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Abstract
Mutual Information (MI) and Conditional Mutual Informa-
tion (CMI) are multi-purpose tools from information the-
ory that are able to naturally measure the statistical depen-
dencies between random variables, thus they are usually of
central interest in several statistical and machine learning
tasks, such as conditional independence testing and repre-
sentation learning. However, estimating CMI, or even MI,
is infamously challenging due the intractable formulation. In
this study, we introduce DINE (Diffeomorphic Information
Neural Estimator)–a novel approach for estimating CMI of
continuous random variables, inspired by the invariance of
CMI over diffeomorphic maps. We show that the variables of
interest can be replaced with appropriate surrogates that fol-
low simpler distributions, allowing the CMI to be efficiently
evaluated via analytical solutions. Additionally, we demon-
strate the quality of the proposed estimator in comparison
with state-of-the-arts in three important tasks, including es-
timating MI, CMI, as well as its application in conditional
independence testing. The empirical evaluations show that
DINE consistently outperforms competitors in all tasks and
is able to adapt very well to complex and high-dimensional
relationships.

Introduction
Mutual Information (MI) and Conditional Mutual Informa-
tion (CMI) are pivotal dependence measures between ran-
dom variables for general non-linear relationships. In statis-
tics and machine learning, they have been employed in a
broad variety of problems, such as conditional indepen-
dence testing (Runge 2018; Mukherjee, Asnani, and Kan-
nan 2020), unsupervised representation learning (Chen et al.
2016), search engine (Magerman and Marcus 1990), and
feature selection (Peng, Long, and Ding 2005).

The MI of two random variables X and Y measures the
expected point-wise information, where the expectation is
taken over the joint distribution PXY . Due to the expec-
tation, estimating mutual information for continuous vari-
ables remains notoriously difficult. Even if one possesses
the specification of the joint distribution, i.e., a closed-
form of the density, which is most of the time unknown
in practice, the expectation may still be intractable. Conse-
quently, exact MI estimation is only possible for discrete
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random variables. Historically, MI has been estimated by
non-paramtric approachs (Kwak and Choi 2002; Paninski
2003; Kraskov, Stögbauer, and Grassberger 2004), which are
however not widely applicable due to their unfriendliness
with sample size or dimensionality. Recently, variational ap-
proaches have been proposed to estimate the lower bound of
MI (Belghazi et al. 2018; Oord, Li, and Vinyals 2018). How-
ever, a critical limitation of MI lower bound estimators has
been studied by (McAllester and Stratos 2020), who show
that any distribution-free high-confidence lower bound es-
timation of mutual information is limited above by O(lnn)
where n is the sample size. More recent approaches includes
hashing (Noshad, Zeng, and Hero 2019), classifier-based es-
timator (Mukherjee, Asnani, and Kannan 2020), and induc-
tive maximum-entropy copula approach (Samo 2021).

While estimating MI is hard, estimating CMI is of mag-
nitudes harder due to the presence of the conditioning set.
Therefore, CMI estimation methods have seen slower devel-
opments than its MI counterparts. Recent developments for
CMI estimation include (Runge 2018; Molavipour, Bassi,
and Skoglund 2021; Mukherjee, Asnani, and Kannan 2020).

Present work. In this paper, we propose DINE1

(Diffeomorphic Information Neural Estimator)–a unifying
framework that closes the gap between the CMI and MI
estimation problems. The approach is advantageous com-
pared with novel variational methods in the way that it
can estimate the exact information measure, instead of a
lower-bound. Specifically, we harness the observation that
CMI is invariant over conditional diffeomorphisms, i.e., dif-
ferentiable and invertible maps with differentiable inverse
parametrized by the conditioning variable.

As a direct consequence, first, we can now build a well-
designed conditional diffeomorphic transformation that
breaks the statistical dependence between the conditioning
variable with the transformed variables, but keeps the infor-
mation measure unchanged, reducing the CMI to an equiva-
lent MI. Second, the approach offers a complete control over
the distribution form of the newly induced MI estimation
problem, thus we can easily restrict it to an amenable class
of simple distributions with well-established properties and
estimate the resultant MI via available analytic forms. Being

1Source code and relevant data sets are available at
https://github.com/baosws/DINE
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aided by the powerful expressivity of neural networks and
normalizing flows (Papamakarios et al. 2021), we can de-
fine a rich family of diffeomorphic transformations that can
handle a wide range of non-linear relationships, but are still
efficient in sample size and dimensionality.

Our numerical experiments show that the proposed DINE
estimator can consistently outperforms the state-of-the-arts
in both the MI and CMI estimation tasks. We also apply
DINE to test for conditional independence (CI)–an impor-
tant statistical problem where the presence of the condition-
ing variable is a major obstacle, in which the empirical re-
sults indicate that the distinctively accurate CMI estimation
of DINE allows for a high-accuracy test.

Contributions. The key contributions of our study are
summarized as follows:
• We present a reduction of any CMI estimation problem to

an equivalent MI estimation problem with the unchanged
information measure, which overcomes the central diffi-
culty in CMI estimation compared with MI estimation.

• We introduce DINE, a CMI estimator that is flexible, ef-
ficient, and trainable via gradient-based optimizers. We
also provide some theoretical properties of the method.

• We demonstrate the accuracy of DINE in estimating both
MI and CMI in comparisons with state-of-the-arts under
varying sample sufficiencies, dimensionalities, and non-
linear relationships.

• As a follow-up application of CMI estimation, we also
use DINE to test for conditional independence (CI)–an
important statistical problem with a central role in causal-
ity, and show that the test performs really well, as well as
being able to surpass state-of-the-art baselines by large
margins.

Background
In this Section we formalize the CMI estimation problem
and explain the characterization of CMI that motivated our
method.

Regarding notational interpretations, we use capitalized
letters X,Y , etc., for random variables/vectors, with lower-
case letters x, y, etc., being their respective realizations; the
distribution is denoted by P· (·) with the respective density
p· (·).

Conditional Mutual Information
The Conditional Mutual Information between continuous
random variables X and Y given Z (with respective com-
pact support sets X ,Y,Z) is defined as

I (X,Y |Z) =

∫
Z

∫
Y

∫
X
p (x, y, z) ln

p (x, y|z)
p (x|z) p (y|z)dxdydz

(1)

= Ep(x,y,z)

[
ln

p (x, y|z)
p (x|z) p (y|z)

]
(2)

where we have assumed that the underlying distributions
admit the corresponding densities p (·).

Having CMI defined, our technical research question is to
estimate I (X,Y |Z) using the empirical distribution P

(n)
XY Z

of n i.i.d. samples, without having access to the true distri-
bution PXY Z .

Conditional Mutual Information
Re-parametrization

Let us first recall that a diffeomorphism is defined as

Definition 1. (Diffeomorphism). A map τ (·) : X → X ′ is
called a diffeomorphism if it is differentiable and invertible,
and its inverse is also differentiable.

This kind of transformation is of great interest because it
exhibits an important invariance property of MI, which was
established by (Kraskov, Stögbauer, and Grassberger 2004):

Lemma 1. (MI Re-parametrization, (Kraskov, Stögbauer,
and Grassberger 2004)). Let τX : X → X ′ and τY :
Y → Y ′ be two diffeomorphisms where x′ = τX (x) and
y′ = τY (y), then we have:

I (X,Y ) = I (X ′, Y ′) (3)

Proof. See the Supplementary Material (Duong and Nguyen
2022b).

Inspired by this attractive property, CMI can be shown to
be also invariant via any conditional diffeomorphism, which
we define as

Definition 2. (Conditional Diffeomorphism). A differen-
tiable map τ (·; ·) : X × Z → X ′ is called a conditional
diffeomorphism if τ (·; z) : X → X ′ is a diffeomorphism
for any z ∈ Z .

The following Lemma states that it is possible to re-
parametrize CMI via some conditional diffeomorphisms:

Lemma 2. (CMI Re-parametrization). Let τX : X × Z →
X ′ and τY : Y × Z → Y ′ be two conditional diffeomor-
phisms such that PX′Y ′|Z = PX′Y ′ , where x′ = τX (x; z)
and y′ = τY (y; z), then the following holds:

I (X,Y |Z) = I (X ′, Y ′) (4)

Proof. See the Supplementary Material (Duong and Nguyen
2022b).

The Diffeomorphic Information Neural
Estimator (DINE)

Our framework can be described using two main compo-
nents, namely the CMI approximator and the CMI estima-
tor. While the approximator concerns the hypothesis class of
models that are used to approximate the CMI given the ac-
cess to the true data distribution, the CMI estimator defines
how to estimate the CMI using models in the said approxi-
mator class, but with only a finite sample size.

7469



CMI Approximation
We start by giving the general CMI approximator based on
densities (as a direct solution to Eqn. (2)):
Definition 3. (Density-based CMI approximator). Given a
family of density approximators with parameters θ ∈ Θ. The
density-based CMI approximator IΘ (X,Y |Z) is defined as

IΘ (X,Y |Z) = Ep(x,y,z)

[
ln

pθ∗ (x, y|z)
pθ∗ (x|z) pθ∗ (y|z)

]
(5)

where the parameter θ∗ = (θ∗X , θ∗Y , θ
∗
XY ) ∈ Θ are Max-

imum Likelihood Estimators (MLE) of the true densities
p (x, y|z), p (x|z), and p (y|z):

θ∗X = arg max
θX

Ep(x,z) [ln pθ (x|z)] (6)

θ∗Y = arg max
θY

Ep(y,z) [ln pθ (y|z)] (7)

θ∗XY = arg max
θXY

Ep(x,y,z) [ln pθ (x, y|z)] (8)

The innovation of DINE is fueled by the invariance prop-
erty of CMI over diffeomorphic transformations as stated in
Eqn. (4). To realize this end, the recently emerging Normal-
izing Flows (NF) technique offers us the exact tool we need
to exploit the benefits we have just gained from the CMI re-
parametrization.

Simply put, NF offers a general framework to model prob-
ability distributions (in this case PXY |Z) by expressing it
in terms of a simple “base” distribution (here PX′Y ′ ) and a
series of bijective transformations (the diffeomorphisms in
our method). For more technical details regarding NFs, see
(Kobyzev, Prince, and Brubaker 2020; Papamakarios et al.
2021).

Based on this, our approach involves the design of a class
of conditional normalizing flows (in contrast with the un-
conditional normalizing flows that are not parametrized by
Z), referred to as the Diffeomorphic Information Neural Ap-
proximator (DINA), and formalized as
Definition 4. (Diffeomorphic Information Neural Approx-
imator (DINA)). A DINA DΘ is a density-based CMI ap-
proximator characterized by the following elements:
• A compact parameter domain Θ.
• A family of base distributions {Pθ (X

′, Y ′)}θ∈Θ.
• A family of conditional normalizing flows
{τθ (·; ·) : X × Z → X ′}θ∈Θ.

Then, the approximation is defined as

IΘ (X,Y |Z) = IΘ (X ′, Y ′) (9)
with x′ = τθ∗

X
(x; z) and y′ = τθ∗

Y
(y; z).

As mentioned, MI estimation from finite data is still dif-
ficult if the underlying distribution function is unknown or
the expectation is intractable. Fortunately, the use of nor-
malizing flows allows us to have a complete control over the
distribution of the surrogate variables X ′ and Y ′.

However, with an arbitrary base distribution, the finite
sample estimation of the CMI as in Eqn. (5) still involves

averaging the log-density terms, which results in a possi-
bly very large estimation variance. Therefore, to reduce the
estimation variance, we look for distributions with simple
closed-form expression of the MI. Towards this end, the
Gaussian distribution is an excellent choice thanks to its
well-studied information-theoretic properties, especially the
availability of a closed-form MI that we can make use of.
In more details, when the base distribution Pθ (X

′, Y ′) is
jointly Gaussian, we approximate the CMI as follows:

Definition 5. (DINA-Gaussian). If Pθ (X
′, Y ′) is multivari-

ate Gaussian, then the DINA approximator with Gaussian
base is defined as

INΘ (X ′, Y ′) =
1

2
ln

detΣp(x,z) (X
′) detΣp(y,z) (Y

′)

detΣp(x,y,z) (X ′Y ′)
(10)

where Σp(x,z) (X
′) is the covariance matrix of X ′ evalu-

ated on the true distribution PXZ , and so on.

For the rest of the main Sections we will assume that
Pθ (X

′, Y ′) is jointly multivariate Gaussian with standard
Gaussian marginals. That being said, the framework is still
flexible to adapt to arbitrary base distributions that are in-
dependent of Z, as long as it is efficient to evaluate the
marginal MI between X ′ and Y ′.

We describe in more details the architecture of the nor-
malizing flows employed for our framework in the next Sec-
tion.

Learning Conditional Diffeomorphisms
Among a diversely developed literature of normalizing flows
(Kobyzev, Prince, and Brubaker 2020; Papamakarios et al.
2021), autoregressive flows remain one of the earliest and
most widely adopted. The most attractive characteristic of
autoregressive flows is their intrinsic expressiveness. More
concretely, autoregressive flows are universal approximators
of densities (Papamakarios et al. 2021), meaning they can
approximate any probability density to an arbitrary accuracy.

Suppose X and U are d-dimensional real-valued random
vectors, where we wish to model the true p (x) with re-
spect to the base pθ (u). Autoregressive flows transform each
dimension i of x using the information of the dimensions
1..i− 1 of itself, hence the name “auto”–regressive:

ui = τθ (xi;hi) , where hi = ci (x<i) (11)

Here the diffeomorphism τ is referred to as the trans-
former, and the function ci is called the conditioner, which
encodes the information from the dimensions < i of x and
defines parameters for the transformer.

Since ui only depends on x≤i, the Jacobian matrix Jτ
of partial derivatives is lower triangular, so the modeled log
density is simply inferred using the change of variables rule
as

ln pθ (x) = ln pθ (u) +
d∑

i=1

ln

∣∣∣∣∂ui

∂xi
(u)

∣∣∣∣ (12)
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Furthermore, fitting pθ (x) to p (x) involves maximizing
the expected likelihood with respect to the parameter θ:

θ∗ = arg max
θ

Ep(x) [ln pθ (x)] (13)

where the expectation can be estimated with the sample
mean of empirical data.

Going back to our problem, for example, to build the
conditional diffeomorphism x′ = τθ (x; z) with a standard
Gaussian distribution PX′ , we design the base distribution,
transformer, and conditioner as follows:

Base distribution. First we choose PX′ to be a d-
dimensional standard uniform distribution U (0, 1)

d, since
its density is constant everywhere, so no computation is re-
quired for ln pθ (x′) nor its derivatives.

Next, to transform PX′ to the desired standard Gaussian
N (0;1dX

), we simply apply the inverse of the cumula-
tive distribution function (CDF) of the standard Gaussian
(Φ−1) to x′ in an element-wise fashion, where Φ (u) =∫ u

−∞ N (t; 0, 1) dt.

Transformer. With the base distribution being a standard
uniform distribution, a natural choice for the transformer is
the CDF of some densities, which is uniformly distributed
for any strictly positive density.

To make the transformation more expressive, we com-
pose the transformer as a weighted combination of different
CDFs parametrized by the conditioner. More particularly,
the transformer for the i-th dimension is given by

τ (xi;hi) =
k∑

j=1

wij (hi) Φ
(
xi;µij (hi) , σ

2
ij (hi)

)
(14)

where we have used a mixture of k CDF components,
with the j-th component being a Gaussian CDF with mean
µij (hi), variance σ2

ij (hi), and positive weight wij (hi) such
that

∑k
j=1 wij (·) = 1.

This transformer is also a universal approximator for
CDFs because its derivative is essentially a Gaussian mix-
ture model (GMM), a canonical universal approximator of
densities (Goodfellow, Bengio, and Courville 2016). Put
simply, with a sufficient number of Gaussian components,
τ (xi;hi) can express any strictly monotonic R → (0, 1)
map (hence invertible) with an arbitrary accuracy, which is
followed by the broad expressiveness of the transformer.

Conditioner. Since we would like to model the condi-
tional diffeomorphism τ (x; z), the conditioner function ci
must encode both x<i and z, so instead of hi = ci (x<i),
now we let

hi = ci (x<i, z) (15)

In contrary to the transformer, the conditioner needs not
to be invertible, so we can freely model it using any family
of functions with inputs x<i and z.

Neural Network Parametrization. To maximize the ex-
pressivity power of autoregressive flows explained earlier,
we parametrize all functional components in Eqn. (14) and
Eqn. (15) with neural networks for each dimension, hence
the term “Neural” in DINE.

More specifically, let dH be the dimension of H , we
model wi : RdH → (0, 1)

k as a Multiple Layer Perceptron
(MLP) with Softmax outputs, while ci : Ri−1+dZ → RdH ,
µi : RdH → Rk and lnσ2

i : RdH → Rk are real-valued
MLPs for all i = 1..dX .

Since the Jacobian matrix Jτ are now differentiable with
respect to the parameter θ, any gradient-based continuous
optimization framework can be applied to learn θ∗.

CMI Estimation
Having the ingredients above ready, we can now proceed to
define the DINE estimator for CMI:

Definition 6. (Diffeomorphic Information Neural Estimator
(DINE)). Consider a DINA approximator DΘ with parame-
ters in a compact domain Θ. DINE is defined as

In (X,Y |Z) = Ep(n)(x,y,z)

[
ln

p(n) (x′, y′)

p(n) (x′) p(n) (y′)

]
(16)

with x′ = τθ∗
X
(x; z) and y′ = τθ∗

Y
(y; z).

where the parameter θ∗ = (θ∗X , θ∗Y , θ
∗
XY ) ∈ Θ are Max-

imum Likelihood Estimators (MLE) of the empirical densi-
ties p(n) (x, y|z), p(n) (x|z), and p(n) (y|z):

θ∗X = arg max
θX

Ep(n)(x,z) [ln pθ (x|z)] (17)

θ∗Y = arg max
θY

Ep(n)(y,z) [ln pθ (y|z)] (18)

θ∗XY = arg max
θXY

Ep(n)(x,y,z) [ln pθ (x, y|z)] (19)

Note that θX and θY here denote the parameters of the
normalizing flows and the marginal densities pθ (x

′) and
pθ (y

′), while θXY is the parameter of the joint density
pθ (x

′, y′), which is constrained to have marginals pθ∗
X
(x′)

and pθ∗
Y
(y′).

Specifically, under the case of multivariate Gaussian base,
DINE can be written as

Definition 7. (DINE-Gaussian). If Pθ (X
′, Y ′) is multi-

variate Gaussian, then the DINE estimator with Gaussian
base is defined as

INn (X,Y |Z) =
1

2
ln

detΣn (X
′) detΣn (Y

′)

detΣn (X ′Y ′)
(20)

We emphasize that in contrary with the general DINE es-
timator defined in Eqn. (16), the DINE-Gaussian estima-
tor does not require explicit density evaluations but instead
leverages the log determinants of sample covariance matri-
ces that offers a lower estimation variance, and thus makes
it the preferable estimator in practice.
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Theoretical Properties
In this Section we state some important theoretical results re-
garding the DINE estimator, including estimation variance,
consistency, and sample complexity. Proof sketches for these
results are provided in the Supplementary Material (Duong
and Nguyen 2022b).

Variance
Lemma 3. (Variance of DINE-Gaussian). The asymptotic
variance of the DINE-Gaussian estimator is given by

Var
[
INn

] L→ O

(
d

n

)
, as n → ∞ (21)

with d being the dimensionality.

Consistency
The quality of DINE depends on the choice of (i) a family
of normalizing flows and (ii) n i.i.d. samples from the true
distribution PXY Z . The following Lemma states that, given
a sufficiently expressive DINA, we can approximate the in-
formation measure to arbitrary accuracy.
Lemma 4. (Approximability of DINA). For any ϵ > 0, there
exists a DINA DΘ with some compact domain Θ ⊂ Rc such
that

|I (X,Y |Z)− IΘ (X,Y |Z)| ≤ ϵ, almost surely (22)

The next Lemma declares that the estimator almost surely
converges to the approximator as the sample size approaches
infinity.
Lemma 5. (Estimability of DINE). For any ϵ > 0, given a
DINA DΘ with parameters in some compact domain Θ ⊂
Rc, there exists a N ∈ N such that

∀n ≥ N, |In (X,Y |Z)− IΘ (X,Y |Z)| ≤ ϵ, almost surely
(23)

Finally, the two Lemmas above together prove the consis-
tency of DINE:
Theorem 1. (Consistency of DINE). DINE is consistent
whenever DINA is sufficiently expressive.

Sample Complexity
We make the following assumptions: the log-densities are
bounded in [−M,M ] and L-Lipschitz continuous with re-
spect to the parameters θ, and the parameter domain Θ ⊂ Rc

is bounded with ∥θ∥ ≤ K.
Theorem 2. (Sample complexity of general DINE). Given
any accuracy and confidence parameters ϵ, δ > 0, the fol-
lowing holds with probability at least 1− δ

|I (X,Y |Z)− In (X,Y |Z)| < ϵ (24)
whenever the sample size n suffices at least

72M2

ϵ2

(
c ln

(
96KL

√
c

ϵ

)
+ ln

2

δ

)
(25)
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Figure 1: Mutual Information estimation performance. We
compare the proposed DINE estimator with MINE (Belg-
hazi et al. 2018) and MIND (Samo 2021). Rows: sample
sizes, columns: dimensionalities. The dashed line denotes
the true MI and the other lines show the averaged estima-
tions for each method over 50 independent runs. The shaded
areas show the estimated 95% confidence intervals.

Empirical Evaluations
In what follows, we illustrate that DINE-Gaussian (for
brevity we refer to it as just DINE from now on) is far more
effective than the alternative MI and CMI estimators in both
sample size and dimensionality, especially when the actual
information measure is high. Implementation details and pa-
rameters selection of all methods are given in the Supple-
mentary Material (Duong and Nguyen 2022b).

Synthetic Data
We consider a diverse set of simulated scenarios cov-
ering different degrees of non-linear dependency, sam-
ple size, and dimensionality settings. For each indepen-
dent simulation, we first generate two jointly multivariate
Gaussian variables X ′, Y ′ with same dimensions dX =
dY = d and shared component-wise correlation, i.e.,

(X ′, Y ′) ∼ N
(
0;

[
Id ρId
ρId Id

])
with a correlation

ρ ∈ (−1, 1). As for Z, we randomly choose one of
three distributions U (−0.01, 0.01)

dZ , N (0; 0.01IdZ
), and

Laplace (0; 0.01IdZ
). Then, X and Y are defined as

X = f (AZ +X ′) (26)

Y = g (BZ + Y ′) (27)
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Figure 2: Conditional Mutual Information estimation per-
formance. We compare the proposed DINE estimator with
CCMI (Mukherjee, Asnani, and Kannan 2020) and KSG
(Kraskov, Stögbauer, and Grassberger 2004). Rows: sample
sizes, columns: dimensionalities. The dashed line denotes
the true CMI and the other lines show the averaged estima-
tions for each method over 50 independent runs. The shaded
areas show the estimated 95% confidence intervals.

where A,B ∈ Rd×dZ have independent entries drawn
from N (0; 1), and f , g are randomly chosen from a
rich set of mostly non-linear bijective functions f (x) ∈{
αx, x3, e−x, 1

x , lnx,
1

1+e−x

}
.2

By construction, we have the ground truth CMI
I (X,Y |Z) = I (X ′, Y ′) = −d

2 ln
(
1− ρ2

)
.

Finally, n i.i.d. samples
{(

x(i), y(i), z(i)
)}n

i=1
are gener-

ated accordingly.

Comparison with MI Estimators
We compare DINE with two state-of-the-arts, the variational
MI lower bound estimator MINE3 (Belghazi et al. 2018) and
the inductive copula-based MIND4 method (Samo 2021),
which are two of the best approaches focusing solely on MI
estimation.

In this setting, we let Z be empty, i.e., dZ = 0, and
vary the correlation ρ in [−0.99, 0.99]. We consider both

2We scale and translate the inputs before feeding into the
functions to ensure numerical stability, e.g. 1

x
→ 1

x−min(x)+1
,

ln (x) → ln (x−min (x) + 1), and e−x → e
−x

std(x) .
3We adopt the implementation at https://github.com/karlstratos/

doe
4We use the author’s implementation https://github.com/

kxytechnologies/kxy-python/

the low sample size n = 200 and the large sample size
n = 1000, as well as the low-dimensional d = 2 and high-
dimensional d = 20 settings. For each of the setting com-
binations, we evaluate the methods using the same 50 inde-
pendent synthetic data sets according to the described simu-
lation scheme.

The empirical results are recorded in Figure 1. We ob-
serve that for all scenarios, our DINE method produces
nearly identical estimates with the ground truth, regard-
less of sample size or dimensionality, with clear distinc-
tions from MINE and MIND. Under the most limited set-
ting of low sample size and high dimensionality (top-right),
DINE estimates are still remarkably close the the ground
truth, while MINE and MIND visibly struggles when the
ground truth mutual information is high. On the other hand,
for the most favorable setting of large sample size and low
dimensionality (bottom-left), DINE estimates approach the
ground truth with a nearly invisible margin, whereas the er-
ror gaps of MINE and MIND estimates are clearly distin-
guishable.

Comparison with CMI Estimators
For this context, we compare DINE with the state-of-the-
art classifier based estimator CCMI5 (Mukherjee, Asnani,
and Kannan 2020) and the popular k-NN based estimator
KSG (Kraskov, Stögbauer, and Grassberger 2004). The ex-
periment setup follows closely to the MI estimation experi-
ment, except that now we let dZ = dX = dY .

Figure 2 captures the results. We can see that, compared
to the MI estimation setting, the conditioning variable Z de-
grades the performance of DINE, however only for high
ground truth values and not at a considerable magnitude.
Meanwhile, the competitors CCMI and KSG do not adapt
well to the high dimensional setting when dX = dY =
dZ = 20. Yet, for the low dimensional case, they still per-
form poorly relative to our DINE approach, especially when
the underlying CMI is high.

Application in Conditional Independence
Testing

Among the broad range of applications of CMI estimation,
the Conditional Independence (CI) test is perhaps one of the
most desired. CI testing greatly benefits the field of Causal
Discovery (Spirtes et al. 2000). Therefore, in this Section
we illustrate that our approach may be used to construct a
CI test that strongly outperforms other competitive baselines
solely designed for the same goal, as a down-stream evalu-
ation of DINE. Resultantly, the test can be expected to im-
prove Causal Discovery methods significantly.

Context
Formally, CI testing concerns with the statistical hypothesis
test with

5We use the implementation from the authors at https://github.
com/sudiptodip15/CCMI
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Figure 3: Conditional Independence Testing performance as a function of dimensionality. The evaluation metrics are F1 score,
AUC (higher is better), Type I and Type II error rates (lower is better), evaluated on 200 independent runs. We compare the
proposed DINE-based CI test with KCIT (Zhang et al. 2012) and CCIT (Sen et al. 2017).

H0 : X ⊥⊥ Y | Z (28)
H1 : X ̸⊥⊥ Y | Z (29)

Related works In the context of CI testing, kernel-
based approaches (Zhang et al. 2012), are generally the
most popular and powerful methods for CI testing, which
adopt kernels to exploit high order statistics that capture
the CI structure of the data. Recently, more modern ap-
proaches have also been proposed, such as GAN-based (Shi
et al. 2021) classification-based (Sen et al. 2017), or latent
representation-based (Duong and Nguyen 2022a) methods
with promising results.

Description of the test We design a simple DINE-based
CI test inspired by the observation that X ⊥⊥ Y | Z ⇔
I (X ′, Y ′) = 0 and use I (X ′, Y ′) as the test statistics.
Next, we employ permutation-based boostrapping to simu-
late the null distribution of the test statistics and estimate the
p-value. Finally, given a user-defined significance level α,
we reject the null hypothesis H0 if p-value < α and accept
it otherwise. The implementation details and parameters of
the test are given in the Supplementary Material (Duong and
Nguyen 2022b).

Experiments
To numerically evaluate the quality of the aforementioned
DINE-based CI test, we compare it with the prominent
kernel-based test KCIT6 (Zhang et al. 2012) and a more re-
cent state-of-the-art classifier-based test CCIT7 (Sen et al.
2017).

In this experiment, we fix dX = dY = 1 and consider dZ
increasing from low to high dimensionalities in [5, 20], with
a constant sample size n = 1000, and compare the perfor-
mance of DINE against the baselines, assessed under four
different criterions, namely the F1 score, AUC (higher is bet-
ter), Type I, and Type II error rates (lower is better). These
metrics are evaluated using 200 independent runs (100 runs
for each label) for each combination of method and dimen-
sionality of Z. Additionally, for F1 score, Type I, and Type II

6The implementation from the causal-learn package is adopted
https://github.com/cmu-phil/causal-learn

7The authors’ implementation can be found at https://github.
com/rajatsen91/CCIT

errors, we adopt the common significance level of α = 0.05.
Furthermore, for the case of conditional independence we let
ρ = 0, whereas for the conditional dependence case we ran-
domly draw ρ ∼ U ([−0.99, 0.1] ∪ [0.1, 0.99]). The data is
generated according to the CMI experiment in the previous
Section.

The numerical comparisons in CI testing are presented in
Figure 3, which show that the DINE-based CI test obtains
very good scores under all performance metrics. More par-
ticularly, it nearly never makes any Type II error, meaning
when the relationship is actually conditional dependence,
the CMI estimate is rarely too low to be misclassified as
conditional independence; meanwhile, its Type I errors are
roughly proximate to the rejection threshold α, which is
expected from the definition of p-value. Moreover, the F1

and AUC scores of DINE are also highest in all cases and
closely approach 100%, suggesting the superior adaptability
of DINE to both non-linearity and higher dimensionalities.

Regarding the baseline methods, KCIT and CCIT show
completely opposite behaviors to each other. While KCIT
has relatively low Type II errors, its Type I errors are quite
high even at lower dimensionalities and increase rapidly
in the increment dimensionality. Conversely, CCIT is quite
conservative in Type I error as a trade-off for the consistently
high Type II errors. However, their AUC scores are still high,
indicating that the optimal threshold exists, but their p-value
estimates do not reflect accurately the true p-value.

Conclusion
In this paper we propose DINE, a novel approach for CMI
estimation. Through the use of normalizing flows, we sim-
plify the challenging CMI estimation problem into the eas-
ier MI estimation, which can be designed to be efficiently
evaluable, overcoming the inherent difficulties in existing
approaches. We compare DINE with best-in-class methods
for MI estimation, CMI estimation, in which DINE shows
considerably better performance as compared to its counter-
parts, as well as being friendly in sample size and dimen-
sionality while adapting well to several non-linear relation-
ships. Finally, we show that DINE can also be used to define
a CI test with an improved effectiveness in comparison with
state-of-the-art CI tests, thanks to its accurate CMI estima-
bility.
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