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Abstract

Training ML models which are fair across different demo-
graphic groups is of critical importance due to the increased
integration of ML in crucial decision-making scenarios such
as healthcare and recruitment. Federated learning has been
viewed as a promising solution for collaboratively training
machine learning models among multiple parties while main-
taining their local data privacy. However, federated learning
also poses new challenges in mitigating the potential bias
against certain populations (e.g., demographic groups), as this
typically requires centralized access to the sensitive infor-
mation (e.g., race, gender) of each datapoint. Motivated by
the importance and challenges of group fairness in federated
learning, in this work, we propose FairFed, a novel algorithm
for fairness-aware aggregation to enhance group fairness in
federated learning. Our proposed approach is server-side and
agnostic to the applied local debiasing thus allowing for flex-
ible use of different local debiasing methods across clients.
We evaluate FairFed empirically versus common baselines
for fair ML and federated learning and demonstrate that it
provides fairer models, particularly under highly heteroge-
neous data distributions across clients. We also demonstrate
the benefits of FairFed in scenarios involving naturally dis-
tributed real-life data collected from different geographical
locations or departments within an organization.

Introduction
An important notion of fairness in machine learning, group
fairness (Dwork et al. 2012), concerns the mitigation of
bias in the performance of a trained model against cer-
tain protected demographic groups, which are defined based
on sensitive attributes within the population (e.g., gender,
race). Several approaches to achieve group fairness have
been studied in recent years in centralized settings. How-
ever, these approaches rely on the availability of the entire
dataset at a central entity during training and are therefore
unsuitable for application in Federated Learning (FL).

Federated learning allows for decentralized training of
large-scale models without requiring direct access to clients’
data, hence maintaining their privacy (Kairouz et al. 2021;
Wang et al. 2021a). However, this decentralized nature
makes it complicated to translate solutions for fair training
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Figure 1: Comparison of local/global debiasing under differ-
ent heterogeneity levels. For the Equal Opportunity Differ-
ence (EOD) metric, values close to 0 indicate better fairness.

from centralized settings to FL, where the decentralization
of data is a major cornerstone. This gives rise to the key
question that we attempt to answer in this paper: How can
we train a classifier using FL so as to achieve group fair-
ness, while maintaining data decentralization?

Potential approaches for group fairness in FL. One po-
tential solution that one may consider for training fair mod-
els in FL is for each client to apply local debiasing on its
locally trained models (without sharing any additional infor-
mation or data), while the FL server simply aggregates the
model parameters in each round using FL aggregation algo-
rithms such as FedAvg (McMahan et al. 2017) (or its sub-
sequent derivatives, e.g., FedOPT (Reddi et al. 2020), Fed-
Nova (Wang et al. 2020)). Although this allows for training
a global model without explicitly sharing the local datasets,
but the drawback is that applying a debiasing mechanism
at each client in isolation on its local dataset can results in
poor performance in scenarios where data distributions are
highly-heterogeneous across clients (See Figure 1).

Another potential solution for fair training in FL would be
to adapt a debiasing technique from the rich literature of cen-
tralized fair training to be used in FL. Although this may re-
sult in reasonable fair training (see Figure 1), however, in the
process of applying this debiasing globally, the clients may
need to exchange additional detailed information with the
server about their dataset constitution which can leak infor-
mation about different subgroups in the client’s dataset. For
example, the server may require knowledge of the model’s
performance on each group in a client’s dataset and/or local
statistical information about each group in the dataset.
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Figure 2: FairFed: Group fairness-aware FL framework.

The Proposed FairFed Approach. Motivated by the
drawbacks of the two aforementioned directions, in this
work, we propose FairFed, a strategy to train fair models via
a fairness-aware aggregation method (Figure 2). In FairFed,
each client performs local debiasing on its own local dataset,
thus maintaining data decentralization and avoiding the ex-
change of any explicit information of its local data composi-
tion. To amplify the local debiasing performance, the clients
will evaluate the fairness of the global model on their lo-
cal datasets in each FL round and collectively collaborate
with the server to adjust its model aggregation weights. The
weights are a function of the mismatch between the global
fairness measurement (on the full dataset) and the local fair-
ness measurement at each client, favoring clients whose lo-
cal measures match the global measure. We carefully design
the exchange between the server and clients during weights
computation, making use of the secure aggregation proto-
col (Bonawitz et al. 2017) to prevent the server from learning
any explicit information about any single client’s dataset.

The server-side/local debiasing nature of FairFed gives it
the following benefits over existing fair FL strategies:
• Enhancing group fairness under data heterogeneity:

One of the biggest challenges to group fairness in FL
is the heterogeneity of data distributions across clients,
which limits the impact of local debiasing efforts on the
global data distribution. FairFed shows significant im-
provement in fairness performance under highly hetero-
geneous distribution settings and outperforms state-of-
the-art methods for fairness in FL, indicating promising
implications from applying it to real-life applications.

• Freedom for different debiasing across clients: As
FairFed works at the server side and only requires eval-
uation metrics of the model fairness from the clients, it
is more flexible to run on top of heterogeneous client
debiasing strategies (we expand on this notion in Sec-
tions ). For example, different clients can adopt different
local debiasing methods based on the properties (or lim-
itations) of their devices and data partitions.

Background and Related Work
Group fairness in centralized learning. In classical cen-
tralized ML, common approaches for realizing group fair-
ness can be classified into three categories: pre-processing
(Grgić-Hlača et al. 2018; Feldman et al. 2015), in-processing
(Kamishima et al. 2012; Zhang, Lemoine, and Mitchell
2018; Roh et al. 2021) and post-processing (Lohia et al.
2019; Kim, Ghorbani, and Zou 2019) techniques. However,

a majority of these techniques need centralized access to the
sensitive information (e.g., race) of each datapoint, making
it unsuitable for FL. As a result developing effective ap-
proaches for fair FL is an important area of study.

Fairness in federated learning. New challenges in FL
have introduced different notions of fairness. These new no-
tions include for example, client-based fairness (Li et al.
2019; Mohri, Sivek, and Suresh 2019) which aims to equal-
ize model performance across different clients or collabo-
rative fairness (Lyu et al. 2020; Wang et al. 2021b) which
aims to reward a highly-contributing participant with a better
performing local model than is given to a low-contributing
participant. In this paper, we instead focus on the notion of
group fairness in FL, where each datapoint in the FL system
belongs to particular group, and we aim to train models that
do not discriminate against any group of datapoints.

Several recent works have made progress on group fair-
ness in FL. One common research direction is to distribu-
tively solve an optimization objective with fairness con-
straints (Zhang, Kou, and Wang 2020; Du et al. 2021; Gálvez
et al. 2021), which requires each client to share the statis-
tics of the sensitive attributes of its local dataset to the
server. The authors in (Abay et al. 2020) investigated the
effectiveness of adopting a global reweighting mechanism.
In (Zeng, Chen, and Lee 2021), an adaptation of the Fair-
Batch debiasing algorithm (Roh et al. 2021) is proposed
for FL where clients use FairBatch locally and the weights
are updated through the server in each round. In (Papadaki
et al. 2021), an algorithm is proposed to achieve minimax
fairness in federated learning. In these works, the server re-
quires each client to explicitly share the performance of the
model on each subgroup separately; for example (males with
+ve outcomes, females with +ve outcomes, etc). Differently
from these works, our proposed FairFed method does not re-
strict the local debiasing strategy of the participating clients,
thus increasing the flexibility of the system. Furthermore,
FairFed does not share explicit information on the model
performance for any specific group within a client’s dataset.
Finally, our empirical evaluations consider extreme cases
of data heterogeneity and demonstrate that our method can
yield significant fairness improvements in these situations.

Preliminaries
We begin by reviewing the standard FL setup (McMahan
et al. 2017), and then introduce key definitions and metrics
for group fairness. We then extend these to the FL setting by
defining the notions of global and local fairness in FL.
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Federated Learning Setup
Following a standard FL setting (McMahan et al. 2017),
we consider a scenario where K clients collaborate with
a server to find a parameter vector θ that minimizes the
weighted average of the loss across all clients. In particular:

min
θ

f(θ) =
K∑

k=1

ωkLk(θ), (1)

where: Lk(θ) denotes the local objective at client k; ωk ≥ 0,
and

∑
ωk = 1. The local objective Lk’s can be defined by

empirical risks over the local dataset Dk of size nk at client
k, i.e., Lk(θ) =

1
nk

∑
(x,y)∈Dk

ℓ(θ,x, y).
To minimize the objective in (1), the federated averag-

ing algorithm FedAvg, proposed in (McMahan et al. 2017),
samples a subset of the K clients per round to perform
local training of the global model on their local datasets.
The model updates are then averaged at the server, being
weighted based on the size of their respective datasets.

To ensure the server does not learn any information
about the values of the individual transmitted updates from
the clients beyond the aggregated value that it sets out to
compute, FedAvg typically employs a Secure Aggregation
(SecAgg) algorithm (Bonawitz et al. 2017).

Training using FedAvg and its subsequent improvements
(e.g., FedOPT (Reddi et al. 2020)) allows training of a high-
performance global model, however, this collaborative train-
ing can result in a global model that discriminates against
an underlying demographic group of datapoints (similar to
biases incurred in centralized training of machine learning
models (Dwork et al. 2012)). We highlight key notions of
group fairness in fair ML in the following subsection.

Notions of Group Fairness
In sensitive machine learning applications, a data sample
often contains private and sensitive demographic informa-
tion that can lead to discrimination. In particular, we as-
sume that each datapoint is associated with a sensitive bi-
nary attribute A (e.g., gender or race). For a binary predic-
tion model Ŷ (θ,x), the fairness is evaluated with respect
to its performance compared to the underlying groups de-
fined by the sensitive attribute A. We use A = 1 to represent
the privileged group (e.g., male), while A = 0 is used to
represent the under-privileged group (e.g., female). For the
binary model output Ŷ (and similarly the label Y ), Ŷ = 1
is assumed to be the positive outcome. Using these defini-
tions, we can now define two group fairness notions that are
applied in group fairness literature for centralized training:
Definition 1 (Equal Opportunity) : Equal opportunity
(Hardt et al. 2016) measures the performance a binary
predictor Ŷ with respect to A and Y . The predictor is
considered fair from the equal opportunity perspective if the
true positive rate is independent of the sensitive attribute A.
To measure this, we use the Equal Opportunity Difference
(EOD), defined as

EOD=Pr(Ŷ=1|A=0,Y=1)−Pr(Ŷ=1|A=1,Y=1). (2)

Definition 2 (Statistical Parity) : Statistical parity (Dwork
et al. 2012) rewards the classifier for classifying each group

as positive at the same rate. Thus, a binary predictor Ŷ is
fair from the statistical parity perspective if Pr(Ŷ = 1|A =

1) = Pr(Ŷ = 1|A = 0). Thus, the Statistical Parity Differ-
ence (SPD) metric is defined as

SPD = Pr(Ŷ = 1|A = 0)− Pr(Ŷ = 1|A = 1). (3)

For the EOD and SPD metrics, values closer to zero indicate
better fairness. Positive fairness metrics indicate that the un-
privileged group outperform the privileged group.

Global vs Local Group Fairness in FL
The fairness definitions above can be readily applied to cen-
tralized model training to evaluate the performance of the
trained model. However, in FL, clients typically have non-
IID data distributions, which gives rise to different levels of
consideration for fairness: global fairness and local fairness.

The global fairness of a given model considers the full
dataset D̄ = ∪kDk across the K clients in FL, which is our
end-goal in fair FL; to train a model that is in general non-
discriminatory to any group in the global dataset.

In contrast, when only the local dataset Dk at client k is
considered, we can define the local fairness performance by
applying (2) or (3) on the data distribution at client k.

We can highlight the difference between global and local
fairness using the example of the EOD metric. For a classi-
fier Ŷ , the global fairness EOD metric Fglobal is given by

Fglobal=Pr(Ŷ=1|A=0,Y=1)−Pr(Ŷ=1|A=1,Y=1), (4)

where the probability above is based on the full dataset dis-
tribution (a mixture of the distributions across the clients).
In contrast, the local fairness metric Fk at client k is

Fk =Pr(Ŷ =1|A=g, Y =1, C=k)

− Pr(Ŷ =1|A=g, Y =1, C=k), (5)

where the parameter C = k denotes that the k-th client (and
dataset Dk) is considered in the fairness evaluation.

Note that if clients have IID distributions (i.e., distribu-
tions that are independent of C), global and local fairness
match. However, they can greatly differ in the non-IID case.

FairFed: Fairness-Aware Aggregation in FL
In this section, we introduce our proposed approach FairFed
which uses local debiasing due for its advantages for data de-
centralization, while addressing its challenges by adjusting
how the server aggregates local model updates from clients.

Our Proposed Approach (FairFed)
Recall that in the t-th round in FedAvg (McMahan et al.
2017), local model updates {θtk}Kk=1 are weight-averaged
to get the new global model parameter θt as: θt+1 =∑K

k=1 ω
t
k θtk, where the weights ωt

k = nk/
∑

k nk depend
only on the number of datapoints at each client.

As a result, a fairness-oblivious aggregation would favor
clients with more datapoints. If the training at these clients
results in locally biased models, then the global model can
potentially be biased since the weighted averaging exagger-
ates the contribution of model update from these clients.
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Algorithm 1: FairFed Algorithm (tracking EOD)

Initialize: global model parameter θ0 and weights {ω0
k} as ω0

k = nk/
∑K

i=1 ni, ∀k ∈ [K];
Dataset statistics: Aggregate statistics S={ Pr(A=1, Y=1),Pr(A=0, Y=1)} from clients using Secure Aggregation (SecAgg) and

send it to clients;
for each round t = 1, 2, · · · do

F t
global , Acct ← SecAgg

({
ClientLocalMetrics

(
k, θt−1

)}K

k=1

)
; // SecAgg to get Acct and global fairness F t

global as in (7);
1
K

∑
i ∆i← SecAgg

({
ClientMetricGap

(
k, θt−1, F t

global, Acct
)}K

k=1

)
; // SecAgg to compute mean of metric gaps;

// Compute aggregation weights locally at clients based on (6) then use SecAgg to aggregate weighted local model updates;(∑K
k=1 ω̄

t
kθ

t
k

)
,
(∑K

k=1 ω̄
t
k

)
← SecAgg

({
ClientWeightedModelUpdate

(
k, θt−1, ωt

k,
1
K

∑
i ∆i

)}K

k=1

)
;

θt+1 ←
(∑K

k=1 ω̄
t
kθ

t
k

)
/
( ∑K

k=1 ω̄
t
k

)
;

Based on this observation, in FairFed, we propose a
method to optimize global group fairness Fglobal via adap-
tively adjusting the aggregation weights of different clients
based on their local fairness metric Fk. In particular, given
the current global fairness metric F t

global (we will discuss
later in the section, how the server can compute this value),
then in the next round, the server gives a slightly higher
weight to clients that have a similar local fairness F t

k to the
global fairness metric, thus relying on their local debiasing
to steer the next model update towards a fair global model.

Next, we detail how FairFed computes the aggregation
weights in each round. The steps performed while tracking
the EOD metric in FairFed are shown in Algorithm 1.

Computing Aggregation Weights for FairFed
At the beginning of training, we start with the default Fe-
dAvg weights ω0

k = nk/
∑K

k=1 nk. Next, in each round t,
we update the weight assigned to the k-th client based on
the current gap between its local fairness metric F t

k and the
global fairness metric Fglobal. In particular, the weight up-
date follows this formula ∀k ∈ [K]:

∆t
k =

{∣∣∣Acctk −Acct
∣∣∣ if F t

k is undefined,

|F t
global − F t

k| otherwise
,

ω̄t
k=ω̄t−1

k −β

(
∆k − 1

K

K∑
i=1

∆i

)
, ωt

k =
ω̄t
k∑K

i=1 ω̄
t
i

. (6)

where: (i) Acctk represents the local accuracy at client k,
and Acct =

∑K
k=1 Acck×nk/

∑K
k=1 nk, is global accuracy

across the full dataset, respectively; (ii) β is a parameter that
controls the fairness budget for each update, thus impacting
the trade-off between model accuracy and fairness. Higher
values of β result in fairness metrics having a higher impact
on the model optimization, while a lower β results in a re-
duced perturbation to the default FedAvg weights due to fair
training; note that at β = 0, FairFed is equivalent to FedAvg,
as the initial weights ω0

k are unchanged.

Intuition for weight update. The intuition behind the up-
date in (6) is to effectively rank the clients in the FL sys-
tem based on how far their local view of fairness (measured
through their local metric) compares to the global fairness

metric; closer views to the global metric get assigned higher
weights while clients with local metrics that significantly de-
viate from the global metric will have their weights reduced.
The significance is decided based on whether the gap from
the global metric is above the average gap (across clients) or
vice versa. Note that, whenever, the client distribution makes
the local metric Fk undefined1, FairFed relies on the discrep-
ancy between the local and global accuracy metric as a proxy
to compute the fairness metric gap ∆k.

Thus, so far, the training process of FairFed at each itera-
tion follows the following conceptual steps:

1. Each client computes its updated local model parameters;
2. The server computes the global fairness metric value

F t
global and global accuracy Acct using secure aggrega-

tion and broadcasts them back to the clients;
3. Each client computes its metric gap ∆t

k and from it, it
calculates its aggregation weight ωt

k with the help of the
server as defined in (6);

4. The server next aggregates the weighted local updates
ωt
kθ

t
k using secure aggregation to compute the new global

model and broadcasts it to the clients.

A detailed description on performing these steps using se-
cure aggregation (SecAgg) is shown in Algorithm 1, where
SecAgg({bi}Ki=1) computes

∑
i bi using secure aggregation.

Flexibility of FairFed with heterogeneous debiasing.
Note that the FairFed weights ωt

k in (6) rely only on the
global and local fairness metrics and are not tuned towards a
specific local debiasing method. Thus, FairFed is flexible to
be applied with different debiasing methods at each client,
and the server will incorporate the effects of these differ-
ent methods by reweighting their respective clients based on
their local/global metrics and the weight computation in (6).

How the Server Gets the Global Metric Fglobal

One central ingredient for computing weights in FairFed is
the server’s ability to calculate the global metric Fglobal in
each round (recall equation (6)) without the clients having
to share their datasets with the server or any explicit infor-
mation about their local group distribution. If the metric of

1For instance, in the case of the EOD metric, this happens
whenever Pr(A = 1, Y = 1) = 0 or Pr(A = 0, Y = 1) = 0.
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interest is EOD, we next show how the server can compute
Fglobal from the clients using secure aggregation. Similar
computations follow for SPD and are presented in (Ezzeldin
et al. 2021, Appendix A). Let n =

∑K
k=1 nk; the EOD met-

ric in (4) can be rewritten as:

Fglobal=Pr(Ŷ =1|A=0, Y =1)−Pr(Ŷ =1|A=1,Y =1)

=
K∑

k=1

nk

n

[
Pr(Ŷ=1|A=0,Y=1,C=k) Pr(A=0,Y=1|C=k)

Pr(Y=1,A=0)

−Pr(Ŷ=1|A=1,Y=1,C=k) Pr(A=1,Y=1|C=k)
Pr(Y=1,A=1)

]
︸ ︷︷ ︸

mglobal,k

, (7)

where mglobal,k is the summation component that each
client k computes locally. Thus, the global EOD metric
Fglobal can be computed at the server by applying secure
aggregation (Bonawitz et al. 2017) to get the sum of the
mglobal,k values from the K clients without the server learn-
ing any information about the individual mglobal,k values.

Note that the conditional probabilities defining mglobal,k

in (7) are all local performance metrics that can easily be
computed locally by client k using its local dataset Dk. The
only non-local terms in mglobal,k are the full dataset statis-
tics S = {Pr(Y=1, A=0),Pr(Y=1, A=1)}. These statis-
tics S can be aggregated at the server using a single round
of secure aggregation (e.g., (Bonawitz et al. 2017)) at the
start of training, then be shared with the clients to enable
them to compute their global fairness component mglobal,k.

Experimental Evaluation
In this section, we investigate the performance of FairFed
under different system settings. In particular, we explore
how the performance changes with different heterogeneity
levels in data distributions across clients. We also evaluate
how the trade-off between fairness and accuracy changes
with the fairness budget β in FairFed (see equation (6)). Ad-
ditional experiments in (Ezzeldin et al. 2021, Appendix C)
investigate how the performance of FairFed changes when
different local debiasing approaches are used across clients.

Experimental Setup
Implementation. We developed FairFed using FedML
(He et al. 2020), which is a research-friendly FL library for
exploring new algorithms. We use a server with AMD EPYC
7502 32-CoreCPU Processor, and use a parallel training
paradigm, where each client is handled by an independent
process using MPI (message passing interface).

Datasets. In this section, we demonstrate the performance
of different debiasing methods using two binary decision
datasets that are widely investigated in fairness literature: the
Adult (Dua and Graff 2017) dataset and ProPublica COM-
PAS dataset (Larson et al. 2016). In the Adult dataset (Dua
and Graff 2017), we predict the yearly income (with binary
label: over or under $50,000) using twelve categorical or
continuous features. The gender (defined as male or female)
of each subject is considered the sensitive attribute. The

ProPublica COMPAS dataset relates to recidivism, which
is to assess if a criminal defendant will commit an offense
within a certain future time. Features in this dataset include
the number of prior offenses, the age of the defendant, etc.
The race (classified as white or non-white) of the defendant
is the sensitive attribute of interest.

Configurable data heterogeneity for diverse sensitive at-
tribute distributions. To understand the performance of
our method and the baselines, under different distributions
of the sensitive attribute across clients, a configurable data
synthesis method is needed. In our context, we use a generic
non-IID synthesis method based on the Dirichlet distribu-
tion proposed in (Hsu, Qi, and Brown 2019) but apply it in
a novel way for configurable sensitive attribute distribution:
for each sensitive attribute value a, we sample pa ∼ Dir(α)
and allocate a portion pa,k of the datapoints with A = a to
client k. The heterogeneity across clients is controlled via
α, where α → ∞ results in IID distributions. Examples of
these heterogeneous distributions for the Adult and COM-
PAS are shown in (Ezzeldin et al. 2021, Appendix B).

Baselines. We adopt the following state-of-the-art solu-
tions as baselines:

• FedAvg (McMahan et al. 2017): the original FL algo-
rithm for distributed training of private data. It does not
consider fairness for different demographic groups.

• FedAvg + Local reweighting [Local / RW]: Each client
adopts the reweighting strategy (Kamiran and Calders
2012) to debias its local training data, then trains local
models based on the pre-processed data. FedAvg is used
to aggregate the local model updates at the server.

• FedAvg + FairBatch [Local / FairBatch]: Each client
adopts the state-of-the-art FairBatch in-processing debi-
asing strategy (Roh et al. 2021) to debias its local training
data and then aggregation uses FedAvg.

• FedAvg + Fair Linear Representation [Local / Fair-
Rep]: Each client adopts the Fair Linear Representa-
tions pre-processing debiasing strategy (He, Burghardt,
and Lerman 2020) locally and aggregates using FedAvg.

• FedAvg + Global reweighting [Global RW] (Abay et al.
2020): A differential-privacy approach to collect noisy
statistics such as the number of samples with privileged
attribute values (A=1) and favorable labels (Y=1) from
clients. Server computes global weights based on the col-
lected statistics and shares them with the clients, which
assign them to their data samples during FL training 2.

• FedFB (Zeng, Chen, and Lee 2021): An in-processing
debiasing approach in FL based on FairBatch (Roh et al.
2021). The server computes new weights for each group
based on information from the clients in each round and
broadcasts them back to the clients. For fair comparison,
we use FedFB that is optimized w.r.t EOD as in FairFed.

2We apply the global reweighting approach in (Abay et al.
2020) without differential-privacy noise in order to compare with
the optimal debiasing performance of global reweighting.

7498



Method
Adult (β = 1) COMPAS (β = 1)

Heterogeneity Level α Heterogeneity Level α
0.1 0.2 0.5 10 5000 0.1 0.2 0.5 10 5000

Acc.

FedAvg 0.835 0.836 0.835 0.836 0.837 0.674 0.673 0.675 0.674 0.675
Local / [Best] 0.831 0.833 0.834 0.831 0.829 0.666 0.659 0.665 0.663 0.664
Global RW 0.834 0.833 0.831 0.829 0.829 0.673 0.671 0.672 0.676 0.675
FedFB 0.825 0.825 0.829 0.832 0.832 0.674 0.673 0.675 0.677 0.677
FairFed / RW 0.830 0.834 0.832 0.829 0.829 0.672 0.670 0.669 0.669 0.673
FairFed / FairRep 0.824 0.833 0.834 0.834 0.834 0.661 0.655 0.663 0.663 0.660
FairFed / FairBatch 0.829 0.833 0.830 0.830 0.831 0.659 0.664 0.665 0.661 0.661

EOD

FedAvg -0.174 -0.173 -0.176 -0.179 -0.180 -0.065 -0.071 -0.067 -0.076 -0.078
Local / [Best] 0.052 -0.009 -0.006 -0.013 0.014 -0.055 -0.051 -0.054 -0.038 -0.035
Global RW -0.030 0.019 0.022 0.017 0.010 -0.060 -0.065 -0.066 -0.076 -0.077
FedFB -0.019 0.015 0.015 -0.012 -0.012 -0.062 -0.061 -0.063 -0.077 -0.072
FairFed / RW -0.017 0.001 0.018 0.016 0.013 -0.057 -0.065 -0.053 -0.067 -0.061
FairFed / FairRep 0.023 -0.009 -0.071 -0.174 -0.187 0.037 0.023 0.043 0.046 0.039
FairFed / FairBatch -0.020 0.001 0.000 -0.005 -0.004 -0.048 -0.048 -0.049 -0.035 -0.031

Table 1: Performance comparison under different heterogeneity levels α. Smaller α indicates more heterogeneous client dis-
tributions. We report the average of 20 random seeds. For EOD, values closer to zero indicate better fairness. For brevity, we
report the values achieved by the best local debiasing baseline (without FairFed) as Local / [Best] in the table. An extended
version of this table is reported in (Ezzeldin et al. 2021, Appendix C).
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Figure 3: Effects of fairness budget β for 5 clients and het-
erogeneity α = 0.2 on FairFed with local reweighting.

Experimental Results
Performance under heterogeneous sensitive attribute
distributions. We compared the performance of FairFed
when used with three local debiasing methods (reweight-
ing, FairRep (He, Burghardt, and Lerman 2020) and Fair-
Batch (Roh et al. 2021)) against the baselines described in
the previous subsection, under different heterogeneity lev-
els. The results are summarized in Table 1.

FairFed outperforms the baselines at different heterogene-
ity levels, but at highly homogeneous data distributions (i.e.,
a large α value), FairFed does not provide significant gains
in fairness performance compared to local debiasing meth-
ods (except when using FairBatch). This is due to the fact
that under homogeneous sampling, the distributions of the
local datasets are statistically similar (and reflect the orig-
inal distribution with enough samples), resulting in similar
debiasing effect being applied across all clients when us-
ing the pre-processing methods (reweighting and FairRep).
For a higher level of heterogeneity (i.e., at lower α = 0.1),
FairFed can improve EOD in Adult and COMPAS data by

93% and 50%, respectively. This is done at the expense of
only a 0.3% decrease in accuracy for both Adult and COM-
PAS datasets. In contrast, at the same heterogeneity level,
local strategies can only improve EOD by 65% and 15% for
Adult and COMPAS datasets, respectively. Global reweight-
ing only improves EOD by 73% and 2% for Adult and
COMPAS datasets, respectively. On average, across differ-
ent heterogeneity levels, improving EOD by 87% and 1.5%
for Adult and COMPAS, respectively, at α = 0.1.

Note, however, that FedFB requires the clients to share
explicit information about the performance of the model on
each local subgroup in order to update the weights in FariB-
atch (Zeng, Chen, and Lee 2021), which can potentially leak
information about the clients’ local datasets.

Performance with different fairness budgets (β). In
FairFed, we introduced a fairness budget parameter β, which
controls how much the aggregation weights can change due
to fairness adaptation at the server in each round (refer to (6)
for the explanation of β). Figure 3 shows the effects of β us-
ing heterogeneity level α = 0.2. As the value of β increases,
the fairness constraint has a bigger impact on the aggrega-
tion weights, yielding better fairness (EOD closer to zero) at
the cost of a decrease in model accuracy.

Cases Studies for Fair Training in FL
In the previous section, we evaluated FairFed on heteroge-
neous distributions synthesized from standard benchmark
datasets in fair ML. In order to validate the effectiveness of
FairFed in FL scenarios with naturally heterogeneous distri-
butions, we consider two FL case studies in this section.

Case Study 1: Predicting Individual Income from
US Census across States
In this case study, we use the US Census data to present the
performance of our FairFed approach in a distributed learn-
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ing application with a natural data partitioning. Our experi-
ments are performed on the ACSIncome dataset (Ding et al.
2021) with the task of predicting whether an individual’s in-
come is above $50,000 (or not) based on the features col-
lected during the Census which include employment type,
education, martial status, etc.

Race Distribution (% White) by State

0.3 0.9

Data Size by State

50k 150k100k 0.6

Figure 4: Demographic distribution of ACSIncome dataset.

Data Distribution. ACSIncome dataset is constructed
from American Community Survey (ACS) Public Use Mi-
crodata Sample (PUMS) over all 50 states and Puerto Rico
in 2018 with a total of 1,664,500 datapoints. In our experi-
ments, we treat each state as one participant in the FL sys-
tem (i.e., 51 participants). Due to the demographic distribu-
tion of different states, clients share different data sizes and
sensitive attributes distribution. For example, Wyoming has
the smallest dataset size with 3,064 users compared to Cal-
ifornia that has 195,665 users. We choose the race informa-
tion (white/non-white) of the users as the sensitive attribute
of interest in our experiments. Hawaii is the state with the
lowest ratio (26%) of white population. , while Vermont has
the highest ratio (96%) of its dataset as white population.
Figure 4 provides a visualization for the data distributions
across the different states.

Performance of FairFed. Table 3 compares the perfor-
mance of FairFed on ACSIncome dataset. Table 3 shows
that adopting local reweighting yields worse group fairness
performance than simply applying FedAvg (without any de-
biasing) due to the heterogeneity across states. FairFed with
reweighting overcomes this issue and improves the EOD by
20% (-0.062 to -0.050).

Case Study 2: Predicting Daily Stress Level from
Wearable Sensor Signals
In this case study, we use the human behavior dataset
TILES (Mundnich et al. 2020). Tracking Individual Per-
formance with Sensors (TILES) is a 10 weeks longitudinal
study with hospital worker volunteers in a large Los Ange-
les hospital, where 30% of the participants are male and 70%
are female. We use this dataset to estimate users’ daily stress
levels based on physiological and physical activity signals
collected through wearable sensors (e.g., Fitbit) . The target
is a binary label indicating whether the person’s stress level
is above individual average (i.e., 1) or not (i.e., 0), which are
collected from daily surveys sent to the participants’ phones.

Client Size Gender Stress
F M y = 0 y = 1

RN-day shift 707 82% 18% 45% 55%
RN-night shift 609 77% 23% 57% 43%

CNA 244 61% 39% 65% 35%

Table 2: Data distribution of TILES dataset.

Method ACSIncome TILES
Acc. EOD SPD Acc. EOD SPD

FedAvg 0.800 -0.062 -0.102 0.567 -0.199 -0.166
Local / RW 0.800 -0.066 -0.106 0.567 -0.064 -0.041

FairFed / RW 0.799 -0.050 -0.089 0.556 0.004 0.004

Table 3: Performance on ACSIncome and TILES datasets.

Data Distribution. We focus on the nurse population in
the dataset. Each client represents the data from one occu-
pation group – day-shift registered nurse (RN- day shift),
night-shift registered nurse (RN-night shift), and certified
nursing assistant (CNA). The three clients vary by data size,
the distributions of gender (the sensitive attribute) and target
stress variable. In general, the client of day-shift registered
nurse population has the most datapoints, more female, and
higher stress levels. The detailed data distribution of each
clients is shown in Table 2.

Performance of FairFed. Table 3 reports the performance
on TILES dataset. Both FairFed and local reweighting im-
prove the EOD metric as compared to FedAvg. FairFed im-
proves EOD from -0.199 to 0.004 with only 2.6% accuracy
decrease (from 0.567 to 0.556).

Conclusion and Future Works
In this work, motivated by the importance and challenges of
group fairness in federated learning, we propose the FairFed
algorithm to enhance group fairness via a fairness-aware
aggregation method, aiming to provide fair model perfor-
mance across different sensitive groups (e.g., racial, gender
groups) while maintaining high utility. Though our proposed
method outperforms the state-of-the-art fair federated learn-
ing frameworks under high data heterogeneity, limitations
still exist. As such, we plan to further improve FairFed from
these perspectives: 1) We report the empirical results on bi-
nary classification tasks in this work. We will extend the
work to various application scenarios (e.g., regression tasks,
NLP tasks); 2) We will extend our study to scenarios of het-
erogeneous application of different local debiasing methods
and understand how the framework can be tuned to incor-
porate updates from these different debiasing schemes; 3)
We focused on group fairness in FL, but we plan to integrate
FairFed with other fairness notions in FL, such as collabora-
tive fairness and client-based fairness. We give an example
of how FairFed can provide both group-fairness and client-
based fairness in (Ezzeldin et al. 2021, Appendix D), which
sets promising preliminary steps for future exploration.
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