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Abstract

Modeling an unknown dynamical system is crucial in order to
predict the future behavior of the system. A standard approach
is training recurrent models on measurement data. While these
models typically provide exact short-term predictions, accumu-
lating errors yield deteriorated long-term behavior. In contrast,
models with reliable long-term predictions can often be ob-
tained, either by training a robust but less detailed model, or
by leveraging physics-based simulations. In both cases, inac-
curacies in the models yield a lack of short-time details. Thus,
different models with contrastive properties on different time
horizons are available. This observation immediately raises
the question: Can we obtain predictions that combine the best
of both worlds? Inspired by sensor fusion tasks, we interpret
the problem in the frequency domain and leverage classical
methods from signal processing, in particular complementary
filters. This filtering technique combines two signals by apply-
ing a high-pass filter to one signal, and low-pass filtering the
other. Essentially, the high-pass filter extracts high-frequencies,
whereas the low-pass filter extracts low frequencies. Applying
this concept to dynamics model learning enables the con-
struction of models that yield accurate long- and short-term
predictions. Here, we propose two methods, one being purely
learning-based and the other one being a hybrid model that
requires an additional physics-based simulator.

1 Introduction
Many physical processes (xn)

N
n=0 with xn ∈ RDx can be

described via a discrete-time dynamical system

xn+1 = f(xn). (1)

Typically, it is not possible to measure the whole state-space
of the system (1), but a function of the states corrupted by
noise ŷn can, for example, be measured by sensors

yn = g(xn) = Cxn,

ŷn = yn + εn, with εn ∼ N (0, σ2)
(2)

and C ∈ RDy×Dx . Our general interest is to make accurate
predictions for the observable components yn in Eq. (2). One
possible way to address this problem is training a recurrent
model on the noisy measurements ŷn in Eq. (2). Learning-
based methods are often able to accurately reflect the system’s
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behavior and therefore produce accurate short-term predic-
tions. However, the errors accumulate over time leading to
deteriorated long-term behavior (Zhou et al. 2018).

To obtain reliable prediction behavior on each time scale,
we propose to decompose the problem into two compo-
nents. In particular, we aim to combine two separate models,
where one component reliably predicts the long-term behav-
ior, while the other adds short-term details, thus combining
the strengths of each component. Interpreted in the frequency
domain, one model tackles the low-frequency components
while the other tackles the high-frequency parts.

Combining high and low-frequency information from dif-
ferent signals or models is well-known from control engineer-
ing or signal processing tasks. One typical example is tilt esti-
mation in robotics, where accelerometer and gyroscope data
are often available simultaneously (Trimpe and D’Andrea
2010; Geist et al. 2022). On one hand, the gyroscope pro-
vides position estimates that are precise on the short-term
but due to integration in each time step, accumulating er-
rors cause a drift on the long-term. On the other hand, the
accelerometer-based position estimates are long-term stable,
but considerably noisy and thus not reliable on the short-
term. Interpreted in the frequency domain, the gyroscope is
more reliable on high frequencies, whereas the accelerometer
is more reliable on low frequencies. Therefore, a high-pass
filter is applied to the gyroscope measurements, whereas a
low-pass filter is applied to the accelerometer measurements.
Both filtered components are subsequently combined in a new
complementary filtered signal that is able to approximate the
actual position more accurately.

Here, we adopt the concept of complementary filter pairs
to our task to fuse models with contrastive properties. In gen-
eral, a complementary filter pair consists of a high-pass filter
H and a low-pass filter L, where the filters map signals to
signals. Depending on the specific filter, certain frequencies
are eliminated while others pass. Intuitively the joint infor-
mation of both filters in a complementary filter pair covers
the whole frequency domain. Thus, the key concept that we
leverage here is the decomposition of a signal y = (yn)

N
n=0

into a high-pass filter component H(y) and a low-pass filter
component L(y) via

y = H(y) + L(y). (3)
Based on the decomposition, we propose to address H(y)

andL(y) by different models that are reliable on their specific

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7476



time scale. In particular, we propose two methods, one being
purely-learning based and one being a hybrid method that
leverages an additional physics-based simulation. Both con-
cepts are visualized in Figure 1. In the purely learning-based
scenario, we train seperate networks that represent H(y) and
L(y) in Eq. (3). In order to obtain a low-frequency model
that indeed provides accurate long-term predictions, we apply
a downsampling technique to the training data, thus reduc-
ing the number of integration steps. During inference, the
predictions are upsampled up to the original sampling rate.
Applying the low-pass filter allows lossless downsampling
of the signal depending on the downsampling ratio.

In the hybrid scenario, only a single model is trained. Hy-
brid modeling addresses the problem of producing predic-
tions by mixing different models that are either learning-
based or obtained from first principles, e.g. physics (Yin et al.
2021; Suhartono et al. 2017). Here, we consider the case
where access to predictions ys for the system (1) is provided
by a physics-based simulator. Additional insights, such as ac-
cess to the simulator’s latent space or differentiability are not
given. While physics-based approaches are typically robust
and provide reliable long-term behavior, incomplete knowl-
edge of the underlying physics leads to short-term errors in
the model. Hence, we consider the case where L(ys) ≈ L(y)
holds. By training a model for H(y), the decomposition
(3) becomes a hybrid model that combines the strengths of
both components. The filter pair (L,H) is integrated into
the training process, assuring that the long-term behavior is
indeed solely addressed by the simulator. In both scenarios,
the learning-based and the hybrid, recurrent neural networks
(RNNs) are trained on whole trajectories.

In summary, the main contributions of this paper are:
• By leveraging complementary filters, we propose a new

view on dynamics model learning;
• we propose a purely learning-based and a hybrid method

that decompose the learning problem into a long-term and
a short-term component; and
• we show that this decomposition allows for training mod-

els that provide accurate long and short-term predictions.

2 Related Work
In this section, we give an overview of related literature.

Several works point out parallels between classical signal-
theoretic concepts and neural network architectures. In partic-
ular, connections to finite-impulse response (FIR) and infinite-
impulse response (IIR) filters have been drawn. The relations
between these filters and feedforward-models have been in-
vestigated in Back and Tsoi (1991). Precisely, they construct
different feedforward architectures by building synapses from
different filters. Depending on the specific type, locally re-
current but globally feedforward structure can be obtained.
These models are revisited in Campolucci, Uncini, and Pi-
azza (1996) by introducing a novel backpropagation tech-
nique. More recently, feedforward Sequential Memory Net-
works are introduced, which can be interpreted as FIR filters
(Zhang et al. 2016). Relations between fully recurrent models
and filters have been drawn as well. The hidden structure
of many recurrent networks can be identified with classical
filters. Kuznetsov, Parker, and Esqueda (2020) point out the

relation between Elman-Networks and filters and introduce
trainable IIR structures that are applied to sound signals in
the experiments section. Precisely, an Elman network can be
interpreted as simple first-order IIR filter. In Oliva, Póczos,
and Schneider (2017), long-term dependencies are modeled
via a moving average in the hidden units. Moving averages
can again be interpreted as special FIR filters. Stepleton et al.
(2018) recover long-term dependencies via a hidden structure
of memory pools that consist of first-order IIR filters. How-
ever, none of this works leverages complementary filters in
order to capture effects on multiple time scales. Additionally,
none of these approaches addresses hybrid dynamics models.
Narkhede et al. (2019); Ćertić and Milić (2011); Milić and
Saramaki (2003) combine learning techniques and in partic-
ular gradient-descent with complementary filters. However,
they consider the automatical adaption of the filter parameters.
In contrast, we leverage complementary filters for learning,
in particular dynamics learning.

Filters manipulate signals on the frequency domain and
thus address spectral properties. In Proctor, Brunton, and
Kutz (2016) and Lange, Brunton, and Kutz (2021), a signal
is identified via spectral methods that are transformed into
a linear model. Koopman theory is then leveraged to lift the
system to the nonlinear space again. However, in our work,
we use filters in order to separate the predictions on different
time-horizons. Thus, in contrast to these works, our methods
can be combined with different (recurrent) architectures and
therefore allow for computing predictions via state-of-the-art
techniques.

Combining physics-based simulators with learning-based
models is an emerging trend. Hybrid models produce predic-
tions by taking both models into account. Typically, the simu-
lator is extended or parts of the simulator are replaced. There
is a vast literature that deals with hybrid models for dynamical
systems or time-series data. A traditional approach is learn-
ing the errors or residua of simulator predictions and data
(Forssell et al. 1997; Suhartono et al. 2017). Another common
approach in hybrid modeling is extending a physics-based dy-
namics model with neural ODEs (Yin et al. 2021; Qian et al.
2021). However, in contrast to our approach, these hybrid
architectures do not explicitly exploit characteristics of the
simulator, in particular the long-term behavior. Paolucci et al.
(2018) construct a hybrid model for the prediction of seismic
behavior. Similar to our setting, they consider the case where
a physics-based simulation provides reliable predictions for
low frequencies, whereas lacking of a reliable model for high
frequencies. However, the approach differs significantly from
ours since a neural network is trained on a mapping from
low to high frequencies. Furthermore, they do not consider
dynamics models. Therefore, it is unclear how to apply the
approach to our problem setting.

3 Background

In this section, we provide the necessary background on sig-
nal processing and filtering. For a more detailed introduction,
we refer the reader to Oppenheim et al. (1999).
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Figure 1: A high-level overview of our methods. Purely-learning-based scheme (left): a training signal is filtered into comple-
mentary components. The low-pass filtered signal is downsampled. Two seperate RNNs are trained on the decomposed signal.
Hybrid model (right): The predictions of simulator and RNN are fed into the complementary filter. The resulting signal is trained
end-to-end on the noisy observations by minimizing the root mean-squared error (RMSE). This structure is also applied to obtain
predictions from the model.

3.1 Motivation
Filters are linear time-invariant systems that aim to extract
specific frequency components from a signal. Standard types
are high-pass and low-pass filters. Low-pass filters extract
low frequencies and attenuate high frequencies, whereas high-
pass filters extract high frequencies and attenuate low frequen-
cies. Frequencies that are allowed to pass are determined by
a desired cutoff frequency. Further, additional specifications
play a principal role in filter design, such as pass- and stop-
band fluctuations and width of the transition band (Oppen-
heim et al. 1999).

Technically, a filter F is a mapping in the time domain
F : l∞ → l∞ : y 7→ Z−1(F(Z(y))), where F : C → C is
the so-called transfer function in the frequency domain, l∞
is the signal space of bounded sequences and Z : l∞ → C
is the well-known z-transform. Hence, a filter is obtained by
designing a transfer function F in the frequency domain. For
the type of filters considered here, the structure of F allows
to directly compute F (y) via a recurrence equation in the
time domain (see the appendix for more details). A typical
application of filters is, for example, the denoising of signals.
Noise adds a high-frequency component to the signal and can
therefore be tackled by applying a low-pass filter.

3.2 IIR-Filter
Typical filter types are finite-impulse response (FIR) and
infinite-impulse response (IIR) (Oppenheim et al. 1999).
Here, we consider IIR filters. In contrast to FIR filters, IIR
filters possess internal feedback. Filtering a signal y via an
IIR-filter yields a recurrence equation for the filtered signal
ỹ = (ỹn)

N
n=0 given by

ỹn =
1

a0

(
P∑
k=1

akỹn−k +
P∑
k=0

bkyn−k

)
, (4)

where P describes the filter order. The filter coefficients ak
and bk are obtained from filter design with respect to the
desired properties in the frequency domain. A detailed deriva-
tion is given in the appendix. There are different strategies to
initialize the first P values ỹ0, . . . , ỹP−1 (Chornoboy 1992;
Gustafsson 1996).

3.3 Complementary Filter Pairs
A complementary filter pair consists of a high-pass filter
transfer functionH and a low-pass filter transfer function L
(Higgins 1975), chosen in a way that they cover the whole
frequency domain, thus

y ≈ L(y) +H(y) (5)

for any signal y ∈ l∞. Applying the complementary filter
pair to two different signals yh and yl via ỹ = L(yl)+H(yh)
directly yields a recurrence equation for the complementary
filtered signal ỹ given by

ỹn =
1

a0

(
P∑
k=1

akỹn−k +
P∑
k=0

bky
h
n−k +

P∑
k=0

b̃ky
l
n−k

)
,

(6)
where ak, bk describe the high-pass filter parameters and
ak, b̃k describe the low-pass filter parameters. To obtain a
joint recurrence equation, the filters are forced to share the
parameters ak. However, this can be done without loss of
generality.

Perfect Complement: There are different strategies to ex-
press the decomposition (5) mathematically. One way is to
construct the perfect complement in the frequency domain
such that H + L = 1 (Narkhede et al. 2021). Applying the
perfect complementary filter to two identical signals yh = yl

results in the same signal as output. For the IIR complemen-
tary filter (6) this holds if b̃k = ak− bk. A detailed derivation
is moved to the appendix. However, depending on the desired
behavior of the filters, perfectly complementary filters are
not always favorable. Different approaches have been investi-
gated in Vaidyanathan, Regalia, and Mitra (1987); Johansson
and Saramäki (1999).

4 Method
We present two methods that leverage the idea of complemen-
tary filters for dynamics model learning in order to produce
accurate short- and long-term predictions. Our first approach
is applicable to general dynamics model learning, whereas
our second approach is a hybrid modeling technique. In the
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second case, access to trajectory data produced by a physics-
based simulator is required. The key ingredient of both mod-
els is a complementary filter pair (H,L) with parameters
ak, bk, ãk and b̃k (cf. Sec. 3.3). While in the hybrid case
reliable long-term predictions are already provided by the
simulator, the long-term predictions have to be addressed by
an additional model in the purely learning-based scenario.

4.1 Recurrent Dynamics Model Learning
First, we give an overview of the recurrent dynamics model
learning structure that serves as a backbone for our method.
Here, we consider a recurrent multilayer perceptron (MLP)
and a gated recurrent unit (GRU) model (Cho et al. 2014).
However, the method is not restricted to that choice and
could be combined with other recurrent architectures such as
Hochreiter and Schmidhuber (1997); Doerr et al. (2018).
Consider a trainable neural network transition function
fθ : RDh×Dy → RDh and a linear observation model
Cθ ∈ RDy×Dh . Here, θ defines the trainable parameters
and h the latent states with corresponding latent dimension
Dh. Predictions are computed via

hn+1 = fθ(hn, yn)

yn = Cθhn,
(7)

where the initial hidden state h0 can be obtained from the past
trajectory by training a recognition model similar to Doerr
et al. (2018) or by performing a warmup phase. Details are
provided in the appendix. The mapping Fθ : RDh×Dy×N→
RDy×N that computes an N -step rollout via Eq. (7) reads

Fθ(h0, y0, N) = y0:N , (8)

where y0:N ∈ RDy×N defines a trajectory with N steps.

4.2 Purely Learning-Based Model
Next, we dive into the details of constructing complemen-
tary filter-based learning schemes and introduce our methods.
In the purely learning-based scenario, two different models
are trained, wherein one model addresses the high-frequency
parts and the other addresses the low-frequency parts (see Fig-
ure 1 (left).) To this end, the training signal ŷ is decomposed
into a high-frequency component H(ŷ) and a low-frequency
component L(ŷ) via the complementary filter pair (cf. Sec.
3.3). The models are trained separately on the decomposi-
tion. In order to obtain a model that indeed provides stable
long-term behavior, the low-frequency training data is down-
sampled. During inference, the predicted signal is upsampled
again. Downsampling yields a model that performs less inte-
gration steps and thus, produces less error accumulation. As
an additional advantage, backpropagation through less inte-
gration steps is computationally more efficient. Applying the
low-pass filter allows lossless downsampling up to a specific
ratio that is determined by the Nyquist frequency. Intuitively,
only high-frequency information is removed that is addressed
by the second network during training and inference. Details
are provided in the appendix. Splitting the training signal and
training the models separately ensures that one model indeed
addresses the low-frequency part of the signal and thus, the
long-term behavior. End-to-end training on the other hand

might yield deteriorated long-term behavior since it generally
allows a single network to tackle both- short, and long-term
behavior.

Up and Downsampling: The downsampling operation
dk : RDy×N → RDy×bN/kc maps a signal to a lower resolu-
tion by considering every kth step of the signal via

dk(y0:N ) = (y0, yk, . . . , ykbN/kc). (9)

The reverse upsampling operation uk : RDy×N → RDy×kN

maps a signal to a higher resolution by filling in the missing
data without adding high-frequency artifacts to the signal.
Mathematically, this corresponds to an interpolation prob-
lem (Oppenheim et al. 1999). Here, we consider lossless
downsampling, where tolerable downsampling ratios are de-
termined by the cutoff frequency of the low-pass filter.

Training: Consider training data ŷ0:N ∈ RDy×N from
which the first R < N steps ŷ0:R ∈ RDy×R are used to ob-
tain an appropriate initial hidden state. We consider trainable
models f h

θ , C
h
θ , f

l
ν , C

l
ν with corresponding rollout mappings

F h
θ and F l

ν (cf. Eq. (8)), an up/downsampling ratio k and a
complementary filter pair L,H (cf. Sec. 3.3). The weights θ
and ν are trained by minimizing the root-mean-squared error
(RMSE) ‖y − ŷ‖2 via

θ̂ = argmin
θ
‖H(ŷ)R:N − F h

θ (ŷ
h
R, h

h
R, N −R)‖2

ν̂ = argmin
ν
‖dk(L(ŷ)R:N )− F l

ν(ŷ
l
R, h

l
R, Ñ)‖2,

(10)

with ŷh
R = H(ŷ)R, ŷl

R = L(ŷ)R, N −R steps H(ŷ)R:N and
L(ŷ)R:N from the filtered signals H(ŷ) and L(ŷ) and Ñ =
b(N ′ − R)/kc. The hidden states hh

R and hl
R are obtained

from a warmup phase that we specify in the appendix.

Predictions: A prediction with N ′ −R steps ỹR:N ′ is ob-
tained by adding the high-frequency predictions and the up-
sampled low-frequency predictions

ỹR:N ′ = F h
θ (ỹ

h
R, h

h
R, N

′−R)+uk(F l
ν(ỹ

l
R, h

l
R, Ñ)), (11)

where ỹh
R = H(ỹ0:R) and ỹl

R = L(ỹ0:R) have to be provided
and Ñ = b(N ′ −R)/kc. The hidden states hh

R and hl
R can,

for example, be obtained from a short warmup phase.
A slight modification of the method is obtained by wrap-

ping an additional high-pass filter around the predictions via
H(F h

θ (ỹ
h
R, h

h
R, N −R)) in Eq. (10) during training and via

H(F h
θ (ỹ

h
R, h

h
R, N

′−R)) in Eq. (11) during predictions. This
adds an additional guarantee preventing the high-frequency
model from producing low-frequency errors. We provide a
numerical comparison of both variants in our experiments.

4.3 Hybrid Modeling
In the hybrid case, we assume access to a simulator that pro-
duces predictions ys

0:N . Thus, reliable long-term predictions
are already available. In this case, we can directly train a
single recurrent model in an end-to-end fashion (see Fig-
ure 1 (right)). In particular, the low-pass filter is applied to
the simulator, whereas the high-pass filter is applied to the
learning-based trajectory. Training directly with the comple-
mentary filter ensures that each model indeed stays on its
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time scale. By decoupling the propagation of latent states
and the filtered simulator states, the method is technically
applicable to a large class of simulators. It is solely required
that the simulator is able to produce time-series predictions
of the system given initial conditions. Differentiating through
the simulator or any insight into the simulator’s hidden states
is not required.

Training and Predictions: Consider training data ŷ0:N ∈
RDy×N , a trainable model fθ, Cθ with corresponding rollout
mapping Fθ (cf. Eq. (8)) and a complementary filter pair
(L,H). Again, the first R steps ŷ0:R are used for providing
the intial hidden state hR. The weights θ are trained via

θ̂ = argmin
θ
‖H(yr) + L(ys

R:N )− ŷR:N‖2, (12)

with yr = Fθ(ŷR, hR, N − R). The calculation of H(yr) +
L(ys

R:N ) can directly be obtained by Eq. (6).

4.4 Filter Design
We design filters H and L (cf. Eq. (10) and (12)) before train-
ing. In the purely learning-based scenario, a broad range of
cutoff frequencies is possible, which we demonstrate empir-
ically in the appendix. In the hybrid case, we aim to use as
much correct long-term information as possible from the sim-
ulator without including short term errors. In general, suitable
cutoff frequencies can often be derived from domain knowl-
edge. Here, we analyze the frequency spectra of ground truth
and simulator in order to find a suitable cutoff frequency. For
a specific filter design, we test the plausibility of the comple-
mentary filter by applying the high-pass component to the
measurements and the low-pass component to the simula-
tor. Calculating the RMSE between the combined signal and
ground truth indicates whether the filters are appropriate. For
a more detailed introduction to general filter design, we refer
the reader to Oppenheim et al. (1999).

5 Experiments
In this section, we demonstrate that our complementary filter-
based methods yield accurate long and short-term predictions
on simulated and real world data. In the hybrid setting, we
consider additional access to a physics-based simulation that
is able to predict the long-term behavior of the system but is
not capable of accommodating all short-term details due to
e.g., modeling simplifications.

5.1 Baselines
We consider four systems. For each system, we have access
to measurement data. Either real measurements are available,
or we simulate trajectories from the ground truth system and
corrupt them with noise.

We consider the following baselines.
RNN: RNN structure that corresponds to an MLP that is

propagated through time.
GRU: State-of-the-art recurrent architecture for time-

series learning (Cho et al. 2014).
Simulator: In the hybrid setting, access to simulator pre-

dictions ys is required.

Residual GRU/ RNN: In the hybrid case, we consider a
residual model that combines RNN or GRU predictions yr

with simulator predictions ys via y = yr + ys.

5.2 Constructing the Filters
We use the tools for IIR filter design provided by Scipy
(Virtanen et al. 2020) and apply Butterworth filters. We con-
struct the coefficients bk and ak for the low-pass filter and
coefficients b̃k and ãk for the high-pass filter as described
in Sec. 3, where both filters share the cutoff frequency. An
example of a frequency spectrum and choice of the cutoff
frequency is shown in Figure 2 (left). In the appendix, we
add information on the specific design of the complementary
filter pairs for each experiment. Further, we add frequency
spectra for each system.

5.3 Learning Task and Comparison
For each system, we observe a single trajectory. The models
are trained on a fixed subtrajectory of the full trajectory. Pre-
dictions are performed by computing a rollout of the model
over the full trajectory. We evaluate the model accuracy by
computing the RMSE along the full trajectory. On the sim-
ulated systems, the RMSE between predictions and ground
truth is computed. On real world data, the RMSE between
predictions and measurements is computed. Runtimes are
reported in the appendix.

5.4 Purely Learning-Based Model
We apply the strategy derived in Sec. 4 to GRU models (re-
ferred to by “split GRU“) and compare to a single GRU
model trained on the entire bandwidth. In order to draw a fair
comparison, we choose an equal number of total hidden units
for the baseline GRU and the sum of hidden states in our
approach. We provide architecture details in the appendix.
Furthermore, we optionally wrap an additional high-pass fil-
ter around the predictions Fhθ (ŷ

h
R, h

h
R, N−R) during training

and inference (cf. Eq. (10) and (11)), and denote this by the
suffix "+HP". In order to demonstrate the flexibility of our
method, we add results with varying cutoff frequencies and
downsampling ratios in the appendix. We train our model on
the following systems:

(i) Double-Mass Spring System: We simulate a double-
mass spring system that consists of two sinusoidal waves
with different frequencies and corrupt the simulation with
additional observation noise. Training is performed on an
interval of 250 steps, while predictions are computed on
1000 steps (further details can be found in the appendix).

(ii) - (iv) Double-Torsion Pendulum: In the second set
of experiments, we consider real measurements from the
double-torsion pendulum system introduced in Lisowski et al.
(2020). Data are obtained by exciting the system with differ-
ent inputs. In particular, we consider 4 different excitations
with varying frequencies. Training is performed on the first
600 measurements, while predictions are performed on an
2000-steps interval.

5.5 Hybrid Model
For the hybrid model, we train our complementary filter-
ing method with GRU and RNN and compare against the
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Figure 2: Demonstrating the method with the double-mass spring system (i). Shown is the analysis of the frequency spectrum
with marked cutoff frequency (left). This yields the predictions of the two seperate GRUs (middle). The accumulated RMSE over
time indicates good short-and-long term behavior, while the baseline method accumulates errors (right).
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Figure 3: Rollouts for the purely learning-based scenario with all three methods for Systems (i) (left), (iv) (middle) and (ii)
(right). The training horizon is marked with dotted lines. The results show accumulating errors of the baseline method in contrast
to our approach.

corresponding non-hybrid models (GRU and RNN), the cor-
responding residual models (residual GRU/ RNN), and the
simulator. We consider the following systems:

(v) Van-der-Pol Oscillator: Data from a Van-der-Pol
oscillator with external force is simulated from the four-
dimensional ground truth system (Grasman, Veling, and
Willems (1976)). It is assumed that only the first dimension,
corresponding to the position, is observed. Simulator data
are obtained from an unforced Van-der-Pol oscillator. For the
corresponding equations, we refer to the appendix.

(vi) Drill-String: We consider measurement data from the
drill string experiment provided in Aarsnes and Shor (2018)
Figure 14 as training data and the corresponding simulated
signal as simulator.

5.6 Results
The results indicate the advantage of leveraging complemen-
tary filters for dynamics model learning. In particular, the
resulting predictions show stable short and long-term behav-
ior, while especially the GRU and RNN baselines tend to drift
on the long-term due to accumulating errors. For both sce-
narios, we provide additional plots showing the accumulated
RMSE over time for each system in the appendix.

Purely Learning-Based: The results in Table 1 indicate
the advantage of our approach due to accumulating errors for
the baseline method. Integrating a small model error in each
time-step leads to a long-term drift that can also be directly

observed in the rollouts (cf. Figure 3). Our approach on the
other hand does not suffer from this drift due to the specific ar-
chitecture and therefore outperforms the baseline method on
every task. The findings are also supported by the RSME over

time (en)
N
n=0 with en =

√∑n
k=0

1
n+1‖yk − ŷk‖2 shown in

Figure 2 (right). In some cases our methods yields faster con-
vergence than the baseline method. For System i) we report
the results after 300 training epochs for our method, while
the GRU was trained on 2000 epochs. To provide more in-
sights, we demonstrate the functionality of our method with
the double-mass spring system (i) (cf. Figure 2). Designing
the filters shown in Figure 2 (left) yields seperate predictions
from the two GRUs in Figure 2 (middle). Similar results of
our split GRU and our split GRU+HP indicate that the most
effective part is already contained in the split GRU (cf. Ta-
ble 1). Here, the high-frequency model already stays on the
desired time scale and the additional high-pass filter rather in-
troduces a small distortion. Further, our split GRU+HP shows
a higher error in the beginning due to transient behavior of
the filter, which can be seen in Figure 2 (right). However, the
additional high-pass filter guarantees that the high-frequency
predictions are indeed affecting the correct time scale.

Hybrid Model: We report the RMSEs for the hybrid set-
ting with RNNs in Table 2 and with GRUs in Table 3. The
results demonstrate that our method is beneficial for different
types of models, here MLP-based RNNs and GRUs. Again,
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Figure 4: Rollouts for the hybrid setting. Shown are the results for the Van-der-Pol oscillator (v) with RNN (left) and rollouts of
the single components before combining them via the complementary filter (middle). Further, the rollouts of the drill-string
system (vi) with RNN are shown (right). The training horizon is marked with dotted lines. The results demonstrate accumulating
errors in the baseline methods, while our approach provides accurate short and long-term predictions.

System GRU split GRU (ours) split GRU + HP (ours)
(i) 0.587 (0.002) 0.127 (0.008) 0.168 (0.03)

(ii) 1.124 (0.485) 0.331 (0.065) 0.318 (0.089)
(iii) 0.287 (0.15) 0.159 (0.051) 0.13 (0.02)
(iv) 0.262 (0.17) 0.201 (0.07) 0.18 (0.06)

Table 1: Total RMSEs (mean (std)) over 5 indep. runs with purely learning-based scheme.

System RNN residual RNN simulator filtered RNN (ours)
(v) 1.29 (0.63) 0.417 (0.03) 0.418 0.347 (0.041)

(vi) 1.1 (1.26) 3.60 (1.62) 0.729 0.487 (0.381)

Table 2: Total RMSEs for the hybrid model with RNN (mean (std)) over 5 indep. runs.

System GRU residual GRU simulator filtered GRU (ours)
(v) 0.463 (0.305) 0.476 (0.096) 0.418 0.387 (0.026)

(vi) 1.140 (0.258) 0.681 (0.055) 0.729 0.765 (0.008)

Table 3: Total RMSEs for the hybrid model with GRU (mean (std)) over 5 indep. runs.

the standard training with single GRU or single RNN shows
some drift causing bad long-term behavior. The unstable
long-term behavior is demonstrated particularly clearly by
the RNN results shown in Figure 4 (left and right). While
the residual RNN baseline does not suffer from the typical
drift that is observed for the RNN baseline, it still shows
instabilities in the long-term behavior. In particular, the re-
sults for System (vi) in Figure 4 (right) demonstrate that
low-frequency errors occur for the residual model as well.
Our method, in contrast, eliminates these errors by design.
However, on System (vi), our filtered GRU is outperformed
by the residual GRU since our predictions stay close to the
simulator predictions. We provide additional insights into our
method by depicting the RNN and simulator predictions be-
fore combining them via the complementary filter in Figure
4 (middle). Additional plots are provided in the appendix.

6 Conclusion
In this paper, we propose to combine complementary filter-
ing with dynamics model learning. In particular, we fuse the
predictions of different models, where one models provides
reliable long-term predictions and the other reliable short-
term predictions. Leveraging the concept of complementary
filter pairs yields a model that combines the best of both
worlds. Based on this idea, we propose a purely learning-
based model and a hybrid model. In the hybrid scenario, the
long-term predictions are addressed by a simulator, whereas
in the purely learning-based scenario an additional model has
to be trained. The experimental results demonstrate that our
approach yields predictions with accurate long and short-term
behavior. An interesting topic for future research is an exten-
sion of the hybrid scenario learning the relationship between
simulator predictions and learning-based predictions.
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