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Abstract

The distribution shift in Time Series Forecasting (TSF), in-
dicating series distribution changes over time, largely hin-
ders the performance of TSF models. Existing works towards
distribution shifts in time series are mostly limited in the
quantification of distribution and, more importantly, overlook
the potential shift between lookback and horizon windows.
To address above challenges, we systematically summarize
the distribution shifts in TSF into two categories. Regard-
ing lookback windows as input-space and horizon windows
as output-space, there exist (i) intra-space shift, that the dis-
tribution within the input-space keeps shifted over time, and
(ii) inter-space shift, that the distribution is shifted between
input-space and output-space. Then we introduce, Dish-TS, a
general neural paradigm for alleviating distribution shifts in
TSF. Specifically, for better distribution estimation, we pro-
pose the coefficient net (CONET), which can be any neural ar-
chitectures, to map input sequences into learnable distribution
coefficients. To relieve intra-space and inter-space shift, we
organize Dish-TS as a Dual-CONET framework to separately
learn the distribution of input- and output-space, which natu-
rally captures the distribution difference of two spaces. In ad-
dition, we introduce a more effective training strategy for in-
tractable CONET learning. Finally, we conduct extensive ex-
periments on several datasets coupled with different state-of-
the-art forecasting models. Experimental results show Dish-
TS consistently boosts them with a more than 20% improve-
ment. Source code is at https://github.com/weifantt/Dish-TS.

1 Introduction
Time Series Forecasting (TSF) has been playing an essential
role in many applications, such as electricity consumption
planning (Akay and Atak 2007), transportation traffic flow
analysis (Ming et al. 2022), weather condition estimation
(Han et al. 2021). Following by traditional statistical meth-
ods, (e.g., (Holt 1957)), deep learning-based TSF models,
(e.g., (Salinas et al. 2020; Rangapuram et al. 2018)), have
recently achieved great performance in various areas.

Despite the remarkable success of TSF models, the non-
stationarity of time series data has been an under-addressed
challenge for accurate forecasting (Hyndman and Athana-
sopoulos 2018). The non-stationarity, depicting the distribu-
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Figure 1: (a) given time series (weather), take lookback win-
dows to forecast horizon windows; (b) shows distributions
(depicted by mean and std.) on different sampling frequen-
cies towards one series; (c) shows the distribution difference
of the lookback window and horizon window of (a).

tion of series data is shifted over time, can be interpreted
as the distribution shift in time series (Brockwell and Davis
2009). Such a problem results into poor generalization, thus
largely hindering the performance of time series forecasting.

After analyzing numerous series data, we systematically
organize distribution shifts of TSF into two categories. Con-
sidering the lookback windows (‘lookbacks’ for brevity) as
input-space of models and horizon windows (‘horizons’ for
brevity) as output-space of models1, there are (i) intra-space
shift: time series distribution changes over time, making
data within input-space (lookbacks) shifted; (ii) inter-space
shift: the distribution is shifted between input-space (look-
backs) and output-space (horizons). Existing works have
tried to alleviate distribution shift problem in TSF (Oga-
sawara et al. 2010; Passalis et al. 2019; Du et al. 2021; Kim
et al. 2022). However, most of them exhibit two limitations:

First, the distribution quantification for intra-space in
TSF is unreliable. Time series is ideally generated contin-
uously from the true distribution, while the observational
data is actually sampled discretely with senors in a certain
recording frequency. Existing works always directly normal-
ize or rescale the series (Ogasawara et al. 2010; Passalis et al.
2019; Kim et al. 2022), by quantifying true distribution with
fixed statistics (e.g., mean and std.) empirically obtained
from observational data, and then normalizing series distri-

1In this paper, we use ‘lookbacks/horizons’, ‘lookback/horizon
windows’,‘input/output-space’ interchangeably.
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bution with these statistics. However, the empirical statistics
are unreliable and limited in expressiveness for represent-
ing the true distribution behind the data. For example, Fig-
ure 1(b) indicates three distributions (depicted by mean and
std.) sampled from the same series with different frequencies
(i.e., ten-minutely, hourly, daily). Despite coming from the
same series, different sampling frequencies provide different
statistics, prompting the question: which one best represents
the true distribution? Since the recording frequency of time
series is determined by sensors, it is difficult to identify what
the true distribution is behind the data. Thus, how to prop-
erly quantify the distribution, as well as the distribution shift
of intra-space, still remains a problem.

Second, the inter-space shift of TSF is neglected. In time
series forecasting, considering the input-sequences (look-
backs) and output-sequences (horizons) as two spaces, exist-
ing works always assume the input-space and output-space
follow the same distribution by default (Ogasawara et al.
2010; Passalis et al. 2019; Du et al. 2021). Though a more
recent study, RevIN (Kim et al. 2022), tries to align instances
through normalizing the input and denormalizing the output,
it still puts a strong assumption that the lookbacks and hori-
zons share the same statistical properties; hence the same
distribution. Nonetheless, there is always a variation in dis-
tribution between input-space and output-space. As shown
in Figure 1(c), the distribution (depicted by mean and std.)
between the lookback window and the horizon window ex-
hibits a considerable disparity. The ignorance of inter-space
shift overlooks the gap between input- and output-space,
thus hindering forecasting performance.

To overcome the above limitations, we propose an effec-
tive general neural paradigm, Dish-TS, against Distribution
shift in Time Series. Dish-TS is model-agnostic and can
be coupled with any deep TSF models. Inspired by (Kim
et al. 2022), Dish-TS includes a two-stage process, which
normalizes model input before forecasting and denormal-
izes model output after forecasting. To solve the problem
of unreliable distribution quantification, we first propose a
coefficient net (CONET) to measure the series distribution.
Given any window of series data, CONET maps it into two
learnable coefficients: a level coefficient and a scaling co-
efficient to illustrate series overall scale and fluctuation. In
general, CONET can be designed as any neural architec-
tures to conduct any linear/nonlinear mappings, providing
sufficient modeling capacity of varied complexities. To re-
lieve the aforementioned intra-space shift and inter-space
shift, we organize Dish-TS as a Dual-CONET framework.
Specifically, Dual-CONET consists of two separate CONETs:
(1) BACKCONET, that produces coefficients to estimate the
distribution of input-space (lookbacks), and (2) the HORI-
CONET, that generates coefficients to infer the distribution
of output-space (horizons). The Dual-CONET setting cap-
tures distinct distributions for input- and output-space re-
spectively, which naturally relieves the inter-space shift.

In addition, Dish-TS is further introduced with an effec-
tive prior-knowledge induced training strategy for CONET
learning, considering HORICONET needs to infer (or pre-
dict) distribution of output-space, which is more intractable
due to inter-space shift. Thus, some extra distribution char-

acteristics of output-space is used to provide HORICONET
more supervision of prior knowledge. In summary, our con-
tributions are listed:

• We systematically organize distribution shift in time se-
ries forecasting as intra-space shift and inter-space shift.

• We propose Dish-TS, a general neural paradigm for alle-
viating distribution shift in TSF, built upon Dual-CONET
with jointly considering intra-space and inter-space shift.

• To implement Dish-TS, we provide a most simple
and intuitive instance of CONET design with a prior
knowledge-induced training fashion to demonstrate the
effectiveness of this paradigm.

• Extensive experiments over various datasets have shown
our proposed Dish-TS consistently boost current SOTA
models with an average improvement of 28.6% in uni-
variate forecasting and 21.9% in multivariate forecasting.

2 Related Work
Models for Time Series Forecasting. Time series fore-
casting (TSF) is a longstanding research topic. At an early
stage, researchers have proposed statistical modeling ap-
proaches, such as exponential smoothing (Holt 1957) and
auto-regressive moving averages (ARMA) (Whittle 1963).
Then, more works propose more complicated models: Some
researchers adopt a hybrid design (Montero-Manso et al.
2020; Smyl 2020). With the great successes of deep learn-
ing, many deep learning models have been developed for
time series forecasting (Rangapuram et al. 2018; Salinas
et al. 2020; Zia and Razzaq 2020; Cao et al. 2020; Fan et al.
2022). Among them, one representative method, N-BEATS,
(Oreshkin et al. 2020) applies pure fully connected works
and achieves superior performance. Transformer (Vaswani
et al. 2017) has been also used for series modelling. To
improve it, Informer (Zhou et al. 2021) improves in at-
tention computation, memory consumption and inference
speed. More recently, Autoformer (Xu et al. 2021) replace
attention with auto-correlation to facilitate forecasting.

Distribution Shift in Time Series Forecasting. Despite
of many remarkable models, time series forecasting still suf-
fers from distribution shift considering distribution of real-
world series is changing over time (Akay and Atak 2007). To
solve this problem, some normalization techniques are pro-
posed: Adaptive Norm (Ogasawara et al. 2010) puts z-score
normalization on series by the computed global statistics.
Then, DAIN (Passalis et al. 2019) applies nonlinear neural
networks to adaptively normalize the series. (Du et al. 2021)
proposed Adaptive RNNs to handle the distribution shift in
time series. Recently, RevIN (Kim et al. 2022) proposes an
instance normalization to reduce series shift. Though DAIN
has used simple neural networks for normalization, most
works (Ogasawara et al. 2010; Du et al. 2021; Kim et al.
2022) still used static statistics or distance function to de-
scribe distribution and normalize series, which is limited in
expressiveness. Some other works study time series distri-
bution shift in certain domains such as trading markets (Cao
et al. 2022). Moreover, they hardly consider the inter-space
shift between model input-space and output-space.
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3 Problem Formulations
Time Series Forecasting. Let xt denote the value of a reg-
ularly sampled time series at time-step t, and the classic time
series forecasting formulation is to project historical obser-
vations xt−L:t = [xt−L+1, · · · , xt] into their subsequent
future values xt:t+H = [xt+1, · · · , xt+H ], where L is the
length of lookback windows and H is the length of hori-
zon windows. The univariate setting can be easily extended
to the multivariate setting. Let {x(1)

t , x
(2)
t , · · · , x(N)

t }Tt=1
stands for N distinct time series with the same length T ,
and the multivariate time series forecasting is:

(x
(1)
t:t+H , · · · ,x(N)

t:t+H)T = FΘ

(
(x

(1)
t−L:t, · · · ,x

(N)
t−L:t)

T
)
(1)

where Gaussian noises ϵt:t+H exist in the forecasting but
dropped for brevity; {x(i)

t−L:t}Ni=1 and {x(i)
t:t+H}Ni=1 are the

multivariate lookback window and horizon window respec-
tively; the mapping function FΘ : RL×N → RH×N can be
regarded as a forecasting model parameterized by Θ.

Distribution Shifts in Time Series. As aforementioned,
this paper focuses on two kinds of distribution shifts in time
series. In training forecasting models, one series will be
cut into several lookback windows {x(i)

t−L:t}
T−H
t=L and their

corresponding horizon windows {x(i)
t:t+H}T−H

t=L . The intra-
space shift is defiend as: for any time-step u ̸= v,

|d(X (i)
input(u),X

(i)
input(v))| > δ (2)

where δ is a small threshold; d is a distance function (e.g.,
KL divergence); X (i)

input(u) and X (i)
input(v), standing for the

distributions of lookback windows x(i)
u−L:u and x

(i)
v−L:v , are

shifted. Note that when most existing works (Ogasawara
et al. 2010; Wang et al. 2019; Du et al. 2021; Kim et al.
2022) mention distribution shift in series, they mean our
called intra-space shift. In contrast, the inter-space shift is:

|d(X (i)
input(u),X

(i)
output(u))| > δ (3)

where X (i)
input(u) and X (i)

output(u) denotes the distribution of
lookback window and horizon window at step u, respec-
tively, which is always ignored by current TSF models.

4 DISH-TS
In this section, we elaborate on our general neural paradigm,
Dish-TS. We start with an overview of this paradigm in Sec-
tion 4.1. Then, we illustrate the architectures of Dish-TS in
Section 4.2. Also, we provide a simple and intuitive instance
of Dish-TS in Section 4.3 and introduce a prior knowledge-
induced training strategy in Section 4.4, to demonstrate a
workable design against the shift in forecasting.

4.1 Overview
Dish-TS is a simple yet effective, flexible paradigm against
distribution shift in time series. Inspired by (Kim et al.
2022), Dish-TS includes a two-stage process, normalizing
before forecasting and denormalizing after forecasting. The
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Figure 2: Overview of Paradigm Dish-TS.

paradigm is built upon the coefficient net (CONET), which
maps input series into coefficients for distribution measure-
ment. As Figure 2 shows, Dish-TS is organized as a dual-
CONET framework, including a BACKCONET to illustrate
input-space (lookbacks) and a HORICONET to illustrate
output-space (horizons). Data of lookbacks are transformed
by coefficients from BACKCONET before being taken to any
forecasting model FΘ; the output (i.e., forecasting results)
are transformed by coefficients from HORICONET to ac-
quire the final predictions. In addition, the HORICONET can
be trained in a prior knowledge-induced fashion as a more
effective way, especially in long series forecasting.

4.2 Dual-Conet Framework
We introduce CONET and Dual-CONET framework; then we
illustrate how forecasting models are integrated into Dual-
CONET by a two-stage normalize-denormalize process.

Conet. Non-stationary time series makes it intractable for
accurate predictions. Pilot works (Ogasawara et al. 2010; Du
et al. 2021; Kim et al. 2022) measure distribution and its
change via statistics (typically mean and std.) or distance
function. However, as stated in Section 1, these operations
are unreliable quantifications and limited in expressiveness.
In this regard, we propose a coefficient net (CONET) for
learning better distribution measurement to capture the shift.
The general formulation is:

φ, ξ = CONET(x) (4)

where φ ∈ R1 denotes level coefficient, representing the
overall scale of input series in a window x ∈ RL; ξ ∈ R1 de-
notes scaling coefficient, representing fluctuation scale of x.
In general, CONET could be set as any neural architectures
to conduct any linear/nonlinear mappings, which brings suf-
ficient modeling capability and flexibility.
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Dual-Conet. To relieve the aforementioned intra-space
shift and inter-space shift in time series, Dish-TS needs
to capture the distribution difference among input-space
and the difference between input-space and output-space.
Inspired by one remarkable model N-BEATS (Oreshkin
et al. 2020) that uses ‘backcast’ and ‘forecast’ to con-
duct backward and forward predictions, we formulate the
Dish-TS as a Dual-CONET architecture, including a BACK-
CONET for input-space distribution of {x(i)

t−L:t}
T−H
t=L ∈

X (i)
input, and a HORICONET for output-space distribution of

{x(i)
t:t+H}T−H

t=L ∈ X (i)
output. In multivariate forecasting, the

two CONETs are illustrated as:

φ
(i)
b,t, ξ

(i)
b,t = BACKCONET(x

(i)
t−L:t), i = 1, · · · , N

φ
(i)
h,t, ξ

(i)
h,t = HORICONET(x

(i)
t−L:t), i = 1, · · · , N

(5)

where φ
(i)
b,t, ξ

(i)
b,t ∈ R1 are coefficients for lookbacks, and

φ
(i)
h,t, ξ

(i)
h,t ∈ R1 are coefficients for horizons at time-step

t, given single i-th variate series. Though sharing the same
input x(i)

t−L:t, the two CONETs have distinct targets, where

BACKCONET aims to approximate distribution X (i)
input from

input lookback signals, while HORICONET is to infer (or
predict) future distribution X (i)

output based on historical ob-
servations. This brings additional challenges in training
HORICONET, detailed in Section 4.4.

Integrating Dual-Conet into Forecasting. After acquir-
ing coefficients from Dual-CONET, the coefficients can be
integrated into any time series forecasting model to alle-
viate the two aforementioned shifts through a two-stage
normalizing-denormalizing process. Specifically, let FΘ

represent any forecasting model, the original forecasting
process x̂(i)

t:t+H = FΘ(x
(i)
t−L:t) is rewritten as:

x̂
(i)
t:t+H = ξ

(i)
h,tFΘ

(
1

ξ
(i)
b,t

(x
(i)
t−L:t −φ

(i)
b,t)

)
+φ

(i)
h,t (6)

where x̂
(i)
t:t+H are the final transformed forecasting re-

sults after integration with dual conets. Actually, Equation
(6) includes a two-stage process with FΘ: (i) normalize
input lookbacks x

(i)
t−L:t before forecasting by x̃

(i)
t−L:t =

1

ξ
(i)
b,t

(x
(i)
t−L:t − φ

(i)
b,t); (ii) denormalize model’s direct output

x̃
(i)
t:t+H after forecasting by x̂

(i)
t:t+H = ξ

(i)
h,tx̃

(i)
t:t+H + φ

(i)
h,t.

Note that even though the above operations only consider
additive and multiplicative transformations, CONET itself
could be any complicated linear/nonlinear mappings in the
generation of coefficients, which is flexible. Finally, the
transformed forecasts x̂(i)

t:t+H are taken to loss optimization.

4.3 A Simple and Intuitive Instance of Conet
Essentially, the flexibility of Dish-TS comes from the spe-
cific CONET design, which could be any neural architectures
for different modeling capacity. To demonstrate the effec-
tiveness of our framework, we provide a most simple and
intuitive instance of CONET design to reduce series shift.

Specifically, given multivariate input {x(i)
t−L:t}Ni=1, the

most intuitive way is to use standard fully connected lay-
ers to conduct linear projections. Let vℓ

b,v
ℓ
h ∈ RL∗N stand

for two basic learnable vectors of layer ℓ of BACKCONET
and HORICONET respectively. Here we consider ℓ = 1 for
simplicity, and then the projection is:

φ
(i)
b,t = σ(

∑dim(vℓ
b,i)

τ=1 vℓ
b,iτx

(i)
τ−L+t),φ

(i)
h,t = σ(

∑dim(vℓ
h,i)

τ=1 vℓ
h,iτx

(i)
τ−L+t)

(7)
where the level coefficients φ

(i)
b,t and φ

(i)
h,t are respectively

from BACKCONET and HORICONET to represent the over-
all scale of input x(i)

t−L:t and output x(i)
t:t+H ; σ here denotes

a leaky ReLU non-linearity (Maas et al. 2013) is utilized in-
stead of original ReLU that ignores negative data and thus
causes information loss. Also, we aim to let scaling coef-
ficients represent the fluctuation for series. Inspired by the

calculation of standard deviation
√∫ +∞

−∞ (x− µ)2f(x)dx

where x is variable and µ is mean, we propose the following
operation to get scaling coefficients:

ξ
(i)
b,t =

√
E(x(i)

t −φ
(i)
b,t)

2, ξ
(i)
h,t =

√
E(x(i)

t −φ
(i)
h,t)

2 (8)

where scaling coefficients ξ
(i)
b,t , ξ

(i)
h,t can actually be seen as

the average deviation of x(i)
t−L:t with regard to φ

(i)
b,t and φ

(i)
h,t.

The equation (8) is also simple, intuitive and easy to com-
pute, without introducing extra parameters to optimize.

4.4 Prior Knowledge-Induced Training Strategy
As aforementioned, BACKCONET estimates distribution of
input-space X (i)

input, while HORICONET needs to infer dis-

tribution of output-space X (i)
output, which is more intractable

because of the gap between input- and output-space. The gap
is even larger with the increase of horizon length.

To solve this problem, we aim to pour some prior
knowledge (i.e., mean of horizons) as soft targets in Dish-
TS to assist the learning of HORICONET to generate co-
efficients φ

(i)
h,t, ξ

(i)
h,t. Even though the statistic mean of

horizons cannot fully reflect the distribution, it can still
demonstrate characteristics of output-space, as discussed
in Section 1. Thus, along the line of equation (6), the
classic mean square error can be given by Lmse =∑K

k=1

∑N
i=1

(
x̂
(i)
tk:tk+H − x

(i)
tk:tk+H

)2
, where K is the

batch size, tk is randomly-sampled time points to compose
batches, and N is number of series. With prior knowledge,
we rewrite the final optimization loss L as:

∑K
k=1

∑N
i=1[(x̂

(i)
tk:tk+H − x

(i)
tk:tk+H)2 + α(

1

H

tk+H∑
t=tk+1

x
(i)
t −φ

(i)
h,tk

)2︸ ︷︷ ︸
Prior Knowledge Guidance

]

(9)
where the left item is mean square error; the right item is
the learning guidance of prior knowledge; α is to control
weight of prior guidance; φ(i)

h,tk
is the level coefficients of

HORICONET to softly optimize.
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Method Informer +Dish-TS Autoformer +Dish-TS N-BEATS +Dish-TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 24 4.394 4.897 1.116 2.413 1.616 3.138 1.535 2.942 1.259 2.572 1.205 2.536

48 4.405 4.904 1.256 2.581 2.291 3.772 1.783 3.199 1.311 2.696 1.286 2.629
96 3.933 4.675 1.060 2.354 2.281 3.726 1.330 2.706 1.271 2.625 1.129 2.447

168 4.083 4.747 1.015 2.301 2.072 3.502 1.162 2.413 1.520 2.879 0.985 2.261
336 4.292 4.848 2.893 4.364 2.112 3.481 1.387 2.722 1.747 3.107 1.497 2.852

E
T

T
h1

24 0.427 1.536 0.339 1.343 0.420 1.505 0.344 1.350 0.406 1.479 0.320 1.279
48 0.855 2.272 0.570 1.824 0.767 2.172 0.588 1.885 0.598 1.841 0.569 1.815
96 0.930 2.328 0.840 2.258 1.100 2.669 0.872 2.340 0.827 2.254 0.785 2.168

168 0.964 2.567 0.911 2.448 1.098 2.659 0.959 2.488 1.052 2.617 0.908 2.399
336 1.146 2.829 0.993 2.520 1.230 2.796 0.936 2.454 1.117 2.639 1.011 2.550

E
T

T
m

2

24 1.328 2.525 0.760 1.686 1.718 2.976 0.762 1.851 0.867 1.804 0.600 1.479
48 1.488 2.649 1.070 2.117 3.061 4.259 1.847 3.082 1.290 2.374 1.145 2.160
96 2.952 4.324 1.631 2.771 3.113 4.309 2.385 3.648 1.707 2.922 1.605 2.747

168 5.114 5.832 2.754 3.841 4.167 4.959 3.413 4.452 2.428 3.603 2.380 3.579
336 5.958 6.490 4.284 5.096 5.753 5.993 4.449 5.213 3.974 4.815 3.568 4.582

W
ea

th
er

24 3.632 1.381 0.725 0.584 1.082 0.775 0.800 0.622 0.570 0.486 0.567 0.480
48 5.933 1.856 1.251 0.798 1.617 0.968 1.317 0.845 1.272 0.825 1.178 0.776
96 6.895 2.071 1.898 1.022 1.901 1.034 1.824 1.005 1.898 0.995 1.783 0.994

168 6.786 2.045 1.932 1.042 1.970 1.046 1.847 1.008 2.571 1.210 1.848 1.024
336 7.393 2.175 2.237 1.099 2.190 1.100 2.015 1.061 3.624 1.486 2.447 1.117

Table 1: Univariate time series forecasting performance. The length of lookbacks/horizons is set the same.
Results of Illness dataset are included Appendix B.1, due to space limit.

5 Experiment
5.1 Experimental Setup
Datasets. We conduct our experiments on five real-world
datasets: (i) Electricity dataset collects the electricity con-
sumption (Kwh) of 321 clients. (ii) ETT dataset includes
data of electricity transformers temperatures. We select
ETTh1 dataset (hourly) and ETTm2 dataset (15-minutely).
(iii) Weather dataset records 21 meteorological features
every ten minutes. (iv) Illness dataset includes weekly-
recorded influenza-like illness patients data. We mainly fol-
low (Zhou et al. 2021) and (Xu et al. 2021) to preprocess
and split data. More details are in Appendix A.1

Evaluation. To directly reflect distribution shift in time se-
ries, all the experiments are conducted on original data with-
out data normalization or scaling. We evaluate time series
forecasting performance on the mean squared error (MSE)
and mean absolute error (MAE). Note that our evaluations
are on original data; thus the reported metrics are scaled for
readability. More evaluation details are in Appendix A.2.

Implementation. All the experiments are implemented
with PyTorch (Paszke et al. 2019) on an NVIDIA RTX 3090
24GB GPU. In training, all the models are trained using
L2 loss and Adam (Kingma and Ba 2014) optimizer with
learning rate of [1e-4, 1e-3]. We repeat three times for each
experiment and report average performance. We let look-
back/horizon windows have the same length, gradually pro-
longed from 24 to 336 except for illness dataset that has
length limitation. We have also discussed larger lookback
length L, larger horizon length H , and prior guidance rate
α. Implementation details are included in Appendix A.3.

Baselines. As aforementioned, our Dish-TS is a general
neural framework that can be integrated into any deep time
series forecasting models for end-to-end training. To verify
the effectiveness, we couple our paradigm with three state-
of-the-art backbone models, Informer (Zhou et al. 2021),
Autoformer (Xu et al. 2021) and N-BEATS (Oreshkin et al.
2020). More baseline details are in Appendix A.4.

5.2 Overall Performance
Univariate time series forecasting. Table 1 demonstrates
the overall univariate time series forecasting performance of
three state-of-the-art backbones and their Dish-TS equipped
versions, where we can easily observe that Dish-TS helps
all the backbones achieve much better performance. The
most right column of Table 1 shows the average improve-
ment of Dish-TS over baseline models under different cir-
cumstances. We can see that Dish-TS can achieve a MSE
improvement more than 20% in most cases, up to 50% in
some cases. Notably, Informer usually performs worse but
can be improved significantly with Dish-TS.
Multivariate time series forecasting. Table 2 demonstrates
the overall multivariate time series forecasting performance
across four datasets and the results and analysis for Illness
dataset are in Appendix B.1. Still, we notice Dish-TS can
also improve significantly in the task of multivariate fore-
casting compared with three backbones. We find out a sta-
ble improvement (from 10% to 30%) on ETTh1, ETTm2 and
Weather datasets when coupled with Dish-TS. Interestingly,
we notice the both original Informer and Autoformer can
hardly converge well in Electricity original data. With Dish-
TS, the data distribution is normalized for better forecasting.
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Method Informer +Dish-TS Autoformer +Dish-TS N-BEATS +Dish-TS

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
le

ct
ri

ci
ty 24 0.482 0.575 0.036 0.249 0.082 0.420 0.040 0.247 0.041 0.281 0.032 0.241

48 0.969 1.002 0.056 0.289 0.125 0.450 0.051 0.278 0.043 0.275 0.041 0.265
96 1.070 1.046 0.084 0.325 0.363 0.642 0.064 0.285 0.067 0.324 0.058 0.286

168 0.960 1.013 0.088 0.335 0.585 0.835 0.080 0.319 0.078 0.347 0.074 0.294
336 1.113 1.058 0.153 0.400 0.569 0.766 0.104 0.357 0.108 0.383 0.108 0.355

E
T

T
h1

24 0.988 1.794 0.876 1.633 1.451 2.100 1.019 1.744 0.797 1.531 0.790 1.501
48 1.318 2.127 1.073 1.846 1.456 2.161 1.240 1.966 0.913 1.696 0.907 1.657
96 2.333 2.965 1.185 2.011 1.371 2.173 1.199 1.982 1.057 1.875 0.975 1.793

168 2.778 3.234 1.273 2.085 1.267 2.146 1.148 1.991 1.038 1.893 0.994 1.858
336 2.825 3.335 1.779 2.586 1.334 2.333 1.147 2.062 1.128 2.020 1.055 1.976

E
T

T
m

2

24 1.352 2.443 0.608 1.594 0.834 1.882 0.676 1.701 0.643 1.609 0.634 1.587
48 1.781 2.973 0.736 1.767 1.165 2.269 0.823 1.903 0.808 1.829 0.785 1.793
96 1.936 3.017 0.877 1.946 1.165 2.237 0.929 2.021 0.953 2.017 0.860 1.904

168 2.822 3.656 1.213 2.273 1.404 2.423 1.308 2.367 1.094 2.143 1.087 2.156
336 2.778 3.638 1.620 2.637 1.795 2.739 1.603 2.624 1.498 2.543 1.448 2.522

W
ea

th
er

24 3.552 2.120 2.224 1.100 4.485 2.313 2.481 1.163 2.557 1.454 2.267 1.093
48 4.206 2.231 3.610 1.644 6.581 2.815 4.299 1.781 5.527 2.393 4.783 1.802
96 3.064 2.042 2.507 1.457 5.812 2.569 3.280 1.806 2.539 1.566 2.280 1.367

168 2.713 2.106 2.184 1.450 4.053 2.188 3.309 1.950 2.160 1.604 1.885 1.309
336 3.472 2.567 2.238 1.611 3.910 2.111 3.314 1.982 2.043 1.551 1.757 1.366

Table 2: Multivariate time series forecasting performance of backbones and Dish-TS. ∗ means N-BEATS is
re-implemented for multivariate time series forecasting; see Appendix A.4 for more details.

Datasets Electiricity ETTh1 ETTm2 Weather
Length 24 168 336 24 168 336 24 168 336 24 168 336

RevIN 0.044 0.091 0.109 1.245 1.462 1.920 0.794 1.501 1.827 3.523 3.658 3.501
Dish-TS 0.039 0.076 0.086 1.018 1.148 1.222 0.651 1.325 1.599 2.481 3.283 3.232

Improve 11.3% 15.3% 21.1% 18.1% 21.4% 36.3% 17.7% 11.7% 12.3% 29.6% 10.7% 7.7%

Table 3: Performance comparisons on MSE with the state-of-the-art normalization technique in multivariate time series fore-
casting taking Autoformer as the backbone. Improvement is towards RevIN. Univariate forecasting results are in Appendix B.2.

5.3 Comparison with Normalization Methods
In this section, we further compare performance with the
state-of-the-art normalization technique, RevIN (Kim et al.
2022), that handles distribution shift in time series fore-
casting. Here we don’t consider AdaRNN (Du et al. 2021)
because it is not compatible for fair comparisons. Table
3 shows the comparison results in multivariate time series
forecasting. We can easily observe though RevIN actually
improves performance of vanilla backbone (Autoformer) to
some degree, Dish-TS can still achieve more than 10% im-
provement on average compared with RevIN. A potential
reason for this significant improvement of such a simple
CONET design is the consideration towards both intra-space
shift and inter-space shift.

5.4 Parameters and Model Analysis
Horizon Analysis. We aim to discuss the influence of
larger horizons (known as long time series forecasting (Zhou
et al. 2021)) on the model performance. Interestingly, from
Table 4, we find out backbone (N-BEATS) performs even
better in Electricity as horizon becomes larger while on other

Horizon 336 420 540 600 720

Electricity 1.7429 1.7859 1.7720 1.6140 1.6023
+Dish-TS 1.3361 1.4507 1.4107 1.4340 1.4785

ETTh1 1.0468 1.2688 1.1696 1.3281 1.4270
+Dish-TS 0.9699 1.0864 1.1361 1.1852 1.1913

Table 4: Impact of larger horizons on forecasting, also re-
ferred as long TSF problems. Performance (MSE) is re-
ported when horizon is prolonged (336 to 720) and lookback
is fixed as 96, taking N-BEATS as backbone model.

datasets like ETTh1 larger horizons introduce more diffi-
culty in forecasting. However, Dish-TS can still achieve bet-
ter performance in different settings. Performance on Dish-
TS is slowly worse with horizon’s increasing. An intuitive
reason is larger horizons include more distribution changes
and thus need more complicated modelling.

Lookback Analysis. We analyze the influence of look-
back length on the model performance. As Table 5 shows,
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Figure 3: Impact of prior guidance α on model performance on (from left to right) Electricity, ETTh1, ETTm2, Weather datasets.

Lookback 48 96 144 192 240

Electricity 1.3026 1.3673 1.2794 1.2686 0.9494
+Dish-TS 1.2862 0.9682 0.7309 0.7156 0.7605

ETTh1 0.5979 0.5745 0.5459 0.5638 0.6309
+Dish-TS 0.5708 0.5451 0.5202 0.5307 0.5234

Table 5: Impact of lookback length on forecasting. Metric
MSE is reported when lookback is set from 48 to 240 when
horizon is fixed as 48, taking N-BEATS as the backbone.

we notice Dish-TS achieves 1.286 → 0.731 on Electricity
and 0.571 → 0.520 when lookback increases from 48 to
144. This signifies in many cases larger lookback windows
bring more historical information to infer the future distri-
bution, thus boosting the prediction performance.

Prior Guidance Rate. We study the impact of prior guid-
ance on model performance. Figure 3 shows the perfor-
mance comparison with different guidance weight α in
Equation (9). From the table, we observe when lookback-
/horizon is small, the performance gap among different αs is
less obvious. However, when length is larger (than 168), the
prediction error of α = 0 (no guidance) increases quickly,
while other settings achieve less errors.

Model Dish-TS (Autoformer) Dish-TS (N-BEATS)
Initilize avg norm uni avg norm uni

E
T

T
h1 24 3.439 3.658 3.532 3.196 3.230 3.292

96 8.794 9.381 8.774 7.878 8.067 7.851
168 9.878 9.725 9.589 9.783 9.250 9.080

W
ea

th
er 24 1.579 0.835 0.799 0.650 0.579 0.566

96 2.127 2.056 1.823 1.915 1.814 1.782
168 2.139 3.140 1.847 1.848 2.323 2.054

Table 6: Impact of initialization of CONET. Lookbacks and
horizons have the same length. Underlined are best results.

Conet Initialization. We aim to study the impact of Conet
initialization on model performance. As mentioned in Sec-
tion 4.3, we create two learnable vectors vℓ

b,v
ℓ
f for Conets.

We consider three strategies to initialize vℓ
b,v

ℓ
f : (i) avg: with

scalar ones; (ii) norm: with standard normal distribution;
(iii) uniform: with random distribution between 0 and 1.
From Table 6, we observe three strategies perform similarly
in most cases, showing stable performance. We also notice

uniform and avg initialization performs better than norm,
which signifies Dish-TS and the hidden distribution may be
better learned when not using norm initialization.

Computational Consumption. We record the extra mem-
ory consumption of Dish-TS. As shown in Appendix B.3,
our simple instance of Dish-TS (referred in Section 4.3) only
causes extra 4MiB (or less) memory consumption, which
can be ignored in real-world applications.

Shift

Shift

Shift

Shift

(a)

(b)

Figure 4: Visualizations of backbone (Autoformer), RevIN,
and Dish-TS on ETTm2 dataset, where we highlight results
when distribution (series trend) largely changes.

Visualizations. We compare predictions of base model
and Dish-TS in Figure 4(a), predictions of RevIN (Kim et al.
2022) and Dish-TS in Figure 4(b). We easily observe when
series trend largely changes (could be regarded as the distri-
bution largely changes), both backbone model (Autoformer)
and RevIN cannot acquire accurate predictions (in black cir-
cles). In contrast, our Dish-TS can still make correct fore-
casting. We show more visualizations in Appendix B.4.

6 Conclusion Remarks
In this paper, we systematically summarize the distribution
shift in time series forecasting as intra-space shift and inter-
space shift. We propose a general paradigm, Dish-TS to bet-
ter alleviate the two shift. To demonstrate the effectiveness,
we provide a most simple and intuitive instance of Dish-TS
along with a prior knowledge-induced training strategy, to
couple with state-of-the-art models for better forecasting.
We conduct extensive experiments on several datasets and
the results demonstrate a very significant improvement over
backbone models. We hope this general paradigm together
with such an effective instance of Dish-TS design can facili-
tate more future research on distribution shift in time series.
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