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Abstract

Goal-conditioned Reinforcement Learning (RL) aims at learn-
ing optimal policies, given goals encoded in special command
inputs. Here we study goal-conditioned neural nets (NNs) that
learn to generate deep NN policies in form of context-specific
weight matrices, similar to Fast Weight Programmers and
other methods from the 1990s. Using context commands of
the form “generate a policy that achieves a desired expected
return,” our NN generators combine powerful exploration of
parameter space with generalization across commands to itera-
tively find better and better policies. A form of weight-sharing
HyperNetworks and policy embeddings scales our method to
generate deep NNs. Experiments show how a single learned
policy generator can produce policies that achieve any return
seen during training. Finally, we evaluate our algorithm on a
set of continuous control tasks where it exhibits competitive
performance. Our code is public.

Introduction
General reinforcement learning (RL) is about training agents
to execute action sequences that maximize cumulative re-
wards in possibly non-continuous, non-differentiable, par-
tially observable environments (Kaelbling, Littman, and
Moore 1996; van Hasselt 2012; Schmidhuber 1990). Goal-
conditioned RL agents can learn to solve many different
tasks, where the present task is encoded by special command
inputs (Schmidhuber and Huber 1991; Schaul et al. 2015).

Many RL methods learn value functions (Sutton and Barto
2018) or estimate stochastic policy gradients (with possibly
high variance) (Williams 1992; Sutton et al. 1999). Upside-
down RL (UDRL) (Srivastava et al. 2019; Schmidhuber
2019) and related methods (Ghosh et al. 2019), however,
use supervised learning to train goal-conditioned RL agents.
UDRL agents receive command inputs of the form “act
in the environment and achieve a desired return within so
much time” (Schmidhuber 2019). Typically, hindsight learn-
ing (Andrychowicz et al. 2017; Rauber et al. 2018) is used
to transform the RL problem into the problem of predict-
ing actions, given reward commands. This is quite powerful.
Consider a command-based agent interacting with an environ-
ment, given a random command c, and achieving return r. Its

*These authors contributed equally.
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behavior would have been optimal if the command had been
r. Hence the agent’s parameters can be learned by maximiz-
ing the likelihood of the agent’s behavior, given command r.
Unfortunately, in the episodic setting, many behaviors may
satisfy the same command. Hence the function to be learned
may be highly multimodal, and a simple Gaussian maximum
likelihood approach may fail to capture the variability in the
data.1

To overcome this limitation, we introduce GoGePo, a novel
method for return-conditioned generation of policies eval-
uated in parameter space. First, we use a Fast Weight Pro-
grammer (FWP) (Schmidhuber 1992, 1993; Ha, Dai, and Le
2016) to generate the parameters of a desired policy, given
a “desired return” command. Then, we evaluate the policy
using a parameter-based value function (Faccio, Kirsch, and
Schmidhuber 2021). This allows for end-to-end optimiza-
tion of the return-conditioned generator producing deep NN
policies by matching the commands (desired returns) to the
evaluated returns.

The paper is structured as follows: Section introduces
the MDP frameworks for action-based and parameter-based
methods; Section reviews the concept of Fast Weight Pro-
grammers; Section describes GoGePo including architectural
choices; Section evaluates our method on continuous control
tasks where it demonstrates competitive performance. Our
analysis shows how a single learned policy generator can pro-
duce policies yielding any desired return seen during training.
Finally, we discuss related and future work in Sections and .
Our implementations are publicly available2.

Background
We consider a Markov Decision Process
(MDP) (Stratonovich 1960; Puterman 2014)
M = (S,A, P,R, γ, µ0). At each time step t, an arti-
ficial agent observes a state st ∈ S, chooses an action
at ∈ A, obtains a reward rt = R(st, at) and transitions
to a new state with probability P (st+1|st, at). The initial
state of the agent is chosen with probability µ0. The
behavior of the agent is expressed through its stochastic

1Note that in stochastic environments with episodic resets, cer-
tain UDRL variants will fail to maximize the probability of satisfy-
ing their commands (Štrupl et al. 2022).

2https://github.com/IDSIA/GoGePo
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policy πθ : S → ∆(A), where θ ∈ Θ are the policy
parameters. If for each state s there is an action a such that
πθ(a|s) = 1, we will call the policy deterministic. The
agent interacts with the environment through episodes,
starting from the initial states, and ending either when
the agent reaches a set of particular states—these can
be failing states or goal states—or when it hits a time
horizon H . We define a trajectory τ ∈ T as the sequence of
state-action pairs that an agent encounters during an episode
in the MDP τ = (sτ,0, aτ,0, sτ,1, aτ,1, . . . , sτ,T , aτ,T ),
where T denotes the time-step at the end of the episode
(T ≤ H). The return of a trajectory R(τ) is defined as the
cumulative discounted sum of rewards over the trajectory
R(τ) =

∑T
t=0 γ

tR(sτ,t, aτ,t), where γ ∈ (0, 1] is the
discount factor.

The RL problem consists in finding the policy πθ∗ that
maximizes the expected return obtained from the environ-
ment, i.e. πθ∗ = argmaxπθ

J(θ):

J(θ) =

∫
T
p(τ |θ)R(τ) dτ, (1)

where p(τ |θ) = µ0(s0)
∏T

t=0 πθ(at|st)P (st+1|st, at) is the
distribution over trajectories induced by πθ in the MDP.
When the policy is stochastic and differentiable, by taking
the gradient of J(θ) with respect to the policy parameters we
obtain an algorithm called REINFORCE (Williams 1992):
∇θJ(θ) =

∫
T p(τ |θ)∇θp(τ |θ)R(τ) dτ .

In parameter-based methods (Sehnke et al. 2010, 2008;
Salimans et al. 2017; Mania, Guy, and Recht 2018), at the
beginning of each episode, the weights of a policy are sam-
pled from a distribution νρ(θ), called the hyperpolicy, which
is parametrized by ρ. Typically, the stochasticity of the hy-
perpolicy is sufficient for exploration, and deterministic poli-
cies are used. The RL problem translates into finding the
hyperpolicy parameters ρ maximizing expected return, i.e.
νρ∗ = argmaxνρ

J(ρ):

J(ρ) =

∫
Θ

νρ(θ)

∫
T
p(τ |θ)R(τ) dτ dθ. (2)

This objective is maximized by taking the gradient of J(ρ)
with respect to the hyperpolicy parameters: ∇ρJ(ρ) =∫
Θ

∫
T νρ(θ)∇ρ log νρ(θ)p(τ |θ)R(τ) dτ dθ. This gradient

can be either approximated through samples (Sehnke et al.
2010, 2008; Salimans et al. 2017) or estimated using finite
difference methods (Mania, Guy, and Recht 2018). This only
requires differentiability and stochasticity of the hyperpolicy.

For deterministic hyperpolicy and stochastic policy, the
dependency on ρ is lost and the policy parameters θ can be
directly maximized using Equation 1. Since the optimization
problem is episodic, we can set the discount factor γ to 1.

Fast Weight Programmers
Fast Weight Programmers (FWPs) (Schmidhuber 1992, 1993)
are NNs that generate changes of weights of another NN
conditioned on some contextual input. In our UDRL-like case,
the context is the desired return to be obtained by a generated
policy. The outputs of the FWP are the policy parameters

θ ∈ Θ. Formally, our FWP is a function Gρ : Rnc −→ Θ,
where c ∈ Rnc is the context-input and ρ ∈ P are the FWP
parameters. Here, we consider a probabilistic FWP of the
form gρ(θ|c) = Gρ(c)+ϵ, with ϵ ∼ N (0, σ2I) and σ is fixed.
In this setting, the FWP conditioned on context c induces a
probability distribution over the parameter space, similar to
the one induced by the hyperpolicy in Section . Using the
FWP to generate the weights of a policy, we can rewrite the
RL objective, making it context-dependent:

J(ρ, c) =

∫
Θ

gρ(θ|c)
∫

T
p(τ |θ)R(τ) dτ dθ. (3)

Compared to Eq. 2, J(ρ, c) induces a set of optimization
problems that now are context-specific 3. Here, J(ρ, c) is
the expected return for generating a policy with a generator
parametrized by ρ, when observing context c. Instead of opti-
mizing Eq. 2 using policy gradient methods, we are interested
in learning a good policy through pure supervised learning
by following a sequence of context-commands of the form
“generate a policy that achieves a desired expected return.”
Under such commands, for any c, the objective J(ρ, c) can
be optimized with respect to ρ to equal c. FWPs offer a suit-
able framework for this setting, since the generator network
can learn to create weights of the policy network so that it
achieves what the given context requires.

Deep Policy Generators (GoGePo)
Here we develop GoGePo, our algorithm to generate policies
that achieve any desired return. In the supervised learning sce-
nario, it is straightforward to learn the parameters of the FWP
that minimize the error LG(ρ) = Ec∈D,θ∼gρ(·|c)[(J(θ)−c)2],
where the context c comes from some set of possible com-
mands D. This is because in supervised learning J(θ), the ex-
pected return, is a differentiable function of the policy param-
eters, unlike in general RL. Therefore, to make the objective
differentiable, we learn an evaluator function Vw : Θ −→ R
parametrized by w that estimates J(θ) using supervised learn-
ing (Faccio, Kirsch, and Schmidhuber 2021). This function
is a map from the policy parameters to the expected return.
Once V is learned, the objective LG(ρ) can be optimized end-
to-end, like in the supervised learning scenario, to directly
learn the generator’s parameters. Concretely, we minimize
LG(ρ) = Ec∈D[(Vw(Gρ(c)) − c)2] to learn the parameters
ρ.

Our method is described in Algorithm 1 and consists of
three steps. First, in each iteration, a command c is chosen
following some strategy. Ideally, to ensure that the generated
policies improve over time, the generator should be instructed
to produce larger and larger returns. We discuss command
strategies in the next paragraph. The generator observes c
and produces policy πθ which is run in the environment. The
return and the policy (r, θ) are then stored in a replay buffer.
Second, the evaluator function is trained to predict the return

3Note the generality of Eq. 3. In supervised learning, common
FWP applications include the case where g is deterministic, θ are
the weights of an NN (possibly recurrent), p(τ |θ) is the output of
the NN given a batch of input data, R(τ) is the negative supervised
loss.
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Figure 1: GoGePo generates policies using a Fast Weight
Programmer (hypernetwork) conditioned on a desired return
and evaluates the resulting policy using a parameter-based
value function based on fingerprinting. This enables training
using supervised learning.

of the policies observed during training. This is achieved
by minimizing MSE loss LV (w) = E(r,θ)∈B [(r − Vw(θ))

2].
Third, we use the learned evaluator to directly minimize
LG(ρ) = Er∈B [(r − Vw(Gρ(r)))

2].
By relying on an evaluator function V that maps policy

parameters to expected return, we do not need to model
multimodal behavior. The generator is trained to produce
policies such that the scalar return command matches the
evaluator’s scalar return prediction. In practice, the generator
finds for each return command c a point θ in the domain of
the evaluator function such that V (θ) = c. As a very simple
example, assume J(θ) = θ2, θ ∈ [−1, 1]. If methods like
UDRL observe θ1 = 1/2 with r1 = 1/4 and θ2 = −1/2
with r2 = 1/4, a Gaussian maximum likelihood approach
will learn to map r = 1/4 to θ = 0, but for θ = 0 the return is
0. Our evaluator function learns to approximate J(θ), so our
generator will learn to find a single θ such that V (θ) = 1/4.
The value of θ produced by the generator depends on the
optimization process and on the shape of V . In other words,
the multimodality issue is turned into having multiple optimal
points in the optimization of the generator.

Choosing the Command The strategy of choosing the
command c before interacting with the environment is impor-
tant. Intuitively, asking the generator to produce low return
policies will not necessarily help finding better policies. On
the other hand, asking for too much will produce policies
that are out of distribution, given the training data, and the
generator cannot be trusted to produce such values. Hence it
is reasonable to ask the generator to produce a return close to

the highest one observed so far. More on command strategies
can be found in Section .

Scaling to Deep Policies Both generating and evaluating
the weights of a deep feedforward MLP-based policy is diffi-
cult for large policies. The sheer number of policy weights,
as well as their lack of easily recognizable structure, requires
special solutions for generator and evaluator. To scale FWPs
to deep policies, we rely on the relaxed weight-sharing of
hypernetworks (Ha, Dai, and Le 2016) for the generator,
and on parameter-based value functions (Faccio, Kirsch, and
Schmidhuber 2021) using a fingerprinting mechanism (Harb
et al. 2020; Faccio et al. 2022) for the evaluator. We discuss
these two approaches in the next section.

HyperNetworks
The idea behind certain feed-forward FWPs called hyper-
networks (Ha, Dai, and Le 2016) is to split the parameters
of the generated network θ into smaller slices sl. A shared
NN H with parameters ξ receives as input a learned embed-
ding zl and outputs the slice sl for each l, i.e. sl = Hξ(zl).
Following (von Oswald et al. 2020), further context informa-
tion can be given to H in form of an additional conditioning
input c, which can be either either scalar or vector-valued:
sl = Hξ(zl, c). Then the weights are combined by concate-
nating all generated slices:

θ = [s1 s2 s3 . . .] . (4)

The splitting of θ into slices and the choice of H depend
on the specific architecture of the generated policy. Here we
are interested in generating MLP policies whose parameters
θ consist of weight matrices Kj with j ∈ {1, 2, . . . , nK},
where nK is the policy’s number of layers. We use an MLP
Hξ to generate each slice of each weight matrix: the hyper-
network generator Gρ splits each weight matrix into slices
sjmn ∈ Rf×f , where j is the policy layer, and m,n are in-
dexes of the slice in weight matrix of layer l. For each of these
slices, a small embedding vector zjmn ∈ Rd is learned. Our
network Hξ is an MLP, followed by a reshaping operation

MLP
re-

shape

Figure 2: Generating a weight matrix K by concatenating
slices that are generated from learned embeddings z and
conditioning c using a shared network H .
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Algorithm 1: GoGePo with return commands
Input: Differentiable generator Gρ : R → Θ with parameters ρ; differentiable evaluator Vw : Θ → R with parameters w; empty
replay buffer D
Output : Learned Vw ≈ V (θ)∀θ, learned Gρ s.t. V (Gρ(r)) ≈ r∀r

1: Initialize generator and critic weights ρ,w, set initial return command c = 0
2: repeat
3: Sample policy parameters θ ∼ gρ(θ, c)
4: Generate an episode s0, a0, r1, s1, a1, r2, . . . , sT−1, aT−1, rT with policy πθ

5: Compute return r =
∑T

k=1 rk
6: Store (r, θ) in the replay buffer D
7: for many steps do
8: Sample a batch B = {(r, θ)} from D
9: Update evaluator by stochastic gradient descent: ∇w E(r,θ)∈B [(r − Vw(θ))

2]
10: end for
11: for many steps do
12: Sample a batch B = {r} from D
13: Update generator by stochastic gradient descent: ∇ρ Er∈B [(r − Vw(Gρ(r)))

2]
14: end for
15: Set next return command c using some strategy
16: until convergence

that turns a vector of size f2 into an f × f matrix:

sjmn = Hξ(z
j
mn, c). (5)

The slices are then concatenated over two dimensions to
obtain the full weight matrices:

Kj =


sj11 sj12 . . .

sj21 sj22
...

. . .

 . (6)

The full hypernetwork generator Gρ consists of the shared
network Hξ, as well as all embeddings zjmn. Its learnable
parameters are ρ = {ξ, zjmn∀m,n, j}.

Generator Gρ is supposed to dynamically generate pol-
icy parameters, conditioned on the total return these policies
should achieve. The conditioning input c is simply this scalar
return command. It is appended to each learned slice embed-
ding zjmn. The resulting vectors are the inputs to the network
H . Figure 2 shows a diagram of this process.

For the the slicing to work, the widths and heights of the
weight matrices have to be multiples of f . For the hidden
layers of an MLP, this is easily achieved since we can freely
choose the numbers of neurons. For the input and output
layers, however, we are constrained by the dimensions of
environmental observations and actions. To accommodate
any number of input and output neurons, we use dedicated
networks Hi and Ho for the input and output layers. The
generated slices have the shape f × ni for the input layer (ni

is the number of input neurons) and no × f for the output
layer (no is the number of output neurons).

Policy Fingerprinting
Recent work (Faccio et al. 2022) use a policy fingerprint-
ing mechanism (Harb et al. 2020) as an effective method to
evaluate the performance of multiple NNs through a single

function. Policy fingerprinting works by giving a set of learn-
able probing states as input to the policy πθ. The resulting
outputs of the policy—called probing actions—are concate-
nated and given as input to an MLP U that computes the
prediction Vw(θ). Here the set of parameters w of this evalu-
ator consists of the MLP parameters ϕ and all the parameters
of the probing states. When training Vw, the probing states
learn to query the policy in meaningful situations, so that the
policy’s success can be judged by its probing actions. Fin-
gerprinting is similar to a previous technique (Schmidhuber
2015) where an NN learns to send queries (sequences of acti-
vation vectors) into another already trained NN, and learns
to use the answers (sequences of activation vectors) to im-
prove its own performance. Figure 1 shows a diagram of our
method with a hypernetwork generator and a fingerprinting
value function.

The benefits of policy fingerprinting over directly observ-
ing policy weights become apparent as soon as we have
at least one hidden layer in an MLP policy: the weights
then have a large number of symmetries, i.e., many different
weight configurations that are entirely equivalent in terms
of the input-output mapping of the network. The main sym-
metries reflect possible permutations of hidden neurons and
scalings of the weight matrices (Kůrková and Kainen 1994).

The probing actions of the fingerprinting mechanism are
invariant with respect to such symmetries. In fact, they are
invariant even with respect to the general policy architecture.
This entails advantages not only for the value function Vw,
but also for the generator: the gradients w.r.t. the generator’s
weights ρ are obtained by backpropagating through Vw. If
Vw is fingerprinting-based, these gradients will point only
in directions which, when followed, actually yield changes
of the generated policy’s probing actions. Consequently, the
generator will ignore potential policy weight changes that
have no effect on the policy’s probing actions (which are
proxies for the policy’s general behavior in the environment).
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Experiments
We empirically evaluate GoGePo as follows: First, we show
competitive performance on common continuous control
problems. Then we use the the learned fingerprinting mecha-
nism to visualize the policies created by the generator over
the course of training, and investigate its learning behavior.

Results on Continuous Control RL Environments
We evaluate our method on continuous control tasks from the
MuJoCo (Todorov, Erez, and Tassa 2012) suite. Augmented
Random Search (ARS) (Mania, Guy, and Recht 2018), a
competitive parameter-based method, serves as a strong base-
line. We also compare our method to other popular algo-
rithms for continual control tasks: Deep Deterministic Policy
Gradients (DDPG) (Silver et al. 2014), Soft Actor Critic
(SAC) (Haarnoja et al. 2018) and Twin Delayed Deep Deter-
ministic Policy Gradients (TD3) (Fujimoto, Hoof, and Meger
2018). In addition, we include as a baseline UDRL (Sri-
vastava et al. 2019) and confirm that UDRL is not sample
efficient for continuous control in environments with episodic
resets (Schmidhuber 2019), in line with previous experimen-
tal results.

In the experiments, all policies are MLPs with two hid-
den layers, each having 256 neurons. Our method uses the
same set of hyperparameters in all environments. For ARS
and UDRL, we tune a set of hyperparameters separately for
each environment (step size, population size, and noise for
ARS; nonlinearity, learning rate and the “last few” parameter
for UDRL). For DDPG, SAC and TD3, we use the estab-
lished sets of default hyperparameters. Details can be found
in Appendix A.

Figure 3: Performance of policies created with GoGePo (our
method), ARS, DDPG, SAC, TD3 and UDRL over the course
of training. Curves show the mean return and 95% boot-
strapped confidence intervals from 20 runs as a function of
total environment interactions.

We find that while always asking to generate a policy with
return equal to the best return ever seen, there is a slight
advantage when asking for more than that. In particular, we
demonstrate that a simple strategy such as “produce a policy
whose return is 20 above the one of the best policy seen so far”
can be very effective. We present an ablation showing that this
strategy is slightly better than the strategy “produce a policy
whose return equal to the one of the best policy seen so far” in
Appendix B.3. This suggests that our method’s success is not
only due to random exploration in parameter space but also
to generalization over commands: it learns to understand and
exploit the nature of performance improvements in a given
environment.

For our method and ARS, we use observation normal-
ization (see (Mania, Guy, and Recht 2018; Faccio, Kirsch,
and Schmidhuber 2021)). Furthermore, following ARS, the
survival bonus of +1 for every timestep is removed for the
Hopper-v3 environment, since for parameter-based methods
it leads to the local optimum of staying alive without any
movement. In tasks without fixed episode length, quickly
failing bad policies from the early stages of training tend to
dominate the replay buffer. To counteract this, we introduce a
recency bias when sampling training batches from the buffer,
assigning higher probability to newer policies. It is treated as
an additional hyperparameter. In Figure 7 in the Appendix
we provide an ablation showing the importance of this com-
ponent. Figure 3 shows our main experimental result (see
also Table 1 in the Appendix).

Our Algorithm 1 performs very competitively in the tested
environments with the exception of Hopper, where TD3 and
SAC achieve higher expected return. In Swimmer and Hop-
per environments, our method learns faster than ARS, while
eventually reaching the same asymptotic performance. In
MountainCarContinuous, DDPG, SAC and TD3 are unable
to explore the action space, and parameter-based methods
quickly learn the optimal policy. Our method always outper-
forms UDRL.

Analyzing the Generator’s Learning Process
The probing actions created by the fingerprinting mechanism
of the value function Vw can be seen as a compact meaningful
policy embedding useful to visualize policies for a specific
environment. In Figure 4 we apply PCA to probing actions
to show all policies in the buffer after training, as well as
policies created by the generator at different stages of training
when given the same range of return commands. Policies are
colored in line with achieved return. The generator’s objective
can be seen as finding a trajectory through policy space,
defined by the return commands, connecting the lowest with
the highest return. In Figure 4, this corresponds to a trajectory
going from a dark to a bright area. Indeed, we observe that
the generator starts out being confined to the dark region
(producing only bad policies) and over the course of training
finds a trajectory leading from the darkest (low return) to the
brightest (high return) regions.

Figure 5 shows the the returns achieved by policies that
are created by a fully trained generator when given a range
of return commands. This highlights a feature of the pol-
icy generator: while most RL algorithms generate only the
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Figure 4: Policies generated by the generator during different stages of training. The background shows all policies executed
during training (i.e., in the replay buffer), colored according to their returns. The 2D coordinates of the policies are determined by
the PCA of their probing actions (obtained by the final critic Vw). The chains of points show the policies created by the generator
when given return commands ranging from the minimum (darker end of the chain) to the maximum (last point at the brighter
end) possible return in the environment. Each chain represents a different stage of training, from almost untrained to fully trained.
After training, the generator is able to produce policies across the whole performance spectrum.

best-performing policy, our generator is in principle able to
produce by command policies across the whole performance
spectrum. For the environments Swimmer and Hopper (Fig-
ures 5a and 5b), this works in a relatively reliable fashion. In
Hopper the return used does not include survival bonus. A
return of 2000 without survival bonus corresponds roughly
to a return of 3000 with survival bonus.

It is worth noting, however, that in some environments it is
hard or even impossible to achieve every given intermediate
return. This might be the case, for example, if the optimal
policy is much simpler than a slightly sub-optimal one, or if a
large reward is given once a goal state is reached. We can ob-
serve this effect for the environments InvertedPendulum and
MountainCar—see Figures 5c and 5d. There the generator
struggles to produce the desired identity of return command
and achieved return—instead we get something closer to a
step function. However, this does not prevent our method
from quickly finding optimal policies in these environments.
More details in Appendix B.2.

Related Work
Policy Conditioned Value Functions Compared to stan-
dard value functions conditioned on a specific policy, policy-
conditioned value functions generate values across several
policies (Faccio, Kirsch, and Schmidhuber 2021; Harb et al.
2020; Faccio et al. 2022). This has been used to directly maxi-
mize the value using gradient ascent in the policy parameters.
Here we use it to evaluate any policy generated by our pol-

icy generator. In contrast to previous work, this allows for
generating policies of arbitrary quality in a zero-shot manner,
without any gradient-based iterative training procedure.

Hindsight and Upside Down RL Upside Down RL
(UDRL) transforms the RL problem into a supervised learn-
ing problem by conditioning the policy on commands such
as “achieve a desired return” (Schmidhuber 2019; Srivas-
tava et al. 2019). UDRL methods are related to hindsight
RL where the commands correspond to desired goal states
in the environment (Schmidhuber 1991; Kaelbling 1993;
Andrychowicz et al. 2017; Rauber et al. 2018). In UDRL,
just as in our method GoGePo, the required dataset of states,
actions, and rewards is collected online during iterative im-
provements of the policy (Srivastava et al. 2019).

The conceptually highly related Decision Transformer
(DT) (Janner, Li, and Levine 2021)) is designed for offline
RL and thus requires a dataset of experiences from policies
trained using other methods. A recent DT variant called “On-
line DT” (Chen et al. 2021) alternates between an offline
pretraining phase, using data already collected, and an online
finetuning phase, where hindsight learning is used. Online
DTs and UDRL suffer from the same multi-modality issues
when fitting data using unimodal distributions and a maxi-
mum likelihood approach. In addition to the multi-modality
issue, UDRL and Goal-Conditioned Supervised Learning
(GCSL) can diverge when the environments are stochastic
and the task episodic (Štrupl et al. 2022).
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Figure 5: Achieved returns (mean of 10 episodes) of policies
created by fully trained generators as a function of the given
return command. A perfect generator would produce poli-
cies that lie on the diagonal identity line (if the environment
permits such returns). For each environment, results of five
independent runs are shown.

Our method learns online and does not rely on offline
pretraining. It solves the multimodality issue of UDRL and
outperforms it in terms of sample efficiency. We have not
analyzed the convergence properties of our method. However,
since we do not use hindsight learning, the counterexamples
of Štrupl et al. (2022) do not apply. Instead of optimizing the
policy to achieve a desired reward in action space, our method
GoGePo evaluates the generated policies in command space.
This is done by generating, conditioning on a command, a
policy that is then evaluated using a parameter-based value
function and trained to match the command to the evaluated
return. This side-steps the issue with multi-modality in certain
types of UDRL for episodic environments, where a command
may be achieved through many different behaviors, and fitting
the policy to varying actions may lead to sub-optimal policies.

Alternatively, the multimodality problem could be solved
using a return-conditioned policy that directly outputs a multi-
modal action distribution, or is conditioned on random latent
variables. To the best of our knowledge, this has not been
tried for return-conditioned RL.

Fast Weight Programmers and HyperNetworks The idea
of using a neural network (NN) to generate weight changes
for another NN dates back to Fast Weight Programmers
(FWPs) (Schmidhuber 1992, 1993), later scaled up to deeper
neural networks under the name of hypernetworks (Ha, Dai,
and Le 2016). While in traditional NNs the weight matrix re-
mains fixed after training, FWPs make these weights context-
dependent. More generally, FWPs can be used as neural func-
tions that involve multiplicative interactions and parameter
sharing (Kirsch and Schmidhuber 2021). When updated in

recurrent fashion, FWPs can be used as memory mechanisms.
Linear transformers are a type of FWP where information is
stored through outer products of keys and values (Schlag, Irie,
and Schmidhuber 2021; Schmidhuber 1992). FWPs are used
in the context of memory-based meta learning (Schmidhuber
1993; Miconi, Stanley, and Clune 2018; Gregor 2020; Kirsch
and Schmidhuber 2021; Irie et al. 2021; Kirsch et al. 2022),
predicting parameters for varying architectures (Knyazev
et al. 2021), and reinforcement learning (Gomez and Schmid-
huber 2005; Najarro and Risi 2020; Kirsch et al. 2022). In
contrast to all of these approaches, ours uses FWPs to condi-
tionally generate policies given a command.

Conclusion and Future Work
Our GoGePo is an RL framework for generating policies
yielding given desired returns. Hypernetworks in conjunction
with fingerprinting-based value functions can be used to train
a Fast Weight Programmer through supervised learning to
directly generate parameters of a policy that achieves a given
return. By iteratively asking for higher returns than those
observed so far, our algorithm trains the generator to produce
highly performant policies from scratch.

Empirically, GoGePo is competitive with ARS and DDPG
and outperforms UDRL on continuous control tasks. It also
circumvents the multi-modality issue found in many ap-
proaches of the UDRL family. Further, our approach can
be used to generate policies with any desired return.

There are two current limitations of our approach that
we want to highlight: First, NNs created by an untrained
generator might have weights that are far from typical ini-
tialization schemes. Exploration starting with such policies
might be hard. We include further investigation of this in
Appendix B.4. Second, our method is based on the episodic
return signal. Extending it by considering also the state of the
agent might help to increase sample efficiency. Future work
will also consider context commands other than those asking
for particular returns, as well as generators based on latent
variable models (e.g., conditional variational autoencoders)
allowing for capturing diverse sets of policies, to improve
exploration of complex RL environments.

Appendix
For the Appendix, see https://arxiv.org/abs/2207.01570.
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