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Abstract

The matrix-based Rényi’s entropy allows us to directly quan-
tify information measures from given data, without explicit
estimation of the underlying probability distribution. This in-
triguing property makes it widely applied in statistical infer-
ence and machine learning tasks. However, this information
theoretical quantity is not robust against noise in the data, and
is computationally prohibitive in large-scale applications. To
address these issues, we propose a novel measure of informa-
tion, termed low-rank matrix-based Rényi’s entropy, based on
low-rank representations of infinitely divisible kernel matri-
ces. The proposed entropy functional inherits the specialty
of of the original definition to directly quantify information
from data, but enjoys additional advantages including robust-
ness and effective calculation. Specifically, our low-rank vari-
ant is more sensitive to informative perturbations induced by
changes in underlying distributions, while being insensitive
to uninformative ones caused by noises. Moreover, low-rank
Rényi’s entropy can be efficiently approximated by random
projection and Lanczos iteration techniques, reducing the
overall complexity from O(n3) to O(n2s) or even O(ns2),
where n is the number of data samples and s ≪ n. We con-
duct large-scale experiments to evaluate the effectiveness of
this new information measure, demonstrating superior results
compared to matrix-based Rényi’s entropy in terms of both
performance and computational efficiency.

Introduction
The practical applications of traditional entropy measures
e.g. Shannon’s entropy (Shannon 1948) and Rényi’s en-
tropy (Rényi 1961) have long been hindered by their heavy
reliance on the underlying data distributions, which are
extremely hard to estimate or even intractable in high-
dimensional spaces (Fan and Li 2006). Alternatively, the
matrix-based Rényi’s entropy proposed by (Sanchez Gi-
raldo, Rao, and Principe 2014) treats the entire eigenspec-
trum of a normalized kernel matrix as a probability distribu-
tion, thus allows direct quantification from given data sam-
ples by projecting them in reproducing kernel Hilbert spaces
(RKHS) without the exhausting density estimation. This in-
triguing property makes matrix-based Rényi’s entropy and
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its multivariate extensions (Yu et al. 2019) successfully ap-
plied in various data science applications, ranging from clas-
sical dimensionality reduction and feature selection (Brock-
meier et al. 2017; Álvarez-Meza et al. 2017) problems to
advanced deep learning problems such as network prun-
ing (Sarvani et al. 2021) and knowledge distillation (Miles,
Rodrı́guez, and Mikolajczyk 2021).

Despite the empirical success of matrix-based Rényi’s en-
tropy, it has been shown to be not robust against noises in
the data (Yu et al. 2019), because it cannot distinguish them
from linear combinations of informative features in high-
dimensional scenarios. Moreover, the exact calculation re-
quires O(n3) time complexity with traditional eigenvalue
decomposition techniques e.g. CUR decomposition and QR
factorization (Mahoney and Drineas 2009; Watkins 2008),
greatly hampering its application in large scale tasks due to
the unacceptable computational cost.

Inspired by the success of min-entropy which uses the
largest outcome solely as a measure of information (Wan
et al. 2018; Konig, Renner, and Schaffner 2009), we seek for
a robust information quantity by utilizing low-rank represen-
tations of kernel matrices. Our new definition, termed low-
rank matrix-based Rényi’s entropy (abbreviated as low-rank
Rényi’s entropy), fulfills the entire set of axioms provided
by Rényi (Rényi 1961) that a function must satisfy to be
considered a measure of information. Compared to the orig-
inal matrix-based Rényi’s entropy, our low-rank variant is
more sensitive to informative perturbations caused by vari-
ation of the underlying probability distribution, while be-
ing more robust to uninformative ones caused by noises in
the data samples. Moreover, our low-rank Rényi’s entropy
can be efficiently approximated by random projection and
Lanczos iteration techniques, achieving substantially lower
time complexity than the trivial eigenvalue decomposition
approach. We theoretically analyze the quality of approxi-
mation results, and conduct large-scale experiments to eval-
uate the effectiveness of low-rank Rényi’s entropy as well
as the approximation algorithms. The main contributions of
this work are summarized as follows:
• We extend Giraldo et al.’s definition and show that a mea-

sure of entropy can be built upon the low-rank repre-
sentation of the kernel matrix. Our low-rank definition
can be naturally extended to measure the interactions be-
tween multiple random variables, including joint entropy,
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conditional entropy, and mutual information.
• Theoretically, we show that low-rank Rényi’s entropy

is more insensitive to random perturbations of the data
samples under mild assumptions. We also give empirical
examples of low-rank Rényi’s entropy achieving higher
discriminability for different eigenspectrum distributions
through a proper choice of the hyper-parameter k.

• We develop efficient algorithms to approximate low-rank
Rényi’s entropy through random projection and Lanc-
zos iteration techniques, enabling fast and accurate es-
timations respectively. The overall complexity is reduced
from O(n3) to O(n2s) or even O(ns2) for some s ≪ n,
leading to a significant speedup compared to the original
matrix-based Rényi’s entropy.

• We evaluate the effectiveness of low-rank Rényi’s en-
tropy on large-scale synthetic and real-world datasets,
demonstrating superior performance compared to the
original matrix-based Rényi’s entropy while bringing
tremendous improvements in computational efficiency.

Related Work
Matrix-based Rényi’s Entropy
Given random variable X with probability density function
(PDF) p(x) defined in a finite set X , the α-order Rényi’s
entropy (α > 0, α ̸= 1) Hα(X) is defined as

Hα(X) = 1
1−α log2

∫
X pα(x) dx,

where the limit case α → 1 yields the well-known Shan-
non’s entropy. It is easy to see that Rényi’s entropy relies
heavily on the distribution of the underlying variable X,
preventing its further adoption in data-driven science, espe-
cially for high-dimensional scenarios. To alleviate this issue,
an alternative measure namely matrix-based Rényi’s entropy
was proposed (Sanchez Giraldo, Rao, and Principe 2014):
Definition 1. Let κ : X × X 7→ R be an infinitely divisible
positive kernel (Bhatia 2006). Given {xi}ni=1 ⊂ X , each xi

being a real-valued scalar or vector, and the Gram matrix K
obtained from Kij = κ(xi,xj), a matrix-based analogue to
Rényi’s α-entropy can be defined as:

Sα(A) = 1
1−α log2

(∑n
i=1 λ

α
i (A)

)
,

where Aij = 1
n

Kij√
KiiKjj

is a normalized kernel matrix and

λi(A) is the i-th largest eigenvalue of A.
The kernel matrix A is positive semi-definite (PSD) and

satisfies tr(A) = 1, therefore λi ∈ [0, 1] for all i ∈ [1, n].
With this setting, one can similarly define matrix notion of
Rényi’s conditional entropy Sα(A|B), mutual information
Iα(A;B), and their multivariate extensions (Yu et al. 2019).

Approximating Matrix-based Rényi’s Entropy
Exactly calculating Sα(A) requires O(n3) time complexity
in general with traditional eigenvalue decomposition tech-
niques. Recently, several attempts have been made towards
accelerating the computation of Sα(A) from the perspec-
tive of randomized numerical linear algebra (Gong et al.

2021; Dong et al. 2022). Although we also develop fast ap-
proximations, the motivation and technical solutions are to-
tally different: we aim to propose a new measure of infor-
mation that is robust to noise in data and also enjoys fast
computation, whereas Gong and Dong et al. only acceler-
ate the original matrix-based Rényi’s entropy. Moreover, in
terms of adopted mathematical tools, we mainly focus on
random projection and Lanczos iteration algorithms, rather
than stochastic trace estimation and polynomial approxima-
tion techniques used in their works. As a result, the corre-
sponding theoretical error bounds are also different.

A Low-rank Definition of Rényi’s Entropy
Our motivations root in two observations. Recall that the
min-entropy (Konig, Renner, and Schaffner 2009), defined
by Hmin(X) = − log2 maxx∈X p(x), measures the amount
of information using solely the largest probability outcome.
In terms of quantum statistical mechanics, it is the largest
eigenvalue of the quantum state ρ which is PSD and has unit
trace (Ohya and Petz 2004). On the other hand, the eigen-
values with the maximum magnitude characterize the main
properties of a PSD matrix. Inspired by these observations,
we develop a robust information theoretical quantity by ex-
ploiting the low-rank representation:

Definition 2. Let κ : X × X 7→ R be an infinitely divisible
kernel. Given {xi}ni=1 ⊂ X and integer k ∈ [1, n − 1], the
low-rank Rényi’s α-order entropy is defined as:

Sk
α(A) = 1

1−α log2

(∑k
i=1 λ

α
i (A) + (n− k)λα

r (A)
)
,

where A is the normalized kernel matrix constructed from
{xi}ni=1 and κ, λi(A) is the i-th largest eigenvalues of A
and λr(A) = 1

n−k

(
1−

∑k
i=1 λi(A)

)
.

Let Ak be the best rank-k approximation of A and Lk(A)
be the matrix constructed by replacing the smaller n − k
eigenvalues in A to λr(A). It is easy to verify that Sk

α(A) =
Sk
α(Ak) = Sk

α(Lk(A)) = Sα(Lk(A)). Definition 2 com-
plements the smaller eigenvalues through a uniform distri-
bution, which is the unique method that fulfills all axioms
below (the uniqueness is discussed in the appendix1).

Proposition 1. Let A,B ∈ Rn×n be arbitrary normalized
kernel matrices, then

(a) Sk
α(PAP⊤) = Sk

α(A) for any orthogonal matrix P.
(b) Sk

α(pA) is a continuous function for 0 < p ≤ 1.
(c) 0 ≤ Sk

α(A) ≤ Sk
α(

1
nI) = log2(n).

(d) S2nk−k2

α

(
Lk(A)⊗ Lk(B)

)
= Sk

α(A) + Sk
α(B).

(e) If AB = BA = 0 and tr(Ak) = tr(Bk) = 1, then for
g(x) = 2(1−α)x and t ∈ [0, 1], we have S2k

α

(
tA+ (1−

t)B
)
= g−1

(
tg(Sk

α(A)) + (1− t)g(Sk
α(B))

)
.

(f) Sk
α

(
A◦B

tr(A◦B)

)
≥ max

(
Sk
α(A),Sk

α(B)
)
.

(g) Sk
α

(
A◦B

tr(A◦B)

)
≤ Sk

α(A) + Sk
α(B).

1https://github.com/Gamepiaynmo/LRMI

7451



i

PD
F

Entropy rank (k)

C
D

F

Figure 1: Left: PDF (solid) and CDF (dashed) of the altered
eigenspectrum for different ranks k. Right: The convergence
behavior of Sk

α(A) (solid) to Sα(A) (dashed) with the in-
crease of rank k for different EDR (r).

Remark 1. Proposition 1 characterizes the basic properties
of low-rank Rényi’s entropy, in which (a)-(e) are the set of
axioms provided by Rényi (Rényi 1961) that a function must
satisfy to be a measure of information. Additionally, (f) and
(g) together imply a definition of joint entropy which is also
compatible with the individual entropy measures:

Sk
α(A,B) = Sk

α

(
A◦B

tr(A◦B)

)
.

This further allows us to define the low-rank conditional en-
tropy Sk

α(A|B) and mutual information Ikα(A;B), whose
positiveness is guaranteed by (f) and (g) respectively:

Sk
α(A|B) = Sk

α(A,B)− Sk
α(B),

Ikα(A;B) = Sk
α(A) + Sk

α(B)− Sk
α(A,B).

An intuitive overview of the comparative behavior be-
tween Sα(A) and Sk

α(A) for n = 1000 is reported in Figure
1 and 2, where we evaluate the impact of k, α and eigen-
spectrum decay rate (EDR) r respectively. The eigenvalues
are initialized by λi = e−ri/n and then normalized. It can
be observed from Figure 1 that Sk

α(A) is always larger than
Sα(A) since the uncertainty of the latter n−k outcomes are
maximized. Moreover, Sk

α(A) quickly converges to Sα(A)
with the increase of k, especially in extreme cases when the
eigenspectrum of A is flat or steep. From Figure 2, we can
see that for small k, Sk

α(A) decreases slow with the increase
of α when α < 1 and fast otherwise. This behavior is the op-
posite when k becomes large. Furthermore, we can see that
EDR directly influences the value of entropy, as a flat eigen-
spectrum indicates higher uncertainty and steep the oppo-
site. As can be seen, Sk

α(A) monotonically decreases with
the increase of r, and decreases faster than Sα(A) in a cer-
tain range which varies according to the choice of k, indi-
cating higher sensitivity to informative distribution changes
when the hyper-parameter k is selected properly.

Moreover, consider the case that the data samples {xi}ni=1
are randomly perturbed, i.e. yi = xi + εpi, where pi are
random vectors comprised of i.i.d. entries with zero expec-
tation and unit variance. Let A and B be kernel matrices
constructed from {xi}ni=1 and {yi}ni=1 respectively, and let
{λi}ni=1, {µi}ni=1 be their eigenvalues. Then it satisfies that
µi ≈ λi+u⊤

i (B−A)ui (Ngo 2005), where ui is the corre-
sponding eigenvector of λi. When ε is small, the entries as

Entropy order (®)

S
k ®
(A
)

EDR (r)

S
k ®
(A
) S®(A)

k=1

k=3

k=10

k=30

k=100

Figure 2: Left: The behavior of Sk
α(A) when the entropy

order α varies from 0 to 2. Right: The behavior of Sk
α(A)

when the EDR of A varies from flat to steep.

well as the eigenvalues of A are nearly independently per-
turbed. The following theorem shows that Sk

α(A) is more
robust against small noises in data compared to Sα(A):
Theorem 1. Let {νi}ni=1 be independent random variables
with zero mean and variance {σ2

i }ni=1. Let A and B be
PSD matrices with eigenvalues λi and µi = λi + νi re-
spectively. If

∑k
i=1 σ

2
i ≤

∑n
i=k+1 σ

2
i or α > 1, there exists

ϵ > 0 such that when all |νi| ≤ ϵ, we have Var[IPk
α(B)] ≤

Var[IPα(B)], where IP is the information potential (Gok-
cay and Principe 2000) defined as IPα(B) = 2(1−α)Sα(B)

and IPk
α(B) = 2(1−α)Sk

α(B).

Remark 2. Theorem 1 indicates that IPk
α(B) enables lower

variance than IPα(B) against random perturbation of the
eigenvalues under mild conditions, which is easy to be sat-
isfied since in most cases we have k ≪ n. Combining with
our discussion above, the low-rank Rényi’s entropy is more
sensitive to informative variations in probability distribu-
tions which will surely induce an increase or decrease in
entropy, while being insensitive to uninformative perturba-
tions caused by noises in the data samples.

Extending to Multivariate Scenarios
Following Definition 2 and Proposition 1, the low-rank vari-
ant of multivariate Rényi’s joint entropy, in virtue of the
Venn diagram relation for Shannon’s entropy (Yeung 1991),
could be naturally derived:
Definition 3. Let {κi}Li=1 : X i × X i 7→ R be positive in-
finitely divisible kernels and {x1

i , · · · ,xL
i }ni=1 ⊂ X 1×· · ·×

XL, the low-rank Rényi’s joint entropy is defined as:

Sk
α(A1, · · · ,AL) = Sk

α

(
A1◦···◦AL

tr(A1◦···◦AL)

)
,

where A1, · · · ,AL are normalized kernel matrices con-
structed from {x1

i }ni=1, · · · , {xL
i }ni=1 respectively and ◦ de-

notes the Hadamard product.
This joint entropy definition enables further extension to

multivariate conditional entropy and mutual information:

Sk
α(A1, · · · ,Ak|B) = Sk

α(A1, · · · ,Ak,B)− Sk
α(B),

Ikα(A1, · · · ,Ak;B) =Sk
α(A1, · · · ,Ak) + Sk

α(B)

− Sk
α(A1, · · · ,Ak,B),
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Algorithm 1: Approximation via Random Projection
1: Input: Integers n, k ∈ [1, n/2], s ≥ k, kernel matrix

A ∈ Rn×n, order α > 0.
2: Output: Approximation to Sk

α(A);
3: Construct a random projection matrix P ∈ Rn×s.
4: Calculate Â = AP ∈ Rn×s.
5: Calculate the largest k singular values λ̂i, i ∈ [1, k] of

Â through singular value decomposition.
6: Calculate λ̂r = 1

n−k

(
1−

∑k
i=1 λ̂i

)
.

7: Return: Ŝk
α(A) = 1

1−α log2

(∑k
i=1 λ̂

α
i + (n− k)λ̂α

r

)
.

where A1, · · · ,AL and B are normalized kernel matrices
constructed from the variables {x1

i }ni=1, · · · , {xL
i }ni=1 and

the target label {yi}ni=1 respectively. Their positiveness can
be guaranteed through a reduction to axiom (f) and (g).
These multivariate information quantities enable much more
widespread applications e.g. feature selection, dimension re-
duction and information-based clustering.

Approximating Low-rank Rényi’s Entropy
Although only the largest eigenvalues are accessed by our
entropy definition, one still needs to calculate the full eigen-
spectrum of the PSD matrix A through eigenvalue decom-
position algorithms, resulting in O(n3) overall time cost. To
alleviate the computational burden, we design fast approxi-
mations by leveraging random projection and Lanczos iter-
ation techniques for low-rank Rényi’s entropy.

Random Projection Approach
Random projection offers a natural way to approximate the
low-rank representation of kernel matrices. The core idea is
to project the n×n PSD matrix A into a n×s subspace, and
then use the largest k singular value of the projected matrix
as approximations of the largest k eigenvalues, as summa-
rized in Algorithm 1. In this way, the main computation cost
is reduced to O(n2s) or even O(ns2), (s ≪ n), substan-
tially lower than the original O(n3) approach. Based on this
fact, we develop efficient approximation algorithms by ex-
ploring different random projection techniques, in which the
construction of P varies depending on the practical applica-
tions, ranging from simple but effective Gaussian distribu-
tions to advanced random orthogonal projections.

Gaussian Random Projection
As one of the most widely used random projection tech-
niques, Gaussian random projection (GRP) admits a simple
but elegant solution for eigenvalue approximation:

P =
√

n/s ·G,

where the columns of G ∈ Rn×s are initialized by i.i.d ran-
dom standard Gaussian variables and then orthogonalized.
The time complexity of GRP is O(n2s).

Subsampled Randomized Hadamard Transform
SRHT (Lu et al. 2012; Tropp 2011) is a simplification of the
fast Johnson-Lindenstrauss transform (Ailon and Chazelle

2009) which preserves the geometry of an entire subspace of
vectors compared to GRP. In our settings, the n × s SRHT
matrix is constructed by

P =
√
1/s ·DHS,

where D ∈ Rn×n is a diagonal matrix with random {±1}
entries, H ∈ Rn×n is a Walsh-Hadamard matrix, S ∈ Rn×s

is a subsampling matrix whose columns are a uniformly cho-
sen subset of the standard basis of Rn.

Two key ingredients make SRHT an efficient approxima-
tion strategy: first, it takes only O(n2 min(log(n), s)) time
complexity to calculate the projected matrix Â; second, the
orthonormality between the columns of A can be preserved
after projection, thus is more likely to achieve lower approx-
imation error compared to GRP.

Input-Sparsity Transform
Similar to SRHT, input-sparsity transform (IST) (Mahoney
2011; Woodruff and Zandieh 2020) utilizes the fast John-
Lindenstrauss transform to reduce time complexity for least-
square regression and low-rank approximation:

P =
√
n/s ·DS,

where D and S are constructed in the same way as SRHT.
The complexity of calculating Â using IST is O(nnz(A)),
where nnz denotes the number of non-zero entries, resulting
in a total complexity of O(min(nnz(A), ns2)).

Sparse Graph Sketching
The idea of using sparse graphs as sketching matrices is pro-
posed in (Hu et al. 2021). It is shown that the generated bi-
partite graphs by uniformly adding edges enjoy elegant the-
oretical properties known as the Expander Graph or Magical
Graph with high probability, and thus serve as an effective
random projection strategy:

P =
√
1/p ·G,

where p ∈ N is the hyper-parameter that controls the spar-
sity, and each column g of G is constructed independently
by uniformly sampling c ⊂ [n] with |c| = p, and then setting
gi = {±1} randomly for i ∈ c and gi = 0 for i /∈ c. Sim-
ilar to IST, sparse graph sketching (SGS) also utilizes the
sparsity of input matrices and achieves O(nnz(A)p) com-
putational complexity to calculate the projected matrix.

Theoretical Results
Next, we provide the main theorem on characterizing the
quality-of-approximation for low-rank Rényi’s entropy:
Theorem 2. Let A be positive definite and

s =


O(k + log(1/δ)/ϵ20), for GRP
O((k + log n) log k/ϵ20), for SRHT
O(k2/ϵ20), for IST
O(k log(k/δϵ0)/ϵ

2
0), for SGS

p = O(log(k/δϵ0)/ϵ0), for SGS

where ϵ0 = ϵλkλr, then for k ≤ n/2, with confidence at
least 1− δ, the output of Algorithm 1 satisfies

|λ2
i − λ̂2

i | ≤ ϵ
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Algorithm 2: Approximation via Lanczos Iteration

1: Input: Integers n, k ∈ [1, n/2], s ≥ k, kernel matrix
A ∈ Rn×n, order α > 0, initial vector q.

2: Output: Approximation to Sk
α(G).

3: Set q0 = 0, β0 = 0,q1 = q/∥q∥.
4: for j = 1, 2, · · · , s do
5: q̂j+1 = Aqj − βj−1qj−1, γj = ⟨q̂j+1,qj⟩.
6: q̂j+1 = q̂j+1 − γjqj .
7: Orthogonalize q̂j+1 against q1, · · · ,qj−1.
8: βj = ∥q̂j+1∥, qj+1 = q̂j+1/βj .
9: end for

10: Calculate the largest k eigenvalues λ̂i, i ∈ [1, k] of

T =


γ1 β1 0
β1 γ2

. . . βs−1

0 βs−1 γs

.

11: Calculate λ̂r = 1
n−k

(
1−

∑k
i=1 λ̂i

)
.

12: Return: Ŝk
α(A) = 1

1−α log2

(∑k
i=1 λ̂

α
i + (n− k)λ̂α

r

)
.

for all i ∈ [1, k] eigenvalues of A and

|Sk
α(A)− Ŝk

α(A)| ≤ | α
1−α log2(1− ϵ)|.

Remark 3. Theorem 2 provides the accuracy guarantees
for low-rank Rényi’s entropy approximation via random pro-
jections. It can be observed that the approximation error
grows with the increase of α when α is small. Note that
although the error bound is additive in nature, it can be
further reduced to a relative error bound under mild con-
dition Sk

α(G) ≥
√
ϵ. In general, Theorem 2 requires s =

O(k + 1/ϵ2) to achieve 1 ± ϵ absolute accuracy, which is
consistent with the complexity results of least squares and
low rank approximations (Mahoney 2011).

Lanczos Iteration Approach
Besides random projection, the Lanczos algorithm is also
widely adopted to find the k extreme (largest or smallest in
magnitude) eigenvalues and the corresponding eigenvectors
of an n × n Hermitian matrix A. Given an initial vector q,
the Lanczos algorithm utilizes the Krylov subspace spanned
by {q,Aq, · · · ,Asq} to construct an tridiagonalization of
A whose eigenvalues converge to those of A along with the
increase of s, and are satisfactorily accurate even for s ≪ n.
As shown in Algorithm 2, the main computation cost is the
O(n2s) matrix-vector multiplications in the Lanczos pro-
cess, which could be further reduced to O(nnz(A)s) when
A is sparse. The computational cost of reorthogonalization
can be further alleviated by explicit or implicit restarting
Lanczos methods. The following theorem establishes the ac-
curacy guarantee of Algorithm 2:

Theorem 3. Let A be positive definite, q be the initial vec-
tor, {ϕi}ki=1 be the corresponding eigenvectors and

s =
⌈
k + 1

2 logR log
(

4θ2K2λ1

ϵλr

)⌉
,

where
R = γ +

√
γ2 − 1, γ = 1 + 2mini∈[1,k]

λi−λi+1

λi+1−λn
,

θ = maxi∈[1,k] tan⟨ϕi,q⟩, K =
∏k−1

j=1
λ̂j−λn

λ̂j−λk
,

then for k ≤ n/2, the output of Algorithm 2 satisfies

0 ≤ λi − λ̂i ≤ ϵλi

for all i ∈ [1, k] eigenvalues of A and

|Sk
α(A)− Ŝk

α(A)| ≤ | α
1−α log2(1− ϵ)|.

Remark 4. Theorem 3 provides the accuracy guarantee for
the Lanczos algorithm. The relationship between approxi-
mation error and α is similar to those in Theorem 2. Algo-
rithm 2 achieves a much faster convergence rate compared
to Algorithm 1 while achieving the same level of absolute
precision. When ϵ is small, R, θ and K can be regarded as
constants that depends only on the eigenspectrum of A and
the initial vector q, so that s = O(k + log(1/ϵ)) is enough
to guarantee a 1± ϵ accuracy. In practice, q is suggested to
be generated by random Gaussian in order to avoid a large
θ with high probability (Urschel 2021).

Experimental Results
In this section, we evaluate the proposed low-rank Rényi’s
entropy and the approximation algorithms under large-scale
experiments. Our experiments are conducted on an Intel i7-
10700 (2.90GHz) CPU and an RTX 2080Ti GPU with 64GB
of RAM. The algorithms are implemented in C++ with the
Eigen library and in Python with the Pytorch library.

Simulation Studies
We first test the robustness of Sk

α(A) against noises in the
data. As indicated by Theorem 1, low-rank Rényi’s entropy
achieves lower variance under mild conditions in terms of
the information potential. We consider the case that the in-
put data points are randomly perturbed, i.e. yi = xi+εpi for
i ∈ [1, n], where pi is comprised of i.i.d. random variables.
Let {λi}ni=1, {µi}ni=1 denote the eigenvalues of normalized
kernel matrices constructed from {xi}ni=1 and {yi}ni=1 re-
spectively. We test the following noise distributions: Stan-
dard Gaussian N(0, 1), Uniform U(−

√
3,
√
3), Student-t

t(3)/
√
3 and Rademacher {±1} with n = 100 (detailed set-

tings are given in the appendix). The examples of variation
in eigenvalues (µi − λi) and the standard deviation (multi-
plied by n) of entropy values after 100 trials are reported in
Figure 3. It verifies our analysis that when ε is small, the
eigenvalues µi are nearly independently perturbed. More-
over, our low-rank definition achieves lower variance than
matrix-based Rényi’s entropy under different choices of α,
in which smaller k corresponds to higher robustness.

Real Data Examples
In this section, we demonstrate the great potential of ap-
plying our low-rank Rényi’s entropy functional and its
multivariate extensions in two representative real-world
information-related applications, which utilize the mutual
information (information bottleneck) and multivariate mu-
tual information (feature selection) respectively.
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Figure 3: Upper: perturbation of the eigenvalues, i.e. µi − λi. Lower: standard deviation of matrix-based Rényi’s entropy and
low-rank Rényi’s entropy against random perturbations of the data samples for different values of α.

Objective Accuracy (%) Training Time (minutes)

CE 92.64 ± 0.03 - / 80
VIB 94.08 ± 0.02 4 / 84
NIB 94.01 ± 0.04 7 / 87

MRIB 94.13 ± 0.04 46 / 126
LRIB 94.16 ± 0.09 15 / 95

Table 1: Classification accuracy and training time of differ-
ent IB objectives. Left is the time spent on IB calculation
and right is the total training time.

Application to Information Bottleneck
The Information Bottleneck (IB) methods recently achieve
great success in compressing redundant or irrelevant infor-
mation in the inputs and preventing overfitting in deep neural
networks. Formally, given network input X and target label
Y, the IB approach tries to extract a compressed interme-
diate representation Z from X that maintains minimal yet
meaningful information to predict the task Y by optimizing
the following IB Lagrangian:

LIB = I(Y,Z)− β · I(X,Z),

where β is the hyper-parameter that balances the trade-off
between sufficiency (predictive performance of Z on task
Y, quantified by I(Y,Z)) and minimality (the complex-
ity of Z, quantified by I(X,Z)). In practice, optimizing
I(Y,Z) is equivalent to the cross-entropy (CE) loss for clas-
sification tasks, so our target remains to optimize the latter
term I(X,Z). However, mutual information estimation is
extremely hard or even intractable for high-dimension dis-
tributions, which is usually the case in deep learning. To
address this issue, there have been efforts on using varia-
tional approximations to optimize a lower bound of I(X,Z),
e.g. Variational IB (VIB) (Alemi et al. 2017) and Nonlinear
IB (NIB) (Kolchinsky, Tracey, and Wolpert 2019). We show
that with low-rank Rényi’s entropy, I(X,Z) can be directly
optimized by approximating the largest k eigenvalues of the

kernel matrix A constructed by X and Z. Recall that the
Lanczos method constructs an approximation A ≈ QTQ⊤,
where Q ∈ Rn×s has orthogonal columns and T ∈ Rs×s is
tridiagonal, we have λ̂i = λi(Q

⊤AQ) for all i ∈ [1, s]. Let∑s
i=1 λ̂iuiu

⊤
i be the eigenvalue decomposition of Q⊤AQ,

we can approximate the gradient of Sk
α(A) as:

∂Sk
α(A)

∂A
≈

k∑
i=1

∂Ŝk
α(A)

∂λ̂i

·Quiu
⊤
i Q

⊤.

In this experiment, we test the performance of matrix-based
Rényi’s IB (MRIB) (Yu, Yu, and Principe 2021) and our low-
rank variant (LRIB) with variational approximation-based
objectives using VGG16 as the backbone and CIFAR10 as
the classification task. All models are trained for 300 epochs
with 100 batch size and 0.1 initial learning rate which is
divided by 10 every 100 epochs. Following the settings in
(Yu, Yu, and Principe 2021), we select α = 1.01, β = 0.01,
k = 10 and s = 20. The final results are reported in Table 1.
It can be seen that the matrix-based approaches MRIB and
LRIB outperform other methods, while our LRIB achieves
the highest performance with significantly less training time.

Application to Feature Selection
In practical regression or classification machine learning
tasks, many features can be completely irrelevant to the
learning target or redundant in the context of others. Given
a set of features S = {X1, · · · ,XL} and the target la-
bel Y, we aim to find a subset Ssub ⊂ S which lever-
age the expressiveness and the complexity simultaneously.
In the field of information theoretic learning, this target is
equivalent to maximizing the multivariate mutual informa-
tion I(Ssub;Y), which is computationally prohibitive due to
the curse of high dimensionality. As a result, there have been
tremendous efforts on approximation techniques that retain
only the first or second order interactions and build mu-
tual information estimators upon low-dimensional probabil-
ity distributions, including Mutual Information-based Fea-
ture Selection (MIFS) (R. Battiti 1994), First-Order Util-
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Method Criterion Breast Semeion Madelon Krvskp Spambase Waveform Optdigits Statlog Average

MIFS I(Xil
;Y)−β

∑l−1
j=1 I(Xil

;Xij
) 4.8 2.5 6.6 3.8 7.3 6.4 4.5 3.8 4.96

FOU I(Xil
;Y)−

∑l−1
j=1[I(Xil

;Xij
)−I(Xil

;Xij
|Y)] 5.2 2.5 5.6 1.9 6.2 5.7 4.8 5.7 4.70

MRMR I(Xil
;Y)− 1

l−1

∑l−1
j=1 I(Xil

;Xij
) 2.3 4.7 6.7 3.7 5.6 3.6 4.8 4.0 4.43

JMI ∑l−1
j=1 I({Xil

,Xij
};Y) 5.1 5.2 3.0 3.7 4.2 2.3 3.8 3.5 3.85

CMIM minl−1
j=1 I(Xil

;Y|Xij
) 3.0 2.7 4.5 3.6 3.2 4.7 2.6 5.6 3.74

DISR ∑l−1
j=1 I({Xil

,Xij
};Y)/H(Xil

,Xij
,Y) 7.3 5.7 4.0 3.2 3.9 2.3 6.9 5.8 4.89

MRMI Iα({Xi1
,Xi2

,··· ,Xil
};Y) 2.6 1.8 1.2 1.7 1.5 1.8 1.3 2.0 1.74

LRMI Ikα({Xi1
,Xi2

,··· ,Xil
};Y) 2.6 1.4 1.1 1.6 1.5 1.5 1.3 2.1 1.64

Table 2: Information theoretic feature selection methods and their average rank over different number of features in each dataset.
The first and second best performances are marked as bold and underlined respectively.

ity (FOU) (Brown 2009), Maximum-Relevance Minimum-
Redundancy (MRMR) (Peng, Long, and Ding 2005), Joint
Mutual Information (JMI) (Yang and Moody 1999), Condi-
tional Mutual Information Maximization (CMIM) (Fleuret
2004) and Double Input Symmetrical Relevance (DISR)
(Meyer and Bontempi 2006) which achieve state-of-the-art
performance in information-based feature selection tasks.

We evaluate the performance of matrix-based Rényi’s mu-
tual information (MRMI) and our low-rank variant (LRMI)
with these methods on 8 widely-used classification datasets
as shown in Table 3, which is chosen to cover a broad va-
riety of instance-feature ratios, number of classes and dis-
creteness. Notice that non-Rényi methods can only handle
discrete features, so we discretize them into 5 bins under
equal-width criterion as adopted in (Brown et al. 2012).
In this experiment, we choose the Support Vector Machine
(SVM) algorithm with RBF kernel (σ = 1) as the classi-
fier for continuous datasets and a 3-NN classifier for dis-
crete datasets. Following the settings of (Yu et al. 2019), we
select α ∈ {0.6, 1.01, 2}, k ∈ {100, 200, 400} via cross-
validation, s = k+ 50 and use the Gaussian kernel of width
σ = 1 for matrix-based entropy measures. Considering that
it is NP-hard to evaluate each subset of S, we adopt a greedy
strategy to incrementally select 10 features that maximize
our target I(Ssub;Y). That is, in each step, we fix the cur-
rent subset Ssub = {Xi1 , · · · ,Xil−1

} and add a new feature
Xil ∈ S/Ssub to Ssub. The average rank of each method
across different number of features and the running time of
MRMI and LRMI are reported in Table 2 and Table 3.

As we can see, both MRMI and LRMI significantly
outperform other Shannon entropy based methods. Com-
pared to MRMI, LRMI achieves 6 to 27 times speedup, 15
times on average via Lanczos approximation. Furthermore,
LRMI outperforms MRMI on 4 datasets in our test bench-
mark, which verifies our theoretical analysis that low-rank
Rényi’s entropy enables higher robustness against noises in
the data. This demonstrates the great potential of our low-
rank Rényi’s entropy on information-related tasks.

Conclusion
In this paper, we investigate an alternative entropy measure
built upon the largest k eigenvalues of the data kernel ma-
trix. Compared to the original matrix-based Rényi’s entropy,
our definition enables higher robustness to noises in the data

Dataset #I #F #C Discrete Time Speedup

Breast 569 30 2 No 0.31 / 0.25 1.2
Semeion 1593 256 10 Yes 56 / 44 1.3
Madelon 2600 500 2 Yes 570 / 39 14.4
Krvskp 3196 36 2 Yes 71 / 11 6.6

Spambase 4601 56 2 No 353 / 13 27.2
Waveform 5000 40 3 No 318 / 14 22.5
Optdigits 5620 64 10 Yes 750 / 41 18.4
Statlog 6435 36 6 Yes 600 / 23 25.7

Table 3: Number of instances (#I), features (#F), classes
(#C) and discreteness of classification datasets used in fea-
ture selection experiments, running time comparison (min-
utes) of MRMI (left) and LRMI (right), and speedup ratios.

and sensitivity to informative changes in eigenspectrum dis-
tribution with a proper choice of hyper-parameter k. More-
over, low-rank Rényi’s entropy can be efficiently approxi-
mated with O(ns2) random projection and O(n2s) Lanc-
zos iteration techniques, substantially lower than the O(n3)
complexity required to compute matrix-based Rényi’s en-
tropy. We conduct large-scale simulation and real-world ex-
periments on information bottleneck and feature selection
tasks to validate the effectiveness of low-rank Rényi’s en-
tropy, demonstrating elegant performance with significant
improvements in computational efficiency.
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