
Wasserstein Graph Distance Based on L1-Approximated Tree Edit Distance
between Weisfeiler-Lehman Subtrees

Zhongxi Fang1, Jianming Huang1, Xun Su1, Hiroyuki Kasai1,2

1 Department of Computer Science and Communications Engineering, FSE Graduate School, Waseda University
2 Department of Communications and Computer Engineering, FSE School, Waseda University

fzx@akane.waseda.jp, koukenmei@toki.waseda.jp, suxun opt@asagi.waseda.jp, hiroyuki.kasai@waseda.jp

Abstract

The Weisfeiler-Lehman (WL) test is a widely used algorithm
in graph machine learning, including graph kernels, graph
metrics, and graph neural networks. However, it focuses only
on the consistency of the graph, which means that it is un-
able to detect slight structural differences. Consequently, this
limits its ability to capture structural information, which also
limits the performance of existing models that rely on the WL
test. This limitation is particularly severe for traditional met-
rics defined by the WL test, which cannot precisely capture
slight structural differences. In this paper, we propose a novel
graph metric called the Wasserstein WL Subtree (WWLS)
distance to address this problem. Our approach leverages the
WL subtree as structural information for node neighborhoods
and defines node metrics using the L1-approximated tree edit
distance (L1-TED) between WL subtrees of nodes. Subse-
quently, we combine the Wasserstein distance and the L1-
TED to define the WWLS distance, which can capture slight
structural differences that may be difficult to detect using con-
ventional metrics. We demonstrate that the proposed WWLS
distance outperforms baselines in both metric validation and
graph classification experiments.

Introduction
In recent years, the remarkable performance improvements
of graph neural networks (GNNs) have triggered a surge of
research on their applications in various domains, such as
recommendation systems (Gao et al. 2022) and drug and
material discovery (Gaudelet et al. 2021; Takamoto et al.
2022). At the same time, a critical need has arisen for accu-
rate tools that can measure graph similarity and distance to
enable effective graph sorting and analysis. However, com-
paring graph structures is a difficult problem that has been
studied for decades (Bunke and Shearer 1998; Gao et al.
2010; Titouan et al. 2019).

Graph edit distance (GED) is a classical approach to
this problem. However, GED is NP-hard and still re-
quires high time complexity, even with its well-known
approximation algorithms. For instance, the popular A*-
Beamsearch (Neuhaus, Riesen, and Bunke 2006) has sub-
exponential time complexity. Learning-based methods such
as SimGNN (Bai et al. 2019) combine GNNs and other

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

neural networks to estimate the similarity between graphs.
However, these methods require an accurate similarity
score as a label, which limits their application scope.
Additionally, it has been pointed out that GNNs cannot
fully exploit the structural information of graphs (Errica
et al. 2020). Random-walk-based graph embeddings, such
as DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) and
Node2Vec (Grover and Leskovec 2016), provide another
way of describing structural information. Although they can
capture the regularity of node connections, they cannot han-
dle previously unseen nodes due to their use of transduc-
tive learning. Furthermore, finding appropriate parameters
for random walks can be costly.

In contrast, graph kernels (Nikolentzos, Siglidis, and
Vazirgiannis 2021) are a class of methods that specialize in
measuring the similarities of graph structures. Most of them
are based onR-convolutional theory (Haussler 1999), which
computes graph similarity by decomposing a graph into sub-
graphs, measuring the similarities between subgraphs, and
aggregating them. Some well-known graph kernels produce
more stable and competitive classification results compared
to GNNs. We aim to measure even slight differences in the
entire graph structures by correctly measuring the differ-
ences between subgraphs. To this end, we delve into one
of the most influential graph kernels, the Weisfeiler-Lehman
(WL) subtree kernel (Shervashidze and Borgwardt 2009).

The WL subtree kernel, also known as the WL kernel, is
a pioneering graph kernel that uses a neighborhood aggrega-
tion scheme. It was inspired by the WL test (Weisfeiler and
Leman 1968), which provides an approximate solution to
the graph isomorphism problem. Due to its stable and high
performance in graph classification tasks and its similarity to
the message-passing algorithm of GNNs, the WL kernel is
often used as a baseline for GNNs (Morris et al. 2019; Bod-
nar et al. 2021; Wijesinghe and Wang 2022). Furthermore,
previous studies have shown that the WL framework can
provide high accuracy (Nikolentzos, Siglidis, and Vazirgian-
nis 2021). However, we argue that the WL kernel’s measure
of graph similarity is coarse, and there are two main reasons
for this. The first problem is that the ability to describe struc-
tural information is weak. This problem stems from the fact
that WL test focuses only on the consistency of the graph,
in particular the consistency of the subgraphs composed of
a node and its neighborhood; the WL test projects different

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7539

subgraphs to different integer values using the hash function
and compares the results for subgraph matching, which re-
sults in the loss of specific information about the connections
between nodes. The second problem is that the simplicity of
the measure limits the expressive power of similarity. Graph
kernels are typically computed from two parts: a node-level
measure that measures the similarity of subgraphs and a
graph-level measure that computes the similarity of entire
graphs using subgraph similarities. The WL kernel measures
the similarity between nodes by subgraph matching and then
sums the similarities of all pairs of nodes to compute the
graph similarity. To address the first problem, Schulz et al.
(2022) proposed a relaxed WL kernel that defines the simi-
larity between subgraphs more finely by treating similar sub-
graphs as identical. To address the second problem, Togn-
inalli et al. (2019) proposed the Wasserstein WL (WWL)
distance that applies the Wasserstein distance (Peyré, Cuturi
et al. 2019) to the graph-level measure.

Motivated by the observations mentioned above, we aim
to enhance the descriptive power of structural information
without disrupting the mechanism of the WL test. Specifi-
cally, we introduce a WL subtree, a subgraph consisting of a
node and its neighborhood structure, in accordance with the
mechanism of the WL test. The WL subtree is a rooted un-
ordered tree that corresponds to the node label obtained from
the WL test. The concept of the WL subtree was originally
proposed by Shervashidze et al. (2011), and in earlier stud-
ies, WL subtrees were used only to interpret the WL kernel
and analyze the expressive power of GNNs (Sato 2020). In
this paper, however, we treat them as structural information
of node neighborhoods, which differentiates our proposed
method from others. We will discuss further details later and
summarize our key contributions as follows:

• We clarify that the WL test cannot preserve inter-node
connection information, and we demonstrate that the
metric based on the WL test is coarse.

• We introduce the WL subtree as structural information in
the neighborhood of a node, which enables us to define
the tree edit distance between nodes. To compare WL
subtrees, we use L1-approximated tree edit distance (L1-
TED) in this paper.

• We design a tree hash function and ensure that the proba-
bility of hash collision is theoretically low. Additionally,
we propose a fast algorithm for computing L1-TED us-
ing this tree hash function.

• We propose a new fine-grained graph metric, Wasserstein
Weisfeiler-Lehman Subtree (WWLS) distance, which
can numerically represent slight structural differences.

Preliminaries
Bold typeface lower-case and upper-case letters such as x
and X respectively denote a vector and a matrix. xi denotes
the i-th element of x, Xi denotes the i-th row vector of X,
and Xi,j denotes the element at (i, j) of X. Rn

+ denotes the
space of nonnegative n-dimensional vectors, and Rm×n

+ de-
notes the space of nonnegative m× n size matrices. ∆n de-
notes the probability simplex with n bins. δx denotes the

delta function at x, and δ(·, ·) denotes the Kronecker delta.
1n denotes an n-dimensional all-ones vector: (1, . . . , 1)T ∈
Rn. {. . . } denotes the set that does not allow duplication of
elements, and {{. . .}} denotes the multiset that allows ele-
ments to be repeated.A = {a1, . . . , an} = {ai}ni=1 denotes
a setA consisting of ai. F[x1, . . . , xn] denotes a polynomial
ring formed from the set of polynomials in n variables over
a field F. Z/mZ denotes a ring of integers modulo m, where
m ∈ Z and m ≥ 2. N+ denotes the set of natural numbers
starting from 1, and we define N0 = N+ ∪ {0}. The graph
data structure consists of a set of nodes V and a set of edges
E ⊆ V 2, which we write G(V,E) or simply as G. In this
paper, we consider only undirected graphs. |V | denotes the
number of nodes. NG(v) = {u ∈ V | (v, u) ∈ E} denotes
the adjacent nodes of v in G. deg(v) denotes the degree of
node v. Node v might also have a categorical label, which we
write ℓ(v) ∈ N+. T denotes a tree. In particular, it refers to
a rooted unordered WL subtree herein. For a tree T with the
root node of v, we express it as T (v). V(T), E(T), and L(T)
respectively denote the set of nodes, edges, and leaves of T .
depT (v) denotes the depth of node v in T . T1 ≃ T2 repre-
sents an isomorphism between T1 and T2. A non-root node
v ∈ V(T) has a parent, written as parent(v). A non-leaf node
v ∈ V(T) has n children, written as C(v) = {ci(v)}ni=1,
where ci(v) is the i-th child of v. A subtree T ′ of T is com-
plete if, for node v ∈ V(T), parent(v) implies v ∈ V(T ′).
We write t for such a complete subtree. In addition, for com-
plete subtree t whose root node is v, we write t(v). For other
notations about T , we use the same method for t.

Related Work
Wasserstein distance. The Wasserstein distance is de-
rived from the optimal transport (OT) problem, which at-
tempts to determine the minimum transport cost by finding
an optimal transportation plan between two probability dis-
tributions. The discrete case is defined as follows.

Let ∆m = {a ∈ Rm
+ |

∑m
i=1 ai = 1} and ∆n =

{b ∈ Rn
+ |

∑n
j=1 bj = 1} denote two simplexes of the

histogram with m and n in the same matrix space. Their
respective probability measures are α =

∑m
i=1 aiδxi

and
β =

∑n
i=1 bjδyj

. C ∈ Rm×n
+ is a distance matrix, where

Ci,j signifies the transportation cost (ground distance) be-
tween bin i and bin j. P ∈ Rm×n

+ is a transportation matrix,
where Pi,j describes the amount of mass flowing from bin
i to bin j. The minimum total transportation cost between
α and β, known as the Wasserstein distance associated with
C, is defined as

W(α, β) = min
P∈U(a,b)

m∑
i=1

n∑
j=1

Ci,jPi,j , (1)

where U(a,b) = {P ∈ Rm×n
+ | P1n = a and PT1m =

b}. The EMD (Bonneel et al. 2011) and Sinkhorn’s algo-
rithm (Cuturi 2013) are well-known methods that can solve
the problem empirically with O(n2) when m = O(n).
Weisfeiler-Lehman (WL) test and its kernel and distance
forms. The graph isomorphism problem is an NP interme-
diate problem for determining whether two finite graphs are

7540

isomorphic (Babai 2016). The WL test is an approximate so-
lution to the problem that runs in linear time with respect to
the size of the graph. It involves the aggregation of the node
labels and their adjacent nodes to generate ordered strings,
which are then hashed to generate new node labels. As the
number of iterations increases, these labels will represent a
larger neighborhood of nodes, allowing more extensive sub-
structures to be compared (Togninalli et al. 2019). The WL
test follows a recursive scheme, updating each node label
multiple times. Given G(V,E), let ℓ(k)(v) be the node label
of v ∈ V at the k-th iteration of the WL test. In particular,
ℓ(0)(v) is the original node label. Then the update formula
for each node is

ℓ(k+1)(v) = HASH
(
ℓ(k)(v), {{ℓ(k)(u) | u ∈ NG(v)}}

)
,

(2)
where HASH(·, ·) is the perfect hash that returns an integer
value. The WL subtree kernel a.k.a. WL kernel is defined as
the similarity of two graphs in terms of the inner product of
the graph feature vectors as follows:

KWL(G,G′) = φ(G,Σh)
Tφ(G′,Σh), (3)

where φ(·, ·) is the graph feature vector, and Σh =
{ℓ(0), ℓ(1), . . . } is the set of all types of node labels that ap-
pear in G and G′ with h iterations of the WL test. φ(G,Σh)
is defined as

(
CWL(G, ℓ(0)), . . . , CWL(G, ℓ(|Σh|))

)
∈

N|Σh|+1
0 , where CWL(G, ℓ(i)) is the function that returns the

number of the occurrences of ℓ(i) in G. The Wasserstein WL
(WWL) distance, as its name implies, is a graph metric that
combines the Wasserstein distance and the WL test. By ap-
plying the WL test h times to node v, we obtain a sequence
of h+1 different node labels that contains the original node
label: F(v) =

(
ℓ(0)(v), · · · , ℓ(h)(v)

)
∈ Nh+1

+ . It is called
the WL feature of node v. The categorical case of the WWL
is computed by the following optimization problem:

min
P∈U(a,b)

|V |∑
i=1

|V ′|∑
j=1

Ham (F(vi),F(vj))Pi,j , (4)

where Ham(·, ·) is the normalized Hamming distance be-
tween two WL features.

Problems in WL Kernel and WWL Distance
Structural properties of WL test. The new label gener-
ated by the WL test is an integer hash value corresponding
to the newly constructed tree, also known as the WL subtree.
This tree is a rooted unordered tree with the following prop-
erties: (i) the root of the tree is the target node of the WL test,
(ii) the tree is height-balanced, and (iii) the depth of each leaf
is equal to the number of iterations. Figure 1 illustrates the
relationship between the WL test and the corresponding WL
subtree. Note that the WL subtree contains inter-node con-
nection information, which consists of the link information
between the target node and its neighborhood. By perform-
ing the WL test h times for a node, the WL subtree cap-
tures the inter-node connection information of the subgraph
within the h-hop radius from the node. However, this criti-
cal structural information is lost because the WL test com-
presses the WL subtree into an integer value.

WL test

HASH(,)=

HASH(,)=

HASH(,)=

HASH(,)=

HASH(,)=

HASH(,)=

State 0 State 1

Graph changes

State 2State 1

WL subtree

=

=

=

=

=

=

Figure 1: Relationship between the WL test and the WL
subtree. State 0 is the initial graph. Applying the WL test
to State 0 yields State 1. Repeating this process on State 1
yields State 2. Each row in the figure shows the output of the
WL test and the corresponding WL subtree for that state.

Problem definition. This paragraph discusses the simplic-
ity of the measures in the WL kernel and the WWL distance.
While the WL kernel has been successful for graph classifi-
cation tasks, the simplicity of the measure in Eq. (3) limits its
ability to measure graph similarity. We can rewrite Eq. (3) as
KWL(G,G′) =

∑h
i=0

∑
v∈V

∑
v′∈V ′ δ(ℓ(i)(v), ℓ(i)(v′)).

This equation shows that the WL kernel evaluates the node
similarity score as either 1 or 0. Since each type of node
label represents one type of WL subtree, the WL kernel
only judges the consistency of WL subtrees. This measure
is suitable for graph isomorphism problems because they
aim to determine whether two graphs are isomorphic or not,
and this can be accomplished through binary judgments of
1 (isomorphic) or 0 (non-isomorphic). However, there are
problems when measuring graph similarity. We can consider
the following two situations. (i) First, we consider two nodes
with the same neighborhood structure. If these two nodes
have the same label, then the similarity is 1; otherwise, it is
0. In other words, if the labels do not match, the similarity
is 0, regardless of how similar the neighborhoods are. (ii)
Next, we consider two nodes with the same label but dif-
ferent neighborhood structures. In this case, the similarity is
also 0. This extreme measure is not friendly to quantifica-
tion, so the WL kernel does not measure fine-grained simi-
larity at the node and graph levels. The WWL distance, on
the other hand, uses a more advanced measure called the
Wasserstein distance to improve the measurement capabil-
ity at the graph level. However, for the categorical embed-
ding of the WWL distance, its node-level measure remains
a problem. The WWL distance takes the WL feature as a
node feature and uses the normalized Hamming distance to
define the ground distance. The dimension of the WL fea-
ture is h+1 if one runs the WL test h times. It is noteworthy
that a property of the WL test is that if two labels differ at
iteration k0 (where k0 ≥ 0), then labels obtained by subse-
quent updates at iteration k′ > k0 are also different. There-
fore, the Hamming distance between two WL features can
only take at most h + 1 different values with h iterations.
Combined with the fact that h usually takes small values,
it cannot capture the similarity between nodes with differ-

7541

Figure 2: Illustration of the notation used for the WL subtree
and complete subtree. v1 is the blue node of the initial graph
in Figure 1. We obtain T (v1) by 2 iterations of the WL test.

Figure 3: Illustration of the node embedding function. v and
v′ are the root nodes of two different WL subtrees, denoted
as T (v) and T (v′), respectively. Their feature vectors are
ϕ(T (v),U) and ϕ(T (v′),U), respectively. U denotes the set
of all types of complete subtrees for T (v) and T (v′).

ent starting labels and similar neighborhoods. Furthermore,
since the practical effect of OT depends on the ground dis-
tance, pairwise matching of two graphs may not work well.

Proposed Method
Tree Edit Distance between WL Subtrees
Instead of using node labels to define the inter-node met-
ric as in the related methods of the WL test, we use the
WL subtree to compute the distance between tree struc-
tures. Given two nodes, v and v′, in different graphs, we
define the metric between the WL subtrees of v and v′ using
the tree edit distance (TED). The TED between unordered
trees is a MAX SNP-hard problem, and this class of prob-
lems has constant-factor approximation algorithms but no
approximation schemes unless P=NP. Therefore, it usually
requires high time complexity. To solve this problem, we
use an L1-approximated TED (L1-TED) (Garofalakis and
Kumar 2005; Fukagawa, Akutsu, and Takasu 2009).

Before formally introducing our proposed algorithm, we
introduce several necessary notations using Figure 2. v1 is
the blue node in Figure 1. By performing the WL test twice,
we obtain a WL subtree rooted at v1, which we designate
as T (v1). T (v1) has seven nodes: v1, v2, . . . , v7. Among
them, v1, v4, and v7 are fundamentally the same, but we
treat all nodes differently. We denote the node-set of T (v1)
as V(T (v1)). There are seven complete subtrees in T (v1):
t(v1), t(v2), . . . , t(v7). Since t(v4) ≃ t(v7), we regard them
as identical. Thus, there are complete subtrees of six types.

3

1 2

2

4 2

1

Figure 4: Illustration of Eq (7). Red, blue, yellow, and green
nodes are labeled as 1, 2, 3, and 4, respectively. Variables
at depth 0 are denoted as x0 and x′

0, and variables at depth
1 are denoted as x1 and x′

1. The polynomial represents the
complete subtree with non-leaf nodes as roots.

L1-Approximated TED between WL subtrees. To com-
pare two nodes, v and v′, we first construct their WL sub-
trees. Next, we compute the L1 norm of the difference be-
tween the node feature vectors of T (v) and T (v′). These op-
erations are defined by the distance function dϕ: T × T →
Z/MZ, where T is the set of all types of WL subtrees and
M is a prime number. Formally, we define

dϕ (T (v), T (v
′)) = ||ϕ(T (v),U)− ϕ(T (v′),U)||1, (5)

where ϕ(·, ·) is the feature vector of the corresponding tree.
U = {t1, t2, . . . } is the set of all types of complete sub-
trees of T (v) and T (v′), and any two complete subtrees
ti, tj ∈ U are ti ̸≃ tj for i ̸= j. We define ϕ(T,U) as(
Ct(T, t1), . . . , Ct(T, t|U|)

)
∈ N|U|

0 , where Ct(T, ti) is a
function that returns the number of occurrences of ti in T .
Figure 3 presents an intuitive description of ϕ(·, ·). Using the
properties proved by Fukagawa, Akutsu, and Takasu (2009),
the true TED dTED(·, ·) between T (v) and T (v′) can be
bounded as follows:
dϕ(T (v), T (v

′))

2h+ 2
≤ dTED(T (v), T (v

′)) ≤ dϕ(T (v), T (v
′)),

(6)
where h denotes the height of T (v) and T (v′). It is notewor-
thy that the height of the WL subtree is equal to the num-
ber of iterations. This inequality implies that a smaller h has
closer dϕ(·, ·) to dTED(·, ·).
A fast algorithm for L1-TED. To compute ϕ(T (v),U)
and ϕ(T (v′),U), one must know all types of complete sub-
trees that appear in T (v) and T (v′). However, enumerating
all types of complete subtrees and searching each one from
the WL subtree requires a high computational cost. There-
fore, we propose an efficient algorithm that involves design-
ing a hash function, mapping each complete subtree to an
integer value during a post-order depth-first search (DFS) of
the WL subtree. Lemma 3 provides an upper bound on the
probability that the values of two multivariate polynomials
agree under its given conditions. Our idea is to assign a poly-
nomial to each complete subtree. If we can demonstrate that
the collision probability between polynomial values can be
significantly reduced to a negligible level, then any polyno-
mial value can serve as a hash value.

Given a WL subtree T with height h, we assume that
there are two variables for each depth except depth h in

7542

Algorithm 1: Enumerating all types of complete subtrees:
DFSWL(G, h, v, d).
Output: P(v) = {p(u) | u ∈ V(T (v))}.
Input: the set of tuples consisting of a node and its adjacent

nodes in G: G = {(u,NG(u)) | u ∈ V }; number of
iterations h; target node v; depth of WL subtree d = 0.
if d > h then

return.
end if
Add a new node v to the WL subtree.
for each u in NG(v) do
DFSWL(G, h, u, d+ 1).

end for
if d ̸= h then
p(v)← Calculate by Eq. (7).

end if
Record the hash value p(v) in P(v).

T : xi, x′
i ∈ Z/MZ for depth i ∈ {0, . . . , h − 1}. We

do not set variables at depth h because the leaves them-
selves are the simplest complete subtrees, and their node
labels already represent the type of simplest complete sub-
trees. To simplify the expression, we denote p(v) : V →
Z/MZ[x0, x

′
0, . . . , xh−1, x

′
h−1] as the polynomial of t(v)

and ci(v) as the i-th child of v. To compute the polynomials
dynamically, we traverse the WL subtree in post-order DFS.
The polynomial p(v) is defined as follows:

p(v) =
(
x′
depT (v) + ℓ(0)(v)

) n∏
i=1

(
xdepT (v) + p(ci(v))

)
,

(7)
where n denotes the number of children of v. It is important
to perform modulo M at each intermediate step of Eq. (7) to
prevent overflow. Figure 4 is an illustration of the algorithm.
For v /∈ leaf(T), the polynomial p(v) corresponding to the
t(v) has variables {xi, x

′
i | i ∈ {depT (v), . . . , h− 1}}, and

its degree is |L(t(v))|.

Theoretical guarantees for the tree hash function. We
use multiplication between xdepT (v) + p(ci) for i ∈
{1, . . . , n} to ensure that the same polynomial can be ob-
tained even if the order of children of v is different. Fur-
thermore, to consider the information of v itself, we multi-
ply by x′

depT (v) + ℓ(0)(v), where we use x′
depT (v) instead

of xdepT (v) to distinguish v from its children. We also pro-
vide theoretical guarantees for our algorithm. Proposition 1
shows that the polynomial constructed in this way has a one-
to-one correspondence with a complete subtree.

Proposition 1. Two complete subtrees t(v1) and t(v2) are
isomorphic if and only if polynomials p(v1) and p(v2) agree.

If Proposition 1 holds, then Proposition 2 gives an upper
bound on the collision probability between the integer values
of two polynomials.

Proposition 2. Let p(v1) and p(v2) be polynomials corre-
sponding to two complete subtrees t(v1) and t(v2), respec-

Algorithm 2: Computing the WWLS distance.

Output: W(µ(G), µ(G′)).
Input: two graphs G(V,E) and G′(V ′, E′).

U =
⋃

v∈V P(v)← Calculate by Algorithm 1.
U ′ =

⋃
v′∈V ′ P(v′)← Calculate by Algorithm 1.

U = U ∪ U ′.
C ← dϕ(ϕ(T (vi),U), ϕ(T (vj),U)) for all combinations
of i and j.
W(µ(G), µ(G′))← Calculate by Eq. (8).
returnW(µ(G), µ(G′)).

tively. Then, the upper bound of the collision probability be-
tween integer values of p(v1) and p(v2) is (|L(t(v1))| +
|L(t(v2))|)/M .

According to Proposition 2, choosing a sufficiently large
prime number M can reduce the collision probability be-
tween the inter values of two polynomials to a low enough
level. Typically, we choose M = 109+7 for 64-bit comput-
ers. To prevent hash collisions when N is large, we assign k
hash values to one complete subtree. Proposition 3 provides
lower and upper bounds on the probability of at least one
collision in generating N hashes, denoted as Pr

Hash
(N).

Proposition 3. Let ξ be the maximum number of leaves in
all complete subtrees. Then, Pr

Hash
(N) is bounded by

1−e
−N(N−1)

2Mk ≤ Pr
Hash

(N) ≤ 1−

(
1−

(
2ξ

M

)k
)N(N−1)

2

.

The proofs for the above three propositions can be found
in Proof of Propositions section.

Wasserstein Distance between Graphs
We propose a novel graph metric that combines the L1-TED
and OT to measure slight differences in structure by reflect-
ing L1-TED at the graph level. First, we consider the set U∗

of all complete subtrees obtained from two given graphs G
and G′, and then embed them into the same metric space
(N|U∗|

0 , dϕ) by computing ϕ(·) for all nodes of G and G′.
Each node of the two graphs is embedded respectively at
points x1, . . . , x|V | and y1, . . . , y|V ′|. We define two his-
tograms of a and b in the probability simplices ∆|V | and
∆|V ′|, respectively, to serve as weights for each point. We
define µ(G) =

∑|V |
i=1 aiδxi

as a discrete measure µ(G) with
weights a on the locations x1, . . . , x|V |. Similarly, we define

µ(G′) =
∑|V ′|

j=1 bjδyj . Using the above, we can define the
Wasserstein distance between µ(G) and µ(G′) as follows:

W (µ(G), µ(G′)) = min
P∈U(a,b)

|V |∑
i=1

|V ′|∑
j=1

dϕ(T (vi), T (vj))Pi,j .

(8)
We call this the Wasserstein Weisfeiler-Lehman Subtree
(WWLS) distance. The computation procedure is summa-
rized in Algorithm 2.

7543

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0
Random graph #1

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0
Random graph #2

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0
Cycle graph #1

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0
Cycle graph #2

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0
Grid graph #1

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0
Grid graph #2

WWLS WWL GW Laplacian (aligned) Laplacian (unaligned)

Figure 5: Results of Experiment 1. Change of the distance values with the increase of the edge noise. The vertical axis shows
the distance value. The horizontal axis shows the number of times noise is added. #1 refers to the noise type that replaces edges.
#2 refers to the noise type that adds edges. For ease of comparison, distance values are normalized by the maximum value.

Time Complexity Analysis
We summarize the above computation procedures in Algo-
rithms 1 and 2. First, we analyze Algorithm 1. The construc-
tion of the WL subtree and the computation of the hash value
can be implemented in a single DFS framework. For each
WL subtree, Eq. (7) is executed |V(T)\L(T)| times. There-
fore, the overall time complexity is O(|V(T)| + |E(T)| +
n|V(T)\L(T)|). Assuming that the average degree of the
graph is d̄, we further consider the WL subtree to be an
approximately perfect d̄-ary tree. Then, n = d̄, |V(T)| =
1−d̄(h+1)

1−d̄
, |L(T)| = d̄h and |E(T)| = |V(T)| − 1. Finally,

it takes O
((

3 d̄h+1−d̄
d̄−1

+ 1
)
|V |
)

for one graph. This is lin-
ear time complexity with respect to the size of the graph
and exponential time complexity with respect to h. Next, we
analyze Algorithm 2. For convenience, assume that |V ′| =
O(|V |), h is a constant, and τ is the average number of types
of complete subtrees present in the two WL subtrees. We
run Algorithm 1 twice and then compute C using pairwise
L1-TED. Considering that the computation of the L1 norm
requires O(τ), it takes O

(
2
(
3 d̄h+1−d̄

d̄−1
+ 1
)
|V |+ τ |V |2

)
for these computations. In addition, computing the
Wasserstein distance takes approximately quadratic time
complexity. Therefore, the overall time complexity is
O
(
2
(
3 d̄h+1−d̄

d̄−1
+ 1
)
|V |+ (τ + 1)|V |2

)
. To verify its real

runtime efficiency, we conduct runtime experiments and
show the results in Table 1. The heavy processing parts of
WWL and WWLS are written in C++, and we run programs
on macOS Monterey, Intel(R) Core(TM) i5-7360U CPU @
2.30GHz. As seen in Table 1, although WWLS is slower
than WWL, the difference is within acceptable limits.

Experiments
We conduct two types of experiments: metric validation
and graph classification experiments. In the metric vali-
dation experiments, we demonstrate the effectiveness of
the WWLS as a metric. In the graph classification ex-
periments, we confirm the adaptability of the metric to
graph classification, which represents one of its diverse
applications. All experiments are conducted in the same
environment as the runtime experiments. Source code:
https://github.com/Fzx-oss/WWLS.

WWL WWLS
MUTAG 3.46 4.42
PTC-MR 10.49 12.25
ENZYMES 65.68 108.22
IMDB-B 106.20 129.00

Table 1: Results of the Runtime Experiments. The time re-
quired to compute the distance between all pairs of graphs
for each dataset is shown below (in seconds). For MUTAG,
PTC-MR, and ENZYMES, h = 2; for IMDB-B, h = 1. The
reason for setting such h is explained in Experiment 3. The
details of the dataset are summarized in Tables 2 and 3.

Metric Validation Experiments
Experiment 1: Metric validation experiments. First, we
evaluate WWLS on metric validation experiments. A good
metric should be able to measure slight differences between
two graphs. This experiment verifies this point. We ran-
domly generate two graphs with 50 nodes and keep increas-
ing the edge noise of one of them. We adopt two methods
to add edge noise: one replaces the edge a–b with a–c, and
the other adds a new edge. We also prepare cycle and grid
graphs as synthetic datasets. As baselines, we use WWL
distance, Gromov-Wasserstein (GW) distance based on the
shortest path length (Peyré, Cuturi, and Solomon 2016), and
the Frobenius norm of the difference between Laplacian ma-
trices. For the Laplacian matrix, we prepare two matrices:
one aligned and one intentionally disordered with a substitu-
tion matrix. The ideal but impractical baseline is the one us-
ing an aligned Laplacian matrix. The graph alignment prob-
lem is another important issue in graph machine learning,
allowing easy comparison of graph structures. We set the
number of iterations as h = 2 for WWL and WWLS.

We observe changes in distance values with increasing
noise and summarize the results in Figure 5. The Frobenius
norm of the difference between aligned Laplacian matrices
shows a smooth curve with monotonic growth, as shown by
the green dashed line. Next, we examine the control group.
The unaligned Laplacian matrices fail to measure the graph
structure. WWLS succeeds in drawing a smooth curve close
to the ideal case, whereas WWL and GW show a steep curve
in which the values increase rapidly, even with small noise.
Fluctuations in the distance values of GW are particularly

7544

MUTAG PTC-MR COX2 ENZYMES PROTEINS NCI1 BZR
Graphs 188 344 467 600 1113 4110 405
Classes 2 2 2 6 2 2 2
Avg. Nodes 17.93 14.29 41.22 32.63 39.06 29.87 35.75
Avg. Degree 1.10 1.03 1.05 1.90 1.86 1.08 1.07

WL 85.75±1.96 61.21±2.28 79.67±1.32 54.27±0.94 73.06±0.47 85.76±0.22 87.16±0.97
WL-OA 86.10±1.95 63.60±1.50 81.08±0.89 58.88±0.85 73.50±0.87 85.95±0.23 87.43±0.81
WL-PM 87.77±0.81 61.41±0.81 – 55.55±0.56 – 86.40±0.20 –
WWL 87.27±1.50 66.31±1.21 78.29±0.47 59.13±0.80 74.28±0.56 85.75±0.25 84.42±2.03
GIN 84.51±1.56 56.20±2.18 82.08±0.93 39.35±1.53 71.93±0.63 77.86±0.49 83.86±0.95

WWLS 88.30±1.23 67.32±1.09 81.58±0.91 63.35±1.14 75.35±0.74 86.06±0.09 88.02±0.61

Table 2: Results of Experiment 2. Results are reported as mean ± standard deviation of ten repetitions. The best result for each
dataset is marked in bold. “–” refers to results not reported in the original paper.

IMDB-B IMDB-M COLLAB
Graphs 1000 1500 5000
Classes 2 3 3
Avg. Nodes 19.77 13.00 74.49
Avg. Degree 4.88 5.07 32.99

WL 71.15±0.47 50.25±0.72 79.02±1.77
WL-OA 74.01±0.66 49.95±0.46 80.18±0.25
WWL 74.37±0.83 – –
GIN 72.52±0.95 49.41±1.16 78.32±0.32

WWLS 75.08±0.31 51.61±0.62 82.81±0.16

Table 3: Results of Experiment 2. Reported in the same man-
ner as in Table 2. WL-PM is not included in Table 3 because
the original paper did not use social network datasets.

noticeable because the addition of noise could easily change
the length of the shortest path. We infer that both WWL and
shortest-path-length-based GW are biased toward compar-
ing the consistency of graphs.

Graph Classification Experiments
Conversion from metric to graph kernel. In the context
of the graph classification task, we adopt the approach of
previous work (Huang, Fang, and Kasai 2021) and introduce
the indefinite kernel with the following formula:

K(G,G′) = exp (−γW (µ(G), µ(G′))) , (9)

where γ is a parameter. It is not guaranteed that Eq. (9) is
symmetric positive semi-definite. Therefore, we adopt the
Krein SVM (Loosli, Canu, and Ong 2015), which can solve
SVM with kernels that are usually troublesome, such as
large numbers of negative eigenvalues.

Experiment 2: General graph classification experiments.
(i) Datasets. We use TUD benchmark datasets, specifically
selecting ten frequently used datasets, which can be grouped
into two categories: (1) Bioinformatics datasets, including
MUTAG, PTC-MR, COX2, ENZYMES, PROTEINS, NCI1,

and BZR; and (2) Social network datasets, including IMDB-
B, IMDB-M, and COLLAB. (ii) Evaluation methods. We
employ a commonly used evaluation method for graph ker-
nels (Morris et al. 2020), randomly splitting the data into a
training set (90%) and a test set (10%), with a portion of
the training set reserved for validation to tune the parame-
ters. We repeat this evaluation ten times and report the av-
erage accuracy and standard deviation. (iii) Baselines. We
compare our approach with five baselines: WL kernel, WL
Optimal Assignment kernel (WL-OA) (Kriege, Giscard, and
Wilson 2016), WL Pyramid Match kernel (WL-PM) (Niko-
lentzos, Meladianos, and Vazirgiannis 2017), WWL kernel,
and Graph Isomorphism Network (GIN) (Xu et al. 2019).
All models are related methods to the WL test. For the WL-
PM and WWL, we cite results from original papers. For
the remaining graph kernels, we cite results from the survey
paper (Borgwardt et al. 2020), and our evaluation method
is consistent with theirs. Since the original paper of GIN
does not set up a validation set, we use the same condi-
tions as (Morris et al. 2020) to make a more fair comparison.
The parameters of the WWLS are set as follows: we adjust
the iteration number h within {2, 3} for the bioinformatics
datasets and h = 1 for the social datasets due to their large
node degrees; we adjust the parameter γ of Eq. (9) within
{10−4, 10−3, . . . , 10−1}; and we adjust the regularization
parameter C of SVM within {10−3, 10−2, . . . , 103}.

We present the results in Tables 2 and 3. As results show,
the WWLS outperforms the baselines on all datasets except
COX2 and NCI1 but is in the second position. The second
experiment demonstrates the effectiveness of the WWLS on
the graph classification tasks.

Experiment 3: Maximum classification performance of
models. Graph classification experiments based on 10
times 10-fold cross-validation typically have two ways of
recording results: the mean ± standard deviation of 10 rep-
etitions, as employed in the experiment above; and mean
± standard deviation of 100 runs (10 repetitions with 10
folds). According to Morris et al. (2020), the former usu-
ally has a low standard deviation, whereas the latter has a
high standard deviation. This is due to significant variation

7545

1 2 3 4 5 6 784
85
86
87
88
89
90
91
92
93
94

MUTAG

1 2 3 4 5 6 763.0
64.5
66.0
67.5
69.0
70.5
72.0
73.5
75.0

PTC-MR

1 2 3 4 5 6 774.0
74.5
75.0
75.5
76.0
76.5
77.0
77.5
78.0

PROTEINS

1 2 3 4 5 6 742
45
48
51
54
57
60
63
66

ENZYMES

1 2 374.0
74.5
75.0
75.5
76.0
76.5
77.0
77.5
78.0

IMDB-B

1 2 377
78
79
80
81
82
83
84

COLLAB

WWLS WL WWL GIN

Figure 6: Results of Experiment 3. Classification accuracy with the number of iterations. The horizontal axis shows the number
of iterations. The vertical axis shows the accuracy (%). Shaded areas represent standard deviations (mean± standard deviation).
Datasets not used in the original paper of GIN are not shown with dashed lines.

in the graph datasets and, therefore, the parameters selected
in the validation set that do not work in the test. Thus, the
performance of models cannot be sufficiently differentiated
in the second experiment. The third experiment evaluates the
maximum performance of the WL, WWL, and WWLS. We
perform 10 times 10-fold experiments in each iteration and
search all parameters of models and SVM. The one with the
highest accuracy is regarded as the maximum performance
in that iteration. Since this evaluation is very similar to the
one adopted by GIN, we cite the best results of the origi-
nal paper as an additional baseline. We enumerate h with
{1, 2, . . . , 7}, and for γ of the WWL and WWLS, we adjust
them within {10−3, 10−2, . . . , 1}. For C of SVM, we adjust
it within {10−3, 10−2, . . . , 103}.

We summarize the results in Figure 6, which provide
a deeper understanding and insight into the performance
differences among the three methods. We observe that the
WWLS significantly outperforms the WL, WWL, and GIN
when the iteration is small, such as h = 2 or 3 for the
bioinformatics datasets and h = 1 for the social network
datasets. As h increases, all kernel methods exhibit an over-
all decreasing trend in accuracy, indicating the importance
of local structure. In terms of the trend of decreasing ac-
curacy, WWLS shows the most significant decrease, which
can be attributed to a weakening of the bounds in Eq. (6) as
h increases. For these reasons, we actually set h to a small
number, such as 1–3.

Proof of Propositions
Proof of Proposition 1
Lemma 1. Let T (v1) and T (v2) be general finite rooted
trees with roots v1 and v2, respectively. Then T (v1) is iso-
morphic to T (v2) if and only if there exists a bijection
f : C(v1) → C(v2) such that for all v ∈ C(v1) the sub-
tree rooted at v is isomorphic to the subtree rooted at f(v)
and v1 ≃ v2.

Lemma 1 can be obtained directly from the definition of tree
isomorphism (Buss 1997).

Lemma 2 (Expansion of Gauss’ Theorem (Bosch 2018)).
The polynomial ring F[x1, . . . , xn] is a unique factorization
domain (UFD) if and only if F is a UFD.

We prove Proposition 1 using Lemmas 1 and 2.

Proof. We use mathematical induction to prove two direc-
tions. For both proofs, we assume that there are two com-
plete subtrees t(v1) and t(v2) with height h1 and h2, respec-
tively. We also define notations for the proof. Let li(t(v1)) ∈
L(t(v1)) and lj(t(v2)) ∈ L(t(v2)) are the i-th and j-th
leaves of t(v1) and t(v2), respectively.

Necessity [t(v1) ≃ t(v2) → p(v1) = p(v2)]. Since
t(v1) ≃ t(v2), the heights of the two trees are equal. First,
we consider the case of nodes with a height of zero. As-
suming that li(v1) and lj(v2) have a correspondence, then
p(li(v1)) = p(lj(v2)) is true. For nodes with a height h1−1,
let us assume that t(ci(v1))) ≃ t(cj(v2)) → p(ci(v1)) =
p(cj(v2)) holds. By Lemma 1, we can obtain p(ci(v1)) =
p(f(ci(v1))). Next, we consider when the height is h1.

p(v1)

= (x′
h + ℓ(0)(v1))(xh + p(c1(v1))) · · · (xh + p(cm(v1)))

= (x′
h + ℓ(0)(v1))(xh + p(f(c1(v1)))) · · ·

(xh + p(f(cm(v1))))

= (x′
h + ℓ(0)(v1))(xh + p(c1(v2))) · · · (xh + p(cm(v2)))

= (x′
h + ℓ(0)(v2))(xh + p(c1(v2))) · · · (xh + p(cm(v2)))

= p(v2).

We have demonstrated that if the statement holds true for the
case where the height is h1−1, then it necessarily holds true
for the subsequent case where the height is h1.

Sufficiency [p(v1) = p(v2) → t(v1) ≃ t(v2)]. If t(v1)
and t(v2) have different heights, then p(v1) ̸= p(v2) because
they have different variables. Therefore, complete subtrees
have the same height if their polynomials agree. For nodes
with a height of zero, it is evident that p(li(t(v1))) =
p(lj(t(v2)) → li(t(v1)) ≃ lj(t(v2)). Moving on to nodes
with a height h1 − 1, let us assume that p(ci(v1))) =
p(cj(v2)) → t(ci(v1)) ≃ t(cj(v2)). Now, let us consider
the case that the height is h1. We assume that v1 and v2 have
m and n children, respectively. Since p(v1) = p(v2), we can
obtain

p(v1)

= (x′
h + ℓ(0)(v1))(xh + p(c1(v1))) · · · (xh + p(cm(v1)))

= (x′
h + ℓ(0)(v2))(xh + p(c1(v2))) · · · (xh + p(cn(v2)))

= p(v2).

7546

The polynomials p(v1) and p(v2) belong to the ring
(Z/MZ[x0, x

′
0, . . . , xh−1, x

′
h−1])[xh, x

′
h]. Since Z/MZ is

a field, it is a unique factorization domain (UFD) by def-
inition. By applying Lemma 2, we can also conclude that
Z/MZ[x0, x

′
0, . . . , xh−1, x

′
h−1] is also a UFD, which im-

plies that (Z/MZ[x0, x
′
0, . . . , xh−1, x

′
h−1])[xh, x

′
h] is also

a UFD. Therefore, p(v1) and p(v2) have the same ze-
ros, namely −ℓ(0)(v1),−p(c1(v1)), . . . ,−p(cm(v1)) and
−ℓ(0)(v2), −p(c1(v2)) . . . ,−p(cn(v2)), respectively. There
is a one-to-one correspondence, such that ℓ(0)(v1) =
ℓ(0)(v2), p(ci(v1)) = p(cj(v2)), although the exact indices
i and j are unknown. Thus, we can conclude that v1 = v2.
By our previous assumption for nodes with height h1 − 1,
we have established the existence of a bijection f : C(v1)→
C(v2). Furthermore, using Lemma 1, we can obtain t(v1) ≃
t(v2) and prove that it still holds for height h1.

Proof of Proposition 2
Lemma 3 (Schwartz-Zippel-Variant (Jakubowski et al.
2007)). Let P ∈ Z[x1, . . . , xn] be a (non-zero) polyno-
mial of total degree d > 0 defined over the integers Z.
Let P be the set of all prime numbers. Let r1, . . . , rn be
chosen at random from Z, and q is a prime number. Then
Pr[P (r1, . . . , rn) mod q] ≤ d/q.

The proof of Proposition 2 is given below using Lemma 3.

Proof. Assume that p(v1) and p(v2) are two polynomi-
als corresponding to two different complete subtrees t(v1)
and t(v2), respectively. Then p(v1) − p(v2) = P (X) ∈
Z/MZ[x0, x

′
0, . . . , xh−1, x

′
h−1] is a polynomial of total de-

gree d, where X ⊆ {xi, x
′
i | i ∈ {1, . . . , h− 1}}, and d ≤

|L(t(v1))| + |L(t(v2))|. Next, we determine X to compute
the value of the polynomial. If we randomly choose X from
Z/MZ. According to the Lemma 3, we can obtain

Pr(P (X) = 0) ≤ d

M
≤ |L(t(v1))|+ |L(t(v2))|

M
.

Proof of Proposition 3
Proof. We evaluate the probability of at least one hash col-
lision in generating N hash values. This problem can be
attributed to the famous “Birthday Problem” (McKinney
1966), in which the ideal is to distribute hash values uni-
formly across the given range. First, we consider this ideal
case. Since each intermediate step in Eq. (7) takes the mod-
ule of M , the hash values are mapped to Z/MZ. Therefore,
we have a space of M available hash values. When the hash
function generates a new value, the space size is reduced by
one. The probability of this case is given by

Pr
Ideal

(N)

= 1− 1

(
M − 1

M

)(
M − 2

M

)
· · ·
(
M − (N − 1)

M

)
= 1−

(
1− 1

M

)(
1− 2

M

)
· · ·
(
1− N − 1

M

)
.

Since 1 − exp(−x) ≤ x holds when x is small, we replace
the corresponding factor with 1− x ≤ exp(−x) and obtain

Pr
Ideal

(N)

≥ 1− exp

(
− 1

M

)
exp

(
− 2

M

)
· · · exp

(
−N − 1

M

)
= 1− exp

(
−N(N − 1)

2M

)
.

Next, we consider the worst case. We already know that
for complete subtrees t(v1) and t(v2), the upper bound on
the collision probability between the corresponding poly-
nomial values is Prsz = (|L(t(v1))| + |L(t(v2))|)/M .
We choose the one with the highest Prsz and denote it as
Prmax

sz = 2ξ/M . The ξ is the maximum number of leaves in
all complete subtrees. If we have generated i − 1 different
hash values, when generating the i-th hash value, we want
this new value to not collide with the previous i − 1 values.
Its probability is (1−Prmax

sz)i−1. Therefore, the probability
of hash collision in the worst case is

Pr
Worst

(N)

= 1− 1 (1− Prmax
sz) (1− Prmax

sz)2 · · · (1− Prmax
sz)N−1

= 1− (1− Prmax
sz)

N(N−1)
2

= 1−
(
1− 2ξ

M

)N(N−1)
2

.

Furthermore, we can bound Pr
Hash

(N) by

Pr
Ideal

(N) ≤ Pr
Hash

(N) ≤ Pr
Worst

(N)

⇐⇒ 1− e−
N(N−1)

2M ≤ Pr
Hash

(N) ≤ 1−
(
1− 2ξ

M

)N(N−1)
2

.

M is limited by the range of the numerical expression of
the computer. To avoid the hash collision, we take k hash
values for one complete subtree. In this case, a hash collision
happens if all the k hash values agree. This is equivalent to
expanding the size of the space to the k-th power, that is,
Mk. Moreover, Prmax

sz = (2ξ/M)k. By the same derivation,
we obtain

1− e−
N(N−1)

2Mk ≤ Pr
Hash

(N)≤ 1−

(
1−

(
2ξ

M

)k
)N(N−1)

2

.

Conclusions
This paper proposed a Wasserstein graph metric with L1-
TED as the ground distance. Experiments showed that the
WWLS could better capture slight differences in structure
than the comparison methods. Since WWLS belongs to the
framework of the WL test, its expressive power is equivalent
to that of the WL test. An important conclusion is that al-
though the methods have the same expressive power, adding
structural information improves classification accuracy. The
similarity between the WL test and the GNN mechanism
suggests that the same effect is expected for GNNs. There-
fore, the future challenge is to bring this idea to GNNs.

7547

Acknowledgments
H. Kasai was partially supported by JSPS KAKENHI Grant
Numbers 22K12175, and by Support Center for Advanced
Telecomm. Technology Research (SCAT).

References
Babai, L. 2016. Graph Isomorphism in Quasipolynomial
Time. In Symposium on Theory of Computing (STOC), 684–
697.
Bai, Y.; Ding, H.; Bian, S.; Chen, T.; Sun, Y.; and Wang,
W. 2019. SimGNN: A Neural Network Approach to Fast
Graph Similarity Computation. In International Conference
on Web Search and Data Mining (WSDM), 384–392.
Bodnar, C.; Frasca, F.; Wang, Y.; Otter, N.; Montufar, G. F.;
Lio, P.; and Bronstein, M. 2021. Weisfeiler and Lehman
Go Topological: Message Passing Simplicial Networks. In
International Conference on Machine Learning (ICML),
1026–1037.
Bonneel, N.; Van De Panne, M.; Paris, S.; and Heidrich, W.
2011. Displacement interpolation using Lagrangian mass
transport. In SIGGRAPH Asia conference, 1–12.
Borgwardt, K.; Ghisu, E.; Llinares-López, F.; O’Bray, L.;
and Rieck, B. 2020. Foundations and Trends® in Machine
Learning, (5–6): 531–712.
Bosch, S. 2018. Rings and Polynomials, 23–81. Springer.
Bunke, H.; and Shearer, K. 1998. A Graph Distance Metric
based on the Maximal Common Subgraph. Pattern recogni-
tion letters, 19(3-4): 255–259.
Buss, S. R. 1997. Alogtime Algorithms for Tree Isomor-
phism, Comparison, and Canonization. In Computational
Logic and Proof Theory, 18–33.
Cuturi, M. 2013. Sinkhorn Distances: Lightspeed Computa-
tion of Optimal Transport. In Neural Information Processing
Systems (NeurIPS), 2292–2300.
Errica, F.; Podda, M.; Bacciu, D.; and Micheli, A. 2020. A
Fair Comparison of Graph Neural Networks for Graph Clas-
sification. In International Conference on Learning Repre-
sentations (ICLR).
Fukagawa, D.; Akutsu, T.; and Takasu, A. 2009. Constant
Factor Approximation of Edit Distance of Bounded Height
Unordered Trees. In International Symposium on String
Processing and Information Retrieval (SPIRE), 7–17.
Gao, C.; Wang, X.; He, X.; and Li, Y. 2022. Graph Neural
Networks for Recommender System. In International Con-
ference on Web Search and Data Mining (WSDM), 1623–
1625.
Gao, X.; Xiao, B.; Tao, D.; and Li, X. 2010. A survey
of graph edit distance. Pattern Analysis and applications,
13(1): 113–129.
Garofalakis, M.; and Kumar, A. 2005. XML Stream Pro-
cessing Using Tree-Edit Distance Embeddings. ACM Trans.
Database Syst., 30(1): 279–332.
Gaudelet, T.; Day, B.; Jamasb, A. R.; Soman, J.; Regep, C.;
Liu, G.; Hayter, J. B. R.; Vickers, R.; Roberts, C.; Tang, J.;
Roblin, D.; Blundell, T. L.; Bronstein, M. M.; and Taylor-
King, J. P. 2021. Utilizing Graph Machine Learning within

Drug Discovery and Development. Briefings in Bioinfor-
matics, 22(6).
Grover, A.; and Leskovec, J. 2016. Node2vec: Scalable Fea-
ture Learning for Networks. In International Conference on
Knowledge Discovery and Data Mining (KDD), 855–864.
Haussler, D. 1999. Convolution Kernels on Discrete Struc-
tures. Technical report, Technical report, Department of
Computer Science, University of California at Santa Cruz.
Huang, J.; Fang, Z.; and Kasai, H. 2021. LCS graph ker-
nel based on Wasserstein distance in longest common sub-
sequence metric space. Signal Processing, 189: 108281.
Jakubowski, M.; Naldurg, P.; Patankar, V.; and Venkatesan,
R. 2007. Software Integrity Checking Expressions (ICEs)
for Robust Tamper Detection. In International Conference
on Information Hiding, 96–111.
Kriege, N. M.; Giscard, P.-L.; and Wilson, R. 2016. On Valid
Optimal Assignment Kernels and Applications to Graph
Classification. In Neural Information Processing Systems
(NeurIPS), 1623–1631.
Loosli, G.; Canu, S.; and Ong, C. S. 2015. Learning SVM in
Kreı̆n Spaces. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(6): 1204–1216.
McKinney, E. H. 1966. Generalized birthday problem. The
American Mathematical Monthly, 73(4): 385–387.
Morris, C.; Kriege, N. M.; Bause, F.; Kersting, K.; Mutzel,
P.; and Neumann, M. 2020. TUDataset: A collection of
benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020).
Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and Leman
Go Neural: Higher-Order Graph Neural Networks. In AAAI
Conference on Artificial Intelligence (AAAI), 4602–4609.
Neuhaus, M.; Riesen, K.; and Bunke, H. 2006. Fast Subopti-
mal Algorithms for the Computation of Graph Edit Distance.
Nikolentzos, G.; Meladianos, P.; and Vazirgiannis, M. 2017.
Matching Node Embeddings for Graph Similarity. In AAAI
Conference on Artificial Intelligence (AAAI), 2429–2435.
Nikolentzos, G.; Siglidis, G.; and Vazirgiannis, M. 2021.
Graph Kernels: A Survey. J. Artif. Int. Res., 72: 943–1027.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online Learning of Social Representations. In Interna-
tional Conference on Knowledge Discovery and Data Min-
ing (KDD), 701–710.
Peyré, G.; Cuturi, M.; and Solomon, J. 2016. Gromov-
Wasserstein Averaging of Kernel and Distance Matrices.
In International Conference on Machine Learning (ICML),
2664–2672.
Peyré, G.; Cuturi, M.; et al. 2019. Computational Optimal
Transport: With Applications to Data Science. Foundations
and Trends® in Machine Learning, 11(5-6): 355–607.
Sato, R. 2020. A Survey on The Expressive Power of Graph
Neural Networks. arXiv:2003.04078.
Schulz, T. H.; Horváth, T.; Welke, P.; and Wrobel, S. 2022.
A Generalized Weisfeiler-Lehman Graph Kernel. Machine
Learning, 111(7): 1–29.

7548

Shervashidze, N.; and Borgwardt, K. 2009. Fast Subtree
Kernels on Graphs. In Neural Information Processing Sys-
tems (NeurIPS), 1660–1668.
Shervashidze, N.; Schweitzer, P.; Van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
Lehman Graph Kernels. Journal of Machine Learning Re-
search, 12(9).
Takamoto, S.; Shinagawa, C.; Motoki, D.; Nakago, K.;
Li, W.; Kurata, I.; Watanabe, T.; Yayama, Y.; Iriguchi,
H.; Asano, Y.; Onodera, T.; Ishii, T.; Kudo, T.; Ono, H.;
Sawada, R.; Ishitani, R.; Ong, M.; Yamaguchi, T.; Kataoka,
T.; Hayashi, A.; Charoenphakdee, N.; and Ibuka, T. 2022.
Towards universal neural network potential for material dis-
covery applicable to arbitrary combination of 45 elements.
Nature Communications, 13(1): 2991.
Titouan, V.; Courty, N.; Tavenard, R.; Laetitia, C.; and Fla-
mary, R. 2019. Optimal Transport for structured data with
application on graphs. In International Conference on Ma-
chine Learning (ICML), 6275–6284.
Togninalli, M.; Ghisu, E.; Llinares-López, F.; Rieck, B.;
and Borgwardt, K. 2019. Wasserstein Weisfeiler–Lehman
Graph Kernels. In Neural Information Processing Systems
(NeurIPS), 6436–6446.
Weisfeiler, B.; and Leman, A. 1968. The Reduction of A
Graph to Canonical Form and The Algebra Which Appears
Therein. Nauchno-Technicheskaya Informatsia, 2(9): 12–
16.
Wijesinghe, A.; and Wang, Q. 2022. A New Perspective
on “How Graph Neural Networks Go Beyond Weisfeiler-
Lehman?”. In International Conference on Learning Repre-
sentations (ICLR).
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In International Con-
ference on Learning Representations (ICLR).

7549

