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Abstract

Modeling multi-variate time-series (MVTS) data is a long-
standing research subject and has found wide applications.
Recently, there is a surge of interest in modeling spatial rela-
tions between variables as graphs, i.e., first learning one static
graph for each dataset and then exploiting the graph structure
via graph neural networks. However, as spatial relations may
differ substantially across samples, building one static graph
for all the samples inherently limits flexibility and severely
degrades the performance in practice. To address this issue,
we propose a framework for fine-grained modeling and uti-
lization of spatial correlation between variables. By analyz-
ing the statistical properties of real-world datasets, a univer-
sal decomposition of spatial correlation graphs is first identi-
fied. Specifically, the hidden spatial relations can be decom-
posed into a prior part, which applies across all the samples,
and a dynamic part, which varies between samples, and build-
ing different graphs is necessary to model these relations. To
better coordinate the learning of the two relational graphs,
we propose a min-max learning paradigm that not only reg-
ulates the common part of different dynamic graphs but also
guarantees spatial distinguishability among samples. The ex-
perimental results show that our proposed model outperforms
the state-of-the-art baseline methods on both time-series fore-
casting and time-series point prediction tasks.

Introduction
Multi-variate time-series (MVTS) data modeling has always
been an important subject in a wide range of research do-
mains, including healthcare (Stevenson et al. 2019), eco-
nomics and finance (Lin et al. 2021), meteorology and traf-
fic (Lai et al. 2018). One of the key observations for MVTS
data is that there exist spatial relations among different vari-
ables. For example, the traffic speed on one road would be
heavily affected by the traffic flow of a nearby street. Tradi-
tional methods like auto-regressive integrated moving aver-
age (ARIMA) (Box et al. 2015) and Gaussian process (GP)
models (Roberts et al. 2013) either ignore spatial relations,
or assume linear dependencies among variables. Deep learn-
ing methods based on recurrent neural networks (RNN) and
convolutional neural networks (CNN) (Ismail Fawaz et al.
2020; Zhang et al. 2020; Shih, Sun, and Lee 2019; Lai et al.
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Figure 1: We calculate the correlation (Benesty et al.
2009) between variables in each sample of Pems-bay traf-
fic dataset (Li et al. 2017).

2018) regard multi-variate information as an individual vec-
tor and rely on fully connected layers to conduct interactions
between variables. However, these methods failed to exploit
the spatial relationship efficiently without explicitly mod-
eling correlations between variables, yielding high sample
complexity and poor generalization ability.

Inspired by the great success of graph neural networks
(GNNs), many works utilize spatio-temporal GNNs to deal
with the spatial dependencies between variables. The early
attempts (Li et al. 2017; Yu, Yin, and Zhu 2017) rely on
a predefined graph structure to model inter-variate depen-
dencies, which is generally unavailable in real-world scenar-
ios and can be inaccurate or incomplete. Recent works (Wu
et al. 2019, 2020) proposed to use graph structure learning
methods to discover spatial relations between variables, re-
laxing the requirement of predefined graphs and leading to
promising results.

Nevertheless, the existing methods build a static graph
for the whole dataset and ignore the fact that the relations
usually vary across different samples, resulting in poor per-
formance on some datasets. For example, suppose the sam-
ple is obtained from time-series segmentation in traffic data.
Some factors (e.g., dynamic traffic flow, road maintenance
or emergent accidents) affect the correlation among sensors
at the crossing, which leads to dynamic variable relations in
different samples. Except for these factors, some common
relations, such as arterial traffic conditions, remain invari-
ant across the samples. To verify this claim, we analyze the
variable correlations on real-world data. As shown in Fig-
ure 1, we calculate the cosine similarity of the variable cor-
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relation matrices between different sample pairs. The result
shows that not all the samples share the same variable re-
lation, and it is not flexible to utilize a static graph for all
the samples. Moreover, from another point of view to ana-
lyze Figure 1b, many samples have high similarities, which
illustrates that purely constructing a dynamic graph for each
sample would lose the shared common information and in-
troduce additional noise.

Motivated by this example, we propose a framework for
fine-grained modeling and utilization of spatial correlation
between variables, which pushes the exploitation of latent
spatial information to an extreme. Specifically, the hidden
relation between variables is first decomposed as (1) a prior
graph that depends on general information of all data and
applies to all samples, and (2) a dynamic graph that varies
across samples and depends on sample-level features. To
ensure the diversity gain of our graph decomposition, we
should simultaneously regulate the common part of differ-
ent dynamic graphs and guarantee spatial distinguishability
among samples. This task is shown to be highly challeng-
ing, and a novel min-max learning paradigm is proposed to
tackle this challenge.

Our contribution can be summarized as follows:

• We propose a spatial relation decomposition (SRD)
framework for MVTS modeling, which proposes the
graph learning module to build a prior graph and dynamic
graphs for sample-invariant and sample-specific depen-
dencies between variables.

• We further introduce a min-max learning paradigm to
balance the distinguishability between the information
modeled by the common prior graph and the dynamic
graphs for more efficient spatial relation mining.

Related Work
Multivariate Time-Series Modeling Multi-variate time-
series modeling has been widely adopted in different fields
and has been studied for a long time. Early approaches are
mainly based on statistics, including linear models like auto-
regressive (AR), moving average (MA), and auto-regressive
moving average (ARMA) models. The auto-regressive in-
tegrated moving average (ARIMA) (Box et al. 2015) fur-
ther generalizes the ARMA model. Gaussian process (GP)
(Roberts et al. 2013) models the distribution of multi-variate
time-series over continuous functions through a Bayesian
approach. ROCKET (Dempster, Petitjean, and Webb 2020)
extracts feature representations from time-series data us-
ing random convolutional kernels for downstream machine
learning models. Shapelet-based methods (Hills et al. 2014)
classify time-series through mining representative segments
from datasets using statistical methods. These methods ei-
ther do not consider spatial relations or assume a linear de-
pendency among variables, thus failing to capture the in-
tertwined dynamics of time-series data. Recently, with the
rapid development of deep learning, many deep learning-
based methods have been proposed to solve MVTS model-
ing. Ismail Fawaz et al. (2020); Zhang et al. (2020); Shih,
Sun, and Lee (2019); Lai et al. (2018) all utilize recur-
rent neural networks or convolutional neural networks to

model MVTS data. However, these methods only treat the
value of multiple variables as a unified vector and then ap-
ply fully-connected layers to deal with them without explic-
itly mining the spatial relations in MVTS data. Wu et al.
(2020); Cao et al. (2020); Li et al. (2017) represent the rela-
tions among variables as a graph and use graph neural net-
works for MVTS modeling. Nevertheless, these methods ei-
ther rely on a predefined graph, which is noisy and inade-
quate, even not accessible in real-world scenarios, or extract
a static graph for all the data without considering that the
spatial relations may vary across different samples.

Graph Structure Learning Graph neural networks
(GNN) have been widely employed across various domains
to exploit the rich information inherent in the graph struc-
ture and attributes. However, most GNNs require a prede-
fined graph structure, which is inevitable in real-world time-
series data. Graph structure learning (GSL) solves the prob-
lem by jointly learning an optimized graph structure and its
corresponding representations. Zhao et al. (2021); Yu et al.
(2020); Li et al. (2018) employ a metric function on pairwise
node embeddings to deduce edge weights. Kreuzer et al.
(2021); Sun et al. (2022) utilize attention mechanisms to di-
rectly generate the adjacency matrix or amplify and attenu-
ate existing edges. Other methods (Gao, Hu, and Guo 2020;
Jin et al. 2020) directly optimize the adjacency matrix as
part of the network parameters. However, these works often
learn a globally shared static graph over the whole dataset,
which is inflexible to represent and capture the fine-grained
correlations within the data, as shown in Figure 1. In this pa-
per, we propose to utilize a perspective of decomposed graph
mining to capture the spatial correlation in MVTS data and
incorporate a novel min-max training strategy to more effec-
tively discover and utilize the latent spatial information.

Preliminaries
We present the problem formulation of multi-variate time-
series modeling and prediction in this section. Suppose there
is a set of samples {(Xm,ym)}Mm=1 with size M . Xm ∈
RN×T×P represents a sample of multi-variate time-series
data where T is the temporal length of time series, N is the
number of variables and P is the feature dimension, and ym
is the prediction target. As shown in Figure 2a, xi,t

m is the
feature of the i-th variable at the t-th timestep, xi,∗

m repre-
sents all the values of the i-th variable, and x∗,t

m includes all
the values at the t-th timestep. Our goal is to find the map-
ping fX 7→ y to minimize the average prediction error on
the whole dataset, i.e.,

f∗ = argmin
f

1

M

∑
m

Lpred(f(Xm),ym) . (1)

In the different scenarios, the collection and format of
Xm and ym are various. {Xm} could be segments from a
long time series, or many sequences from different sources.
The format of ym is decided by the prediction task. For time-
series forecasting tasks, ym = {xT+1

m ,xT+2
m , ...,xT+L

m } is
the future values of MVTS, where L is a predefined fore-
casting horizon chosen according to the demands of envi-
ronment. For point predictions tasks, y is a scalar, and the
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(a) Multi-variate Time-series Data (b) The Graph Learning Module

Figure 2: The illustration of the input MVTS data and the overall architecture of the graph learning module.

tasks can be further divided into classification and regres-
sion tasks depending on the space of the label such as event
prediction or anomaly detection.

Methodology
In this section, we design our method, a spatial relation de-
composition (SRD) framework for dynamic graph mining
in multi-variate time-series data.

We briefly introduce the intuition of spatial relation de-
composition. As has been analyzed in Figure 1a, we have
found that the correlation matrices among different variables
for each sample are quite different across time and sample
space. Thus, it is crucial to construct a dynamic graph for
each sample. However, the complexity of building dynamic
graphs is large, which can easily be affected by the noisy
information within each sample, thus resulting in overfit-
ting and poor learning effectiveness. Moreover, from Fig-
ure 1b, the spatial correlation similarity of most samples is
high (peak in 0.9 cosine similarity) in the data population,
which also hints the existence of the common part in the spa-
tial information in the dataset. In order to better capture the
dynamic spatial information while maintaining the common
relation patterns, we propose the decomposition framework
with a novel min-max learning paradigm.

In the following, we first present a novel learning process
to generate the prior graph (for capturing common spatial in-
formation) and dynamic graphs (for modeling specific infor-
mation of each sample) by a min-max optimization. Then we
present how to integrate both temporal and spatial modules
based on our learned prior and dynamic graphs for down-
stream prediction tasks. Note that the procedure is conducted
on each sample m, and we omit the subscript m for simplic-
ity in the condition that the context is clear.

Graph Learning Module
Based on the general information from the whole data and
sample-specific information in each sample, we learn the
prior graph Ap and the dynamic graph Ad to model the spa-
tial relation among variables. The whole procedure of the
graph learning module is shown in Figure 2b.

For each graph, we first learn the embedding of each vari-
able from the input, and then train multi-layer perceptrons
(MLPs) to transform these embeddings into the spatial rela-
tion among variables, i.e., adjacency matrices. A min-max

paradigm is used to balance the spatial relation in different
graphs.

Learning the Embedding of Variables At the beginning,
we transform the extra information and time-series data of
each variable into embeddings. For the prior graph, there are
two situations. If the side feature exists for variables, we use
it with a linear transformation to initialize Ep directly. Oth-
erwise, we randomly initialize a learnable node embedding
Ep ∈ RN×e for each variable, where e is the embedding di-
mension. For the dynamic graph, we extract a dynamic node
embedding Ed ∈ RN×e from each variable’s time-series
data in each sample as

zi,t = Embedding(xi,t) (2)

Ed
i = TE({zi,t|t ∈ [1, T ]}), i ∈ [1, N ] , (3)

where we first map the original values xi,t to a hidden repre-
sentation zi,t, and then utilize a temporal extractor function
(TE), such as Gated Recurrent Unit (GRU) (Cho et al. 2014),
to further learn the embeddings of each variable.

Generating Adjacency Matrices The graph generator
(GG) is to obtain the adjacency matrix A from variable
embeddings Ep and Ed. The resulting graph should be
uni-directional as the dependencies of the variables are in
chronological order, and sparse as we only aim to capture
the most important spatial relations to ensure generalization
ability and reduce computational cost. Following (Wu et al.
2020), the process is formulated as

M s
1 = tanh(αEsΘs

1) (4)
M s

2 = tanh(αEsΘs
2) (5)

Ã
s
= ReLU(tanh(α(M s

1M
s⊺
2 −M s

2M
s⊺
1 ))) (6)

As
i = topk(Ã

s

i ), i ∈ [1, N ] , (7)

where Θs
1, Θs

2 are model parameters, α is a hyper-parameter
controlling the density of the resulting graph. The super-
script s ∈ {p, d} stands for prior and dynamic spatial rela-
tions, respectively. Based on the sparsity requirement of gen-
erated graphs (Jin et al. 2020), the topk(·) operation is used
to keep only the top k largest values of a vector and map the
others as zero. Thus, the resulting graph is uni-directional
and sparse to remove noisy, task-irrelevant edges and allevi-
ate oversmoothing (Zhu et al. 2021).
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Figure 3: The overall network architecture

Optimizing by a Min-Max Learning Paradigm To en-
sure effective and efficient graph structure learning, we ex-
pect the prior graph and dynamic graph to include different
spatial relations among variables. Specifically, the depen-
dencies that are universal across the dataset should be cap-
tured by the prior graph, and the dynamic graphs should only
contain the dependencies specific to a single sample inferred
from its own data. To achieve this, we design a min-max
learning paradigm by maximizing the discrepancy between
the prior graph and dynamic graph while making sure they
include meaningful spatial relations. We first define a metric
D(·, ·) to measure the distance between two graphs. For the
minimization phase, we push the prior graph to minimize
the distance compared with the dynamic graph, thus encour-
aging the prior graph to capture universal dependencies. For
the maximization phase, we optimize the dynamic graph to
maximize the distance between the prior graph, thus getting
rid of the commonalities of the dynamic graph and paying
attention only to the sample-specific information in the fea-
ture. The corresponding loss functions of two phases are

Lmin = D(Ã
p
, (Ã

d
)detach) (8)

Lmax = −D((Ã
p
)detach, Ã

d
) , (9)

where the subscript (·)detach denotes stopping backpropa-
gation of gradients, as shown in Figure 2b. Note that we use
Ã rather than A to avoid the possible instability brought by
top-k operation. The graph distance metric D is based on the
Frobenius norm, formulated as

D(Ã
p
, Ã

d
) = ||Ãp − Ã

d||F , (10)

where || · ||F is the Frobenius norm.

Overall Network Architecture

The overall architecture of our SRD framework is illustrated
in Figure 3. It is composed of two branches for the prior
graph and the dynamic graph, and each branch is charac-
terized by stacking Q temporal modules (TM) and spatial
modules (GM). The prediction modules (PM) are connected
to obtain the final prediction. Specifically, the formulation of

one branch is:

H0 = Embedding({xi,t|i ∈ [1, N ], t ∈ [1, T ]}) (11)
Hq+1 = LayerNorm(TMq(Hq)) , q ∈ [0, Q− 1] (12)
Hq+1 = LayerNorm(GMq(Hq+1,A)) (13)

ŷ = PM(HQ) . (14)

Similar with Equation (2), we first map the original val-
ues xi,t to the initial representation H0. In the q-th layer,
Hq ∈ RT×N×D are learnt by the temporal and spatial mod-
ule together. Layer normalization (Ba, Kiros, and Hinton
2016) is applied after each module. After Q temporal-spatial
modules, we obtain HQ and use the prediction module to
get the prediction ŷ.

The two branches both follow the above process, while
different learned graph matrices Ap and Ad are utilized in
the spatial module (GM) to obtain the prediction ŷp and
ŷd, respectively. The parameters are also different in the
two branches. Finally, to aggregate the prediction of two
branches, the final outputs have been averaged as:

ŷ = (ŷp + ŷd)/2 . (15)

We describe the spatial and temporal module as follows.

Spatial Module (GM) Given the hidden representation H
and the spatial relation A, we use GM(H ,A) to aggregate
information from different variables. In real-world MVTS
data, the spatial dependencies can be strong or weak, or even
non-existent. Thus, the spatial module should be able to ad-
just correspondingly to leverage the spatial information. To
achieve this, we utilize a mix-hop graph convolution mod-
ule (Abu-El-Haija et al. 2019) with a residual connection,
denoted as:

Z0 = H (16)

Zs+1 = βZ0 + (1− β)ĀZs, s ∈ [0, S − 1] (17)

ZFinal = [Z0,Z1, ...,ZS ]W +Z0 . (18)

S is the maximum depth of spatial module, β is teleport
probability and W ∈ RSD×D are learnable parameters.
Here we set Ā = D−1(A + I) where Dii = 1 +

∑
j Aij .

ZFinal is the output of GM(H ,A). Note that the initial rep-
resentation Z0 is added to each graph convolution layer and
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the final output is the combination of previous layers, pre-
venting over-smoothing and noise brought by weak spatial
dependencies (Abu-El-Haija et al. 2019).

Temporal Module (TM) For each variable, we use the
temporal module to aggregate the information across the
timesteps. The temporal module has a general form as
TM(H) = f(H) + H with a residual connection, where
f(H) is to extract temporal information. We do not assume
a specific temporal module structure and our framework can
be applied to any existing temporal modeling methods which
satisfy f(H) ∈ T× N× D, e.g., GRU and TCN (Bai,
Kolter, and Koltun 2018), to enhance their ability of spa-
tial relation modeling. We implement our framework with a
variety of temporal module selections and present their per-
formances in the experimental section.

Prediction Module (PM) We implement the prediction
module as a fully-connected layer whose activation and
loss function depend on the specific task. For classification
tasks, the softmax function σ(z)i = ezi

ΣJ
j=1zj

are used to

generate ŷ and the loss function is the cross-entropy loss
LCE

pred(ŷ,ym) = −ym log ŷ. For regression and forecast-
ing tasks, no activation function is applied and the loss is
squared error LSE

pred(ŷ,ym) = (ym − ŷ)2. The total loss
function is the combination of the prediction loss and the
loss for our proposed min-max learning, calculated as

L = Lprediction loss + Lmin-max learning loss

=
[
Lpred(ŷ,y) + Lpred(ŷ

p,y) + Lpred(ŷ
d,y)

+α1D(Ã
p
, (Ã

d
)detach)− α2D((Ã

p
)detach, Ã

d
)
]
.

(19)

Here α1 and α2 are the hyper-parameters controlling the dis-
tinguishability between the prior graph and dynamic graphs.
Note that we optimize ŷ, ŷp and ŷd simultaneously to en-
sure the prior graph and dynamic graphs both model mean-
ingful spatial relation information for final predictions.

Experiments
In this section, we present the experimental settings and the
corresponding results with extended investigations. The sup-
plementary materials and codes are available online1.

We first list four research questions (RQs) to lead the ex-
perimental discussion as follows. RQ1: Does the proposed
spatial relation decomposition method achieve the best per-
formance among all the compared methods? RQ2: Is the
combination of the prior graph and dynamic graph better
than utilizing a static graph or dynamic graphs only? RQ3:
Does the min-max learning paradigm help to improve the
effectiveness of our spatial relation decomposition frame-
work? RQ4: With the novel learning paradigm, do the prior
and dynamic graphs capture different aspects of the hidden
spatial relations among variables?

1https://seqml.github.io/srd

Datasets and Compared Methods
There are two kinds of tasks in multi-variate time-series
modeling and prediction: forecasting and point prediction,
as shown in Figure 2a. Specifically, we conduct the experi-
ments on four datasets for forecasting tasks, and one dataset
for point prediction tasks. We split time-series forecasting
datasets into training set, validation set and test set follow-
ing (Wu et al. 2020). And cross-validation has been con-
ducted on the point prediction dataset. The detailed descrip-
tion and statistics of datasets can be referred to the appendix.

Several strong baselines have been compared on these two
tasks, respectively. For a fair comparison, we repeat each ex-
periment 3 times with different random seeds after determin-
ing the best hyper-parameters and report the average results
on test sets for all the compared methods.

Forecasting The following datasets are for forecasting.

• Solar (Lai et al. 2018): The solar power production
records.

• Electricity (Lai et al. 2018): The hourly electricity con-
sumption in kWh.

• Pems-bay (Li et al. 2017): The average traffic speed in
the Bay Area.

• Metr-la (Li et al. 2017): The average traffic speed mea-
sured on the highways of Los Angeles County.

On these forecasting datasets, we compare our method with
ARIMA (Box et al. 2015), the autoregressive integrated
moving average model; GP (Roberts et al. 2013), which
models the distribution of MVTS as a Gaussian process;
LSTNet (Lai et al. 2018), that combines RNN and CNN;
a transformer-based model Autoformer (Wu et al. 2021),
which utilizes correlation-based attention mechanism for
efficient time-series forecasting; GNN-based models MT-
GNN (Wu et al. 2020) and DMSTGCN (Han et al. 2021)
who builds static graphs across all samples to capture the
static spatial relations.

Point Prediction
• Neonatal seizure detection (Stevenson et al. 2019) is a

multi-channel electroencephalography (EEG) recording
dataset from human neonates for seizure event detection.

On this dataset, we compare with ROCKET (Dempster,
Petitjean, and Webb 2020), which utilizes random convo-
lution kernels to extract feature vectors from time-series
data and uses a ridge regression to get final predictions;
MLSTM-FCN (Karim et al. 2019) and InceptionTime (Is-
mail Fawaz et al. 2020) both of which enhances CNN and
RNN with time-series modeling blocks, i.e., squeeze-and-
excitation blocks and Inception modules. We also conduct
experiments with a graph-based method DCRNN (Tang
et al. 2021), which utilizes correlation between variables to
build a static graph for the seizure detection task.

Our method has two variants with two different temporal
modules GRU (Cho et al. 2014) and TCN (Bai, Kolter, and
Koltun 2018)) to evaluate the generalization ability.

• SRD-GRU is our proposed method with GRU (Cho et al.
2014) as the temporal module.
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Method Metric Electricity Solar-energy Pems-bay Metr-la
6 24 48 96 6 24 48 96 6 24 48 96 6 24 48 96
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o.

ARIMA RSE↓ .522 .534 .564 .599 .202 .365 .588 .589 .532 .548 .562 .612 .575 .742 .889 .902
R2↑ .963 .960 .914 .863 .951 .847 .725 .682 .741 .723 .692 .670 .687 .441 .282 .265

GP RSE↓ .603 .612 .633 .642 .225 .388 .612 .575 .544 .532 .577 .592 .572 .738 .912 .925
R2↑ .962 .968 .912 .852 .944 .836 .711 .675 .732 .712 .689 .665 .685 .437 .265 .233

LSTNet RSE↓ .517 .523 .589 .592 .218 .360 .508 .554 .521 .560 .596 .574 .564 .732 .885 .905
R2↑ .980 .974 .873 .864 .950 .857 .721 .733 .752 .706 .688 .678 .697 .475 .293 .246

GRU RSE↓ .506 .598 .537 .587 .219 .355 .476 .522 .529 .573 .584 .608 .517 .797 .882 .947
R2↑ .981 .972 .971 .964 .950 .875 .781 .737 .747 .703 .691 .665 .759 .429 .301 .194

TCN RSE↓ .492 .516 .544 .564 .210 .445 .639 .720 .487 .551 .583 .587 .570 .705 .798 .885
R2↑ .977 .975 .972 .965 .954 .804 .608 .512 .785 .718 .695 .689 .698 .545 .431 .293

Autoformer RSE↓ .481 .506 .566 .548 .212 .432 .622 .685 .452 .543 .577 .565 .565 .692 .785 .872
R2↑ .980 .977 .975 .963 .960 .852 .791 .701 .782 .711 .689 .668 .762 .548 .411 .282

st
at

ic MTGNN RSE↓ .235 .268 .338 .299 .192 .323 .411 .488 .399 .491 .582 .351 .452 .678 .769 .868
R2↑ .982 .977 .963 .954 .963 .895 .810 .752 .865 .748 .693 .670 .818 .613 .445 .309

DMSTGCN RSE↓ .222 .267 .280 .280 .184 .313 .406 .475 .364 .520 .578 .342 .450 .659 .772 .883
R2↑ .984 .980 .975 .972 .965 .906 .842 .790 .879 .754 .700 .681 .815 .612 .454 .308

ou
rs SRD-GRU RSE↓ .268 .303 .312 .314 .182 .318 .422 .482 .388 .511 .543 .339 .466 .611 .755 .876

R2↑ .978 .911 .901 .887 .963 .889 .809 .764 .849 .762 .732 .716 .807 .613 .455 .279

SRD-TCN RSE↓ .212 .255 .276 .292 .183 .302 .399 .469 .364 .399 .343 .302 .449 .661 .762 .852
R2↑ .983 .982 .978 .962 .967 .911 .844 .804 .876 .772 .723 .720 .818 .613 .460 .321

Table 1: Experimental results of time-series forecasting on four datasets with different horizons L. The best and the second-
placed results are formatted as bold font and underlined format. ↑ (↓) indicates the higher (lower) the better. All results have
been aggregated from three runs with different random seeds.

• SRD-TCN is another proposed method with TCN (Bai,
Kolter, and Koltun 2018) as temporal modeling.

Moreover, the performances of original GRU and TCN are
also compared in both tasks to illustrate the enhancement
brought by our SRD method.

Evaluation Metrics
For time-series forecasting tasks, we use Root Relative
Squared Error (RSE) and coefficient of determination (R2)
as the evaluation methods.

RSE =

√∑M
m=1 ||ym − ŷm||2∑M
m=1 ||ym − ȳ||2

, (20)

and

R2 =
1

MNL

M∑
m=1

N∑
i=1

L∑
l=1

[
1− (yi,l

m − ŷi,l
m )2

(yi,l
m − ȳi,l)2

]
. (21)

Here M is the size of test sets, ȳ is the average of ym, yi,lm is
the l-th future value of the i-th variable for the m-th sample
(i.e., xi,T+l

m ), and ȳi,l is the average of yi,lm over all samples.
For the point prediction tasks, we use area under

precision-recall curve (AUPRC) and area under receiver op-
erating characteristic curve (AUROC) for evaluation.

Experimental Results
We present the results of all the methods on two time-series
modeling tasks in Table 1 and Table 2.

Before discussing the experiment results, note that, the
compared methods have been divided into three groups de-
pending on how they model spatial dependencies between
variables. The first group does not explicitly model the spa-
tial information in their methods, which only incorporates

temporal models to capture temporal statistics and patterns.
And the methods constructing a static graph for all the sam-
ples have been placed in the second group. The third group
is the implementation of our proposed methodology based
on two temporal module variants.

From the results in Tables 1 and 2, we can tell that (1)
our proposed decomposed graph learning method has signif-
icantly enhanced the performance upon the baselines GRU
and TCN. Specifically, SRD-TCN outperforms all the com-
pared methods on most datasets, which answers RQ1. (2)
Compared with the first group, the second and third groups
where the methods incorporate explicit spatial relation mod-
eling have performed much better, which indicates the im-
portance of accurate spatial relation modeling. (3) By build-
ing the prior graph and dynamic graphs simultaneously, our
methods achieve better performance than the methods in
the second group, which only focus on static relations over
the whole dataset, partially answering RQ2. (4) Our meth-
ods obtain a significant improvement on traffic datasets, i.e.,
Pems-bay and Metr-la, which might result from more com-
plicated and varied spatial relations in traffic scenarios, mak-
ing it hard to be captured by a single static graph. (5) For
point prediction task shown in Table 2, our methods with
decomposed relations obtain great performance no matter
which temporal model has been used. Though modeling a
static graph, DCRNN utilizes RNN as base model which
makes its performance worse than TCN based methods.

Extended Investigations

Ablation Study We conduct the following ablation study
on Pems-bay with SRD-TCN to show the effectiveness of
the key components in our proposed method and further an-
swer RQ2 and RQ3.
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Method Metric↑ N-1 N-2 N-3 N-4 Avg.
no

ex
pl

ic
it

sp
at

ia
l i

nf
o. ROCKET AUROC 75.7 76.4 86.0 85.4 80.9

AUPRC 49.2 43.1 60.5 59.9 53.2

MLSTM-FCN AUROC 78.3 75.6 85.5 84.0 80.8
AUPRC 51.2 48.7 61.4 61.4 55.7

InceptionTime AUROC 72.6 75.2 72.6 70.9 72.8
AUPRC 33.7 49.7 47.6 30.7 40.7

GRU AUROC 61.9 51.7 58.7 81.0 63.3
AUPRC 30.2 13.4 27.4 55.0 31.5

TCN AUROC 77.7 75.8 90.2 85.3 82.3
AUPRC 54.1 52.9 76.2 63.3 61.6

st
at

ic DCRNN AUROC 73.3 80.7 84.5 85.3 81.0
AUPRC 42.8 59.0 64.5 59.2 56.4

ou
rs SRD-GRU AUROC 80.8 78.0 84.2 83.7 81.7

AUPRC 52.6 58.2 65.2 53.7 57.4

SRD-TCN AUROC 75.3 83.4 87.6 86.3 83.2
AUPRC 47.0 60.9 76.1 64.9 62.2

Table 2: Results (%) on time-series point prediction over the
four folds (N-1, N-2, N-3, N-4) of seizure detection dataset.

• w/o MM: SRD-TCN without the min-max learning
paradigm, yet incorporating both the prior graph and dy-
namic graphs.

• w/o DG: SRD-TCN without dynamic graphs.
• w/o PG: SRD-TCN without the prior graph.

The R2 results are presented in Table 3. We can tell from the
results that utilizing both the prior graph and dynamic graphs
(w/o MM) is superior to only using one graph (w/o DG
& w/o PG), which answers our RQ2. Nevertheless, merely
adding a graph does not bring a significant improvement,
indicating that directly learning two graph structures simul-
taneously can bring very little gain. The performance im-
provement mainly comes from the proposed min-max learn-
ing paradigm, which guarantees an effective graph structure
learning for both the prior graph and dynamic graphs (RQ3).

Analysis of Edge Weights in the Learned Graphs To
identify the different spatial relations captured by the prior
graph and dynamic graphs, thus answering RQ4, we ana-
lyze weights between variables across different samples of
Pems-bay in the learned prior graph Ã

p
and dynamic graphs

Ã
d

m in Figure 4a. The weights of the corresponding adja-
cent matrices are illustrated as dotted and solid lines, re-
spectively. For variable pair (1, 219), the weight between
them is low in the static graph, and the changing status of
spatial relations has been captured by the dynamic graph.
Moreover, the dynamics of the graph weights share a similar
pattern with the correlation variation illustrated in Figure 1a,

Ablations
Horizon L 6 24 48 96

w/o MM 0.872 0.750 0.708 0.695
w/o DG 0.872 0.750 0.695 0.674
w/o PG 0.869 0.750 0.698 0.673

SRD-TCN 0.876 0.772 0.723 0.720

Table 3: The R2 results of ablated experiments on Pems-bay.
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(a) The edge weights between
variable pairs in the prior graph
and dynamic graphs

(b) The learning situations of
prediction and min-max learn-
ing losses on validation set.

Figure 4: The illustration of (a) the edge weights in the
learned graphs and (b) the learning situations.

which proves that our learned dynamic graph does contain
the changing spatial relations between variables which can
hardly be modeled accurately by a static graph. For the vari-
able pair (8, 246), the link between them is strong across
all samples, which is captured by the prior graph. The edge
weight between this pair remains low in dynamic graphs on
most samples to exclude the common information that has
been modeled by the prior graph to reduce noise, thanks to
the learning coordination brought by our min-max learning
paradigm. These two cases answer RQ4 that prior and dy-
namic graphs manage to capture different spatial dependen-
cies with global and sample-wise modeling perspectives.

Analysis of Learning Situations We illustrate the learn-
ing situations and convergence process of the losses in Equa-
tion (19) during our learning process on validation set in
Pems-bay, including the average value and standard devi-
ations of prediction losses Lpred(ŷ

p,y), Lpred(ŷ
d,y) and

Lpred(ŷ,y), and the distance value between the dynamic

graph and the prior graph D(Ã
d
, Ã

p
).

As shown in Figure 4b, all losses reach convergence
with small variance, illustrating the stability of our min-max
learning paradigm. At the beginning of training, D(Ã

d
, Ã

p
)

quickly drops as both prior graph and dynamic graphs are
pushed by large prediction losses to model similar mean-
ingful spatial relations and benefit the minimization phase,
as that in Equation (8). Then, the distance gets a little bit
larger as the graph learning is driven by the min-max opti-
mization paradigm to force the dynamic graph learning to
model different dependencies among variables for different
samples, which is achieved by the maximization phase. At
the final stage, as the learning losses Lpred converge, the dis-
tance metric D also converges, which illustrates the learning
stability of the whole system.

Conclusion
In this paper, we propose a spatial relation decomposition
framework for fine-grained modeling and utilization of spa-
tial relations between variables in MVTS data. A min-max
learning paradigm has been proposed to better coordinate
the graph learning process for the decomposed graphs. Our
method demonstrates a superior performance to the existing
MVTS modeling methods on multiple benchmark datasets.
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