art.
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Figure 4: Plot of the clustering accuracy (%) and the Davies-Bouldin index (Davies and Bouldin 1979) against the propagation
power.
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Figure 5: Results of the Nemenyi test where each rank repre-
sents the average rank over the CA, NMI, ARI and clustering
F1-score; on the six datasets. We see that our model achieves
the best rank, and is alone in the best performing group. We
can also see the formation of two other groups.

To back up this claim statistically, we use the Nemenyi
post-hoc test (Nemenyi 1963) to find groups of models that
perform similarly in a statistically meaningful manner, to
do this we rank the performances of the different models
w.r.t four metrics (CA, NMI, ARI, and clustering F1-score)
for each dataset. This yields 24 different rankings. We then
carry-out the test with a confidence level of 90%. Results are
illustrated in figure 5. We see the formation of three groups.
The first one containing the best performing model, SAGSC;
a second one, containing GCC, S²GC and SGC; and a third
one containing SGC and GIC.

Selection of the Power Hyper-Parameter
The selection of the power parameter is integral to the per-
formance of our model. A power that is too small can lead
to not enough neighborhood information being propagated
and a power that is too large can lead to the oversmoothing
phenomenon (Chen et al. 2020). Since in the unsupervised
context, it impossible to know for certain which power will
lead to the best performance, several heuristics for the se-
lection of this hyper-parameter have been proposed, e.g., in
(Zhang et al. 2019), authors proposed to use internal criteria
based on the information intrinsic to the data while in (Fet-
tal, Labiod, and Nadif 2022a,b) authors proposed to choose

a cutoff threshold on the change of their loss function be-
tween successive powers. Here, we propose to use an ap-
proach similar to the elbow method (Ketchen and Shook
1996) which is used for the selection of number of clusters in
the k-means algorithm. We start by choosing an interval for
the powers we wish to consider e.g. the multiples of five plus
one between one and a hundred i.e. {1, 6, . . . , 96}. Then we
choose the power that precedes the appearance of the first
pronounced ’elbow’ in the graph. if there is no elbow, we
choose the upper bound of the interval.

For example, in figure 4, we have can see a clear elbow for
ACM, DBLP when the power is equal to six so we the power
to one. In the case of Pubmed, no such elbow appears and
so we set the power 96. We see that with very simple rule,
we reach an accuracy that almost the same as the best one.
For DBLP, we retrieve the best power, while for ACM and
PubMed, the differences between the accuracy of the power
we retrieved and the best one are 0.23 and 0.02, respectively,
which is negligible. Of course, after this initial selection, a
more granular selection needs can be performed since here
we used an interval with a crude spacing of five between
consecutive powers. Note that this selection process can be
easily automated.

Conclusion

In this paper, we leveraged subspace clustering for
attributed-graphs through the means of an efficient algo-
rithm whereby after learning an initial representation of the
graph through a simple yet effective neighborhood propa-
gation step. We learn a factored coefficient matrix through
orthogonal constraints, these factors are then embedded into
a new feature space in such a way as to create a symmetric
and nonnegative affinity matrix on which an implicit spectral
clustering algorithm is performed. We additionally showed
how this overall clustering process corresponds to an im-
plicit subspace clustering algorithm. The experimentation
we conducted showed the effectiveness and efficiency of our
proposal with respect to the state of the art attributed-graph
clustering algorithms.
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