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Abstract

Partial label learning (PLL) aims to learn from inexact data
annotations where each training example is associated with
a coarse candidate label set. Due to its practicability, many
PLL algorithms have been proposed in recent literature. Most
prior PLL works attempt to identify the ground-truth labels
from candidate sets and the classifier is trained afterwards
by fitting the features of examples and their exact ground-
truth labels. From a different perspective, we propose to en-
rich the feature space and raise the question “Can label-
specific features help PLL?” rather than learning from exam-
ples with identical features for all classes. Despite its benefits,
previous label-specific features approaches rely on ground-
truth labels to split positive and negative examples of each
class and then conduct clustering analysis, which is not di-
rectly applicable in PLL. To remedy this problem, we pro-
pose an uncertainty-aware confidence region to accommo-
date false positive labels. We first employ graph-based la-
bel enhancement to yield smooth pseudo-labels and facili-
tate the confidence region split. After acquiring label-specific
features, a family of binary classifiers is induced. Exten-
sive experiments on both synthesized and real-world datasets
are conducted and the results show that our method consis-
tently outperforms eight baselines. Our code is released at
https://github.com/meteoseeker/UCL

Introduction
Partial label learning (PLL) is a significant problem which
has been studied a lot in the past decade (Cour, Sapp, and
Taskar 2011; Chen, Patel, and Chellappa 2017; Feng et al.
2020; Lv et al. 2020; Wen et al. 2021; Wang et al. 2022).
PLL aims to learn a classifier from training datasets with in-
exact labels, i.e., each instance is associated with a set of
candidate labels among which only one is correct (Cour,
Sapp, and Taskar 2011; Lyu et al. 2020; Bao, Hang, and
Zhang 2021). Notice that, PLL is also known as superset la-
bel learning (Liu and Dietterich 2012; Gong et al. 2017) or
ambiguous label learning (Hüllermeier and Beringer 2006;
Chen et al. 2014). Unlike ordinary multi-class classification
problems where each training instance is annotated with one
ground-truth label, PLL aims to train classifiers from am-
biguously (inexact) candidate labels directly (Zhou 2018),
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thus reducing the cost of data annotation. Confronting the
expensive cost of manual labeling (Wei et al. 2021, 2022),
PLL has been extensively studied and adopted for various
real-world applications, e.g., image annotation (Zeng et al.
2013), web mining (Luo and Orabona 2010), ecoinformatics
(Liu and Dietterich 2012), and natural language processing
(Zhou et al. 2018).

The key of PLL is to identify the ground-truth labels
from candidate label sets and many effective approaches
have been proposed. Existing approaches work by manip-
ulating label space including the average-based strategy
(Hüllermeier and Beringer 2006; Cour, Sapp, and Taskar
2011) and identification-based strategy (Liu and Dietterich
2012; Yu and Zhang 2016; Ni et al. 2021). Some other works
explore the feature space (Zhang, Zhou, and Liu 2016; Bao,
Hang, and Zhang 2021; Wang, Zhang, and Li 2021) to uti-
lize potentially useful structural information. However, none
of them considers the exploration of specific semantic rela-
tions between instances and labels because identical features
for all classes are leveraged.

Therefore, this paper attempts to deal with PLL from a
different perspective, i.e., the label-specific features, which
is an effective feature enhancement approach. In particular,
we raise the question that “Can label-specific features help
PLL?”. Originally, the label-specific features are proposed
in multi-label learning(Zhang and Zhou 2013; Zhang and
Wu 2014; Huang et al. 2015; Zhang et al. 2018b; Wei, Tu,
and Li 2019; Wei and Li 2019; Yu and Zhang 2021). It first
generates a specific feature description for each class and the
classifier is then trained by fitting the label-specific features
and their corresponding labels. By exploiting label-specific
features, it achieves superior classification performance for
its benefits of class discrimination features. For example, in
automatic image annotation, texture-based features would
be preferred in discriminating silk and non-silk images, and
color-based features would be preferred in discriminating
ocean and non-ocean images. For another example, in au-
tomatic text categorization, features associated with terms
like “carnivores”, “predator”, and “habitat” would be in-
formative in discriminating ecological and non-ecological
documents while features related to terms like “petroleum”,
“mineral”, and “diastrophism” would be informative in dis-
criminating geological and non-geological documents.

Despite the benefits of the label-specific features, they
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cannot be directly adapted to PLL because conventional
label-specific features approaches rely on exact data anno-
tations. Specifically, for each class, they first partition the
data into positive and negative examples by the ground-truth
labels, then conduct the clustering analysis to obtain cluster
centers. The label-specific features are then calculated based
on the distance between samples and clusters. However, the
ground-truth labels are not accessible in PLL, which is the
key obstacle to generating label-specific features.

To overcome this challenge, this paper constructs the
UnCertainty-aware Label-specific features (UCL) that ex-
plores underlying true labels of training samples and incor-
porates the uncertainty to improve the label-specific features
generation procedure. First, we employ a graph-based la-
bel enhancement to refine the given candidate labels, which
can exploit the structural information of data. Then, for each
class, the data can be split into three parts, i.e., positive, un-
certain, and negative samples. This is realized based on the
output pseudo-labeling confidence by the graph-based label
enhancement module. The introduced uncertain region can
incorporate false positive labels in the candidates. We con-
duct spectral clustering to each part of the examples and col-
lect cluster centers as their representatives. After that, the
label-specific features are obtained by computing the dis-
tances between examples and clusters. Finally, the one-vs-
rest classifier is learned using the newly formed training
dataset with label-specific features. Extensive experiments
on synthesized and real-world datasets demonstrate the su-
periority of the proposed approach and the effectiveness of
label-specific features. To sum up, our contributions are:
1. We for the first time study the label-specific features in

PLL which has the potential to inspire more research on
exploiting the feature space enhancement;

2. We extend the supervised label-specific features to PLL
by proposing an uncertainty-aware confidence threshold-
ing approach to deal with inexact annotations;

3. Our method achieves superior performance against eight
existing PLL algorithms on ten datasets (five synthetic
and five real-world datasets).

4. We study the case where the effect of label-specific fea-
tures is not noticeable, which can guide the future design
of the learning framework.

Related Work
Partial Label Learning Most existing PLL algorithms at-
tempt to learn from ambiguous data annotations via can-
didate label disambiguation, which is conducted in the la-
bel space. Corresponding strategies can be roughly divided
into two types. One intuitive strategy is the averaging-based
method, which simply treats each candidate label of an in-
stance equally for training. For instance, some approaches
(Cour, Sapp, and Taskar 2011; Tang and Zhang 2017) at-
tempt to distinguish the averaged assignments for all can-
didate labels from the assignments of non-candidate labels.
Some other approaches (Hüllermeier and Beringer 2006;
Zhang and Yu 2015; Gong et al. 2017) classify the unseen
instance by voting the candidate labels of its neighbors. De-
spite the simplicity of the averaging-based strategy, one po-

tential defect lies in that the learning process is usually af-
fected by false positive labels because it does not filter out
incorrect candidate labels.

Another strategy of candidate label disambiguation is to
identify the ground-truth labels which are treated as latent
variables during the model training phase. Generally, itera-
tive optimization procedure such as EM is utilized to pre-
dict the latent variables, which can be achieved by likeli-
hood maximum (Jin and Ghahramani 2002; Liu and Diet-
terich 2012) or margin maximum approaches (Nguyen and
Caruana 2008; Yu and Zhang 2016; Chai, Tsang, and Chen
2019). However, a potential drawback of this strategy is that
the identified label may turn out to be a false positive rather
than the ground-truth label, which hurts the performance.

Apart from the above strategies, some recent works pro-
pose to manipulate the feature space. These methods attempt
to dig out the ignored information in feature space and make
full use of it, which is flexible to conduct in practice. For
instance, a few approaches (Zhang, Zhou, and Liu 2016;
Wang, Zhang, and Li 2021) generate latent labeling confi-
dence over candidate label set by utilizing the graph struc-
ture among training data. Some approaches (Wu and Zhang
2019; Bao, Hang, and Zhang 2021) conduct dimensionality
reductions on training data by learning a projection matrix.

Label-Specific Features The key idea of label-specific
features is to generate different instance representations for
each class. The methods of label-specific features genera-
tion can be roughly divided into two categories, i.e., feature
selection and prototype-based feature transformation.

Feature selection methods generate label-specific features
by retaining a specific subset from the original feature set for
each class. Representative works such as LLSF use lasso re-
gression (Huang et al. 2015) for label-specific features selec-
tion while considering label correlations. A subsequent work
employs regularized optimization (Huang et al. 2017; Zhang
et al. 2018a) for feature selection, which first maps the fea-
tures to a high-dimensional space and then selects the most
prominent features (Kashef and Nezamabadi-pour 2019).

Label-specific features can also be generated by trans-
forming prototypes of each class label. For example, the
seminal work LIFT (Zhang and Wu 2014) provides a three-
stage framework to perform prototype-based label-specific
features transformation. To be specific, for each class, pos-
itive/negative prototypes are collected by performing the
clustering analysis on its positive/negative training exam-
ples. Subsequently, label-specific features are generated via
querying distances between examples and the gathered pro-
totypes, which are utilized to induce a classification model.
Extensive efforts have been made in this line of research
to improve the multi-stage framework such as implement-
ing feature reduction (Xu et al. 2016) or incorporating local
pairwise label correlation (Weng et al. 2018). In addition, an
end-to-end prototype-based approach is recently proposed
(Hang et al. 2022) to reduce the defects brought by the de-
coupling nature of the previous multi-stage approaches.

Although label-specific features improve the performance
in multi-label learning problems, it has not been studied in
PLL yet. To fill the gap, this paper raises an intrinsic ques-
tion “Can label-specific features help PLL?”.
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The Proposed Approach
Problem Setup The goal of PLL is to learn a classifier
f : X → Y using the training set D = (X,Y). We de-
note X = [x1, · · · ,xN ] ∈ RN×d as the feature matrix and
Y = [y1, · · · ,yN ] ∈ {0, 1}N×L as the corresponding label
matrix, in which yij = 1 signifies that the j-th label is a can-
didate label of the i-th instance xi whilst yij = 0 signifies
the j-th label is a non-candidate label. We denote N and L
as the number of training examples and classes, respectively.

Main Idea This paper explores the merit of label-specific
features for PLL. The main obstacle is that the generation
of label-specific features requires ground-truth labels in pre-
vious works (Zhang and Wu 2014; Wei, Tu, and Li 2019),
which is not accessible in PLL. Therefore, we first introduce
the graph-based label enhancement procedure to refine can-
didate labels; then an uncertainty-aware label-specific fea-
tures generation approach is presented to deal with the un-
certainty of being the ground-truth labels.

Graph-Based Label Enhancement
We propose a label enhancement approach to propagate
pseudo-labels on the undirected graph G = ⟨V,E⟩ by lever-
aging similarities between data. V and E denote the set of
graph vertices and edges, respectively. In graph G, the sim-
ilarities between vertices are encoded by a weight matrix
W = [w1, · · · ,wN ]. Considering the efficiency and scala-
bility, we adopt the k-NN matrix to represent the similarity
of each pair of data points (xi,xj), 1 ≤ i, j ≤ N as follows:

wij =

{
exp(

−||xi−xj ||2
2σ2 ), if xj ∈ NNk (xi)

0, otherwise
(1)

Here, we adopt the Gaussian kernel to measure the similari-
ties and σ2 is the bandwidth of the kernel, which is a popular
choice in previous related works. Moreover, we employ the
KD-Tree algorithm (Bentley 1975) to effectively calculate
the k nearest neighbors denoted by NNk, which reduces the
computational burden. To capture high-order graph informa-
tion, prior works design models on the assumption that la-
bels vary smoothly over the edges of the graph. To do so, we
first normalize the weight matrix by wij = wij/

∑N
k=1 wik

and then propagate candidate labels for label disambiguation
(Zhang and Yu 2015). Let Ỹ denote the soft pseudo-label
matrix, which is iteratively updated during the label propa-
gation process. Specifically, at the t-th iteration, we have:

Ỹt = βW⊤Ỹt−1 + (1− β)P (2)

Here, P = [p1, · · · ,pN ] is the normalized partial label ma-
trix, i.e., pij = yij/

∑L
k=1 yik, ∀1 ≤ i ≤ N , parameter

β ∈ (0, 1) controls the balance between propagated pseudo-
labels and initial labels. Noted that we set Ỹ0 = Y as ini-
tialization. In Eq. (2), all nodes propagate candidate labels
to their neighbors according to edge weights. After each it-
eration, we normalize Ỹt by:

ỹtij = (ỹtij · yij)
/ L∑

k=1

(ỹtik · yik), ∀1 ≤ i ≤ N (3)

The label propagation process continues until convergence
or reaches pre-defined maximum iterations. Based on the
enhanced label matrix, we introduce the uncertainty-aware
label-specific features approach in the next section.

Uncertainty-Aware Label-Specific Features
Unlike previous works which divide training instances into
positive and negative categories, our approach partitions
the training examples into positive, negative, and uncer-
tain parts, which are respectively denoted by P , N , and U .
Specifically, for the j-th class, we have:

Pj = {xi | (xi,yi) ∈ D, ỹij > τh} ,
Nj = {xi | (xi,yi) ∈ D, ỹij < τl} ,
Uj = {xi | (xi,yi) ∈ D, τl ≤ ỹij ≤ τh}

(4)

Here, τh and τl are confidence thresholding parameters that
are set as constants in our experiments.

The rationale behind Eq. (4) is that we leverage the con-
fidence to represent the uncertainty of an example. For each
class, examples associated with high confidence are clas-
sified as positive ones, which indicates the current label
achieves an overwhelming victory against the other candi-
dates, whilst examples associated with low confidence are
categorized as negative ones, which usually are not related
to the current label or in some cases have a large number of
equivalent candidate labels. However, there exists a portion
of examples difficult to classify, which are usually labeled
with few highly competitive candidate labels. Examples un-
certain about their observed labels are usually confusing and
might have a misleading impact on feature generation if they
participated in the following clustering tasks. Thus, we sin-
gle out and deal with uncertain examples separately.

Moreover, PLL usually suffers from the class imbalance
problem (Zhang and Zhou 2013), where the number of pos-
itive examples for each class is much less than the number
of negative ones, i.e., |Pj | ≪ |Nj |. Following the thought of
LIFT, clustering information gained from positive examples
as well as negative examples is treated with equal impor-
tance. By setting a ratio parameter ρ, we obtain the number
of clusters of positive (mj), negative (mj), and uncertain
(cj) parts for the j-th class as follows:

mj = ⌈ρ ·min (|Pj | , |Nj |)⌉ ,
cj = ⌈ρ · |Uj |⌉

(5)

Notice that in a representative work LIFT, it chooses the k-
means clustering to explore the local structures underlying
positive and negative instances. However, in our approach
we instead choose spectral clustering (Shi and Malik 2000;
Von Luxburg 2007) inspired by spectral instance alignment
(Zhang, Fang, and Li 2015), which considers the correlation
between positive and negative instances. The goal of spectral
clustering is to divide data (represented as a similarity graph)
into several groups where the similarity between data points
is high in the same group whilst low in different groups. Af-
ter collecting the cluster centers for each part, we construct
the label-specific features transformation ϕj : X → Zj for
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Algorithm 1: The label-specific features approach in UCL

Inputs:
D: the PL training set D = {(X,Y)}
ρ: the ratio parameter controlling the number of clusters
k: the number of nearest neighbors
τh, τl: the high/low partition thresholds
α: the discount parameter
Output: feature transformation ϕ

1: calculate similarity matrix W using Eq. (1)
2: refine the pseudo-label matrix Ỹ using Eq. (2)
3: for j = 1 to L do
4: partition the training examples into positive, negative,

and uncertain parts using Eq. (4)
5: perform spectral clustering on three parts respectively
6: set ϕj with the cluster centers using Eq. (6)
7: end for
8: return the label-specific features transformation ϕj

the j-th class as follows:

ϕj(x) = [d(x,pj
1), · · · , d(x,pj

mj
),

d(x,nj
1), · · · , d(x,nj

mj
),

α× d(x,uj
1), · · · , α× d(x,uj

cj )]

(6)

Here, pj
i ,n

j
i ,u

j
i are clustering centers for positive, negative,

and uncertain parts, respectively. d(·, ·) is the distance mea-
sure and is set to Euclidean distance in our experiments.
Function ϕj transforms the original d-dimensional input fea-
ture space to a (2mj+cj)-dimensional label-specific feature
space. α is a discount parameter to put a large weight on
positive and negative clusters. Algorithm 1 summarizes the
pseudo-code of label-specific features generation procedure.

UCL can cooperate with many existing PLL classifiers
such as PL-KNN (Hüllermeier and Beringer 2006), PL-
SVM (Nguyen and Caruana 2008), and SURE (Feng and An
2019). In the experiments of this paper, we choose SURE as
the default classifier for its superior performance.

Experiments
We conduct experiments on ten datasets (five synthetic and
five real-world datasets) to compare the performance of our
method with eight baselines. On each dataset, ten-fold cross-
validation is performed and the mean accuracy, as well as
standard deviation, are reported. In addition, we use a pair-
wise t-test at 0.05 significance level for two independent
samples to investigate whether our method UCL is signifi-
cantly superior/inferior (win/loss) to comparing methods.

Comparing Methods
To show the effectiveness of UCL, we compared it with eight
existing PLL algorithms, each configured with suggested pa-
rameters in the respective literature.

• PL-KNN (Hüllermeier and Beringer 2006): a k-nearest
neighbor approach that makes predictions by averaging
the labeling information of neighboring examples [sug-
gested configuration: k ∈ {5, 6, · · · , 10}].

• PL-SVM (Nguyen and Caruana 2008): a maximum mar-
gin approach that learns from PL examples by optimiz-
ing margin-based objective function [suggested configu-
ration: λ ∈

{
10−3, 10−2 . . . , 103

}
].

• SURE (Feng and An 2019): a self-training based ap-
proach which trains the desired model and performs
pseudo-labeling jointly by solving a convex-concave op-
timization problem [suggested configuration: regulariza-
tion parameters λ = 0.3, β = 0.05].

• CENDA (Bao, Hang, and Zhang 2021): a dimension-
ality reduction approach via confidence-based depen-
dence maximization which combines other algorithms
such as SURE to work [suggested configuration: thr =
0.999, µ = 0.5, k = 8].

• DELIN (Wu and Zhang 2019): a dimensionality reduc-
tion approach which adapts linear discriminant analysis
and combines other algorithms such as SURE to work
[suggested configuration: r = 0.6, k = 8,T = 75].

• IPAL (Zhang and Yu 2015): an instance-based approach
that disambiguates candidate labels by an adapted la-
bel propagation scheme [suggested configuration: α ∈
{0, 0.1, · · · , 1}, k ∈ {5, 6, · · · , 10}].

• AGGD (Wang, Zhang, and Li 2021): a disambiguation
approach which performs adaptive graph construction,
candidate label disambiguation and predictive model in-
duction with alternating optimization [suggested config-
uration: k = 10, T = 20, λ = 1, µ = 1, γ = 0.05].

• PL-LE (Xu, Lv, and Geng 2019): an approach which con-
siders generalized label distribution and learns from PL
examples via label enhancement [suggested configura-
tion: k = 20, λ = 0.01, c1 = 1, c2 = 1].

Results on Controlled UCI Datasets
Table 1 summarizes the characteristics of five commonly
used UCI datasets, ranging from small datasets to quite large
datasets. Following the widely-used controlling protocol, an
artificial partial label dataset is derived from one multi-class
UCI dataset by configuring three controlling parameters p, r
and ϵ (Cour, Sapp, and Taskar 2011; Liu and Dietterich
2012; Zhang and Yu 2015; Feng and An 2019; Wang, Zhang,
and Li 2021). Here, p controls the proportion of examples
that are partially labeled, r controls the number of false pos-
itive labels in the candidate label set, and ϵ is the probability
of picking co-occurring label as a false positive label. As
shown in Table 1, Configuration (I) exams varying r and
Configuration (II) exams varying ϵ.

Table 2 illustrates the classification accuracy of each algo-
rithm when r = 1, 2, and 3 (Configuration (I)), respectively.
In these three settings, r extra labels are randomly chosen to
be the false positive labels. That is, the number of candidate
labels for each instance is r + 1.

Figure 1 shows the classification accuracy of each algo-
rithm as ϵ ranges from 0.1 to 0.7 when p = 1 and r = 1
(Configuration (II)). In this setting, a specific label is se-
lected as the coupling candidate label that co-occurs with
the ground-truth label with probability ϵ, and any other la-
bel would be randomly chosen to be a false positive label
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Dataset Examples Features Classes Task Domain Configurations

zoo 101 16 7 animal classification

(I) p = 1, r ∈ {1, 2, 3}
(II) p = 1, r = 1, ϵ ∈ {0.1, 0.2, · · · , 0.7}

glass 214 9 6 glass classification
yeast 1,484 8 10 yeast classification
tmc2007 8,670 981 18 text anomaly detection
sport 9,120 1738 19 human activity recognition

Table 1: Characteristics of the controlled UCI datasets

Dataset zoo glass yeast tmc2007 sport

r = 1 (one false positive label)

UCL (ours) 0.9009± 0.1054 0.7106 ± 0.0742 0.5983 ± 0.0596 0.6565 ± 0.0197 0.8978± 0.0116
PL-KNN 0.7936± 0.1318• 0.6409± 0.0941• 0.5755± 0.0494 0.4285± 0.0204• 0.7936± 0.1318•
PL-SVM 0.7736± 0.1374• 0.4820± 0.0942• 0.3450± 0.0544• 0.6449± 0.0152• 0.6820± 0.0151•
SURE 0.9100 ± 0.1287 0.6784± 0.0873 0.5929± 0.0531 0.6451± 0.0170• 0.7601± 0.0157•
SURE-CENDA 0.8718± 0.1047 0.6314± 0.0971• 0.5977± 0.0486 0.6374± 0.0176• 0.7777± 0.0143•
SURE-DELIN 0.8909± 0.1102 0.6175± 0.1255• 0.5835± 0.0402 0.6074± 0.0164• 0.7456± 0.0092•
IPAL 0.8418± 0.1168• 0.6788± 0.1078 0.5027± 0.0603• 0.5945± 0.0210• 0.9041 ± 0.0125
AGGD 0.8818± 0.1217 0.6833± 0.1067 0.5963± 0.0539 0.6459± 0.0162• 0.7776± 0.0135•
PL-LE 0.8909± 0.1198 0.6883± 0.1367 0.5970± 0.0496 0.6449± 0.0182 0.7498± 0.0164•

r = 2 (two false positive labels)

UCL (ours) 0.8800 ± 0.1229 0.6970 ± 0.1079 0.5950 ± 0.0528 0.6505 ± 0.0180 0.8860± 0.0044
PL-KNN 0.7736± 0.1105• 0.6455± 0.0996• 0.5519± 0.0488• 0.4057± 0.0228• 0.2993± 0.0181•
PL-SVM 0.6445± 0.1304• 0.4909± 0.0779• 0.3820± 0.0715• 0.6406± 0.0141• 0.6420± 0.0194•
SURE 0.8509± 0.1274 0.6645± 0.0904 0.5909± 0.0401 0.6383± 0.0162• 0.7200± 0.0149•
SURE-CENDA 0.8327± 0.1025 0.6126± 0.0897• 0.5936± 0.0353 0.6330± 0.0157• 0.7445± 0.0196•
SURE-DELIN 0.8327± 0.1025 0.6180± 0.1556• 0.5660± 0.0439• 0.6112± 0.0161• 0.7288± 0.0150•
IPAL 0.6155± 0.1728• 0.6872± 0.0597 0.4758± 0.0470• 0.5747± 0.0212• 0.8977 ± 0.0123◦
AGGD 0.8418± 0.1260 0.6597± 0.0856 0.5936± 0.0452 0.6374± 0.0140• 0.7636± 0.0139•
PL-LE 0.8518± 0.1428 0.6509± 0.1012 0.5876± 0.0459 0.6301± 0.0141• 0.7364± 0.0154•

r = 3 (three false positive labels)

UCL (ours) 0.8318 ± 0.1248 0.6649 ± 0.1227 0.5930± 0.0442 0.6541 ± 0.0202 0.8711± 0.0102
PL-KNN 0.7545± 0.1350• 0.5574± 0.1074• 0.5088± 0.0504• 0.3789± 0.0216• 0.3013± 0.0183•
PL-SVM 0.4845± 0.1699• 0.1959± 0.0913• 0.3120± 0.0385• 0.6326± 0.0166• 0.6103± 0.0235•
SURE 0.8127± 0.0964 0.5749± 0.0917• 0.5916± 0.0390 0.6253± 0.0197• 0.6795± 0.0101•
SURE-CENDA 0.7736± 0.1105 0.5615± 0.0940• 0.5808± 0.0441• 0.6301± 0.0214• 0.7200± 0.0179•
SURE-DELIN 0.7436± 0.0913• 0.5524± 0.1055• 0.5680± 0.0450• 0.6069± 0.0176• 0.7088± 0.0129•
IPAL 0.3391± 0.1447• 0.5472± 0.1239• 0.4488± 0.0455• 0.5664± 0.0236• 0.8922 ± 0.0137◦
AGGD 0.7927± 0.0970 0.5898± 0.0990• 0.5963 ± 0.0432 0.6290± 0.0181• 0.7523± 0.0154•
PL-LE 0.7727± 0.1144 0.5753± 0.0971• 0.5869± 0.0430 0.6232± 0.0192• 0.7206± 0.0141•

Table 2: Classification accuracy of each algorithm on the UCI datasets. Furthermore, •/◦ indicate UCL is statistically superi-
or/inferior to the comparing algorithm ( t-test at 0.05 significance level for two independent samples).

with probability 1 − ϵ. As shown in Table 2 and Figure 1,
UCL consistently outperforms other comparing algorithms.
To further statistically compare UCL with other algorithms,
the detailed win/tie/loss counts between UCL and the com-
paring algorithms are recorded in Table 3. From the above
results, we have the following observations:

• According to Table 2, there is an indication that UCL
achieves better performance against other algorithms
when adding more false positive labels.

• UCL achieves superior or at least comparable perfor-
mance against five algorithms including PL-KNN, PL-
SVM, SURE-CENDA, SURE-DELIN and AGGD in all
cases. Specifically, UCL outperforms them in 82%, 96%,
56%, 66% and 38% cases successively.

• UCL achieves superior performance against SURE, IPAL,
and PL-LE in 42%, 60% and 42% cases, respectively.
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Figure 1: Classification accuracy on UCI datasets with the co-occurring probability ϵ ranging from 0.1 to 0.7 (p = 1, r = 1).

Configuration (I) (II) Total

PL-KNN 14/1/0 27/8/0 41/9/0
PL-SVM 15/0/0 33/2/0 48/2/0
SURE 7/8/0 14/20/1 21/28/1
SURE-CENDA 10/5/0 18/17/0 28/22/0
SURE-DELIN 12/3/0 21/14/0 33/17/0
IPAL 10/3/2 20/14/1 30/17/3
AGGD 7/8/0 12/23/0 19/31/0
PL-LE 6/9/0 15/19/1 21/28/1

Table 3: Win/tie/loss counts on UCI datasets of UCL.

Results on Real-World Datasets
In addition to five synthetic datasets, we further test our
method on five real-world partial-labeled datasets which are
collected from various task domains, i.e., Lost (Cour, Sapp,
and Taskar 2011), MSRCv2 (Liu and Dietterich 2012), Mir-
flickr (Huiskes and Lew 2008), BirdSong (Briggs, Fern, and
Raich 2012), and Soccer Player (Zeng et al. 2013). Table 4
shows the characteristics of real-world datasets.

Table 5 reports the mean classification accuracy and
the standard deviation of each method on five real-world
datasets. From the results, we can observe that:

• UCL outperforms PL-KNN, PL-SVM, SURE-DELIN and
PL-LE significantly on all of the real-world datasets.

• Out of the 40 cases (8 comparing algorithms and 5
datasets), UCL is statistically superior to all the compar-
ing algorithms in 85% cases and outperforms all the com-
paring algorithms in 95% cases.

• UCL is never significantly outperformed by any compar-
ing algorithms in all experiments.

Further Understanding of Our Method
Parameter Sensitivity Analysis In the proposed UCL ap-
proach, four trade-off parameters τh, τl, α and ρ need to be
manually searched. Figure 2 shows how four parameters af-
fect classification accuracy in four datasets (Lost, MSRCv2,
glass, tmc2007), two of which are real-world datasets and
another two are synthetic datasets. Specifically, we vary τl
ranging from 0.1 to 0.4 when τh = 0.6, α = 0.5, ρ = 0.2;
vary τh ranging from 0.5 to 0.9 when τl = 0.2, α =
0.5, ρ = 0.2; vary α ranging from 0.1 to 1.0 when τl =
0.2, τh = 0.6, ρ = 0.2; vary ρ ranging from 0.1 to 0.4 when

Lost MSRCv2 glass tmc2007

(a) Varying τh (b) Varying τl

(c) Varying α (d) Varying ρ

Figure 2: Parameter sensitivity studies.

τl = 0.2, τh = 0.6, α = 0.5. As shown in Figure 2, the per-
formance of UCL is generally stable across a wide range of
each parameter, which means UCL achieves robust classifi-
cation performance without costing much effort on parame-
ter fine-tuning.

Ablation Studies on the Partitioning Strategy Notice
that our method UCL splits the data for every class into
three partitions, i.e., positive, negative, and uncertain. To
verify the effectiveness and necessity of our partitioning
strategy, we compare the classification accuracy of UCL
with its two variants, i.e., UCL without a partition (denoted
by “no partition”) and UCL with only positive and nega-
tive partitions (denoted by “PN partition”). Specifically, in
UCL without partition, we conduct spectral clustering on
all training instances where cluster centers are utilized to
produce label-specific features. Moreover, in PN PARTI-
TION, we follow the original strategy of LIFT which par-
titions training instances into positive and negative ones for
subsequent label-specific features generation. As mentioned
above, LIFT solves multi-label learning problems where
training examples can be classified into two parts accord-
ing to their ground-truth labels while in PLL the partition is
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Dataset Examples Features Classes avg. CLs Task Domain

Lost 1,122 108 16 2.23 automatic face naming (Cour, Sapp, and Taskar 2011)
MSRCv2 1,758 48 23 3.16 object classification (Liu and Dietterich 2012)
Mirflickr 2,780 1,536 14 2.76 web image classification (Huiskes and Lew 2008)
BirdSong 4,998 38 13 2.18 bird song classification (Briggs, Fern, and Raich 2012)
Soccer Player 17,472 279 171 2.09 automatic face naming (Zeng et al. 2013)

Table 4: Characteristics of the real-world partial label datasets.

Dataset Lost MSRCv2 Mirflickr BirdSong Soccer Player

UCL (ours) 0.8084 ± 0.0378 0.5387 ± 0.0265 0.6716± 0.0182 0.7377± 0.0254 0.5531 ± 0.0112
PL-KNN 0.3877± 0.0317• 0.4539± 0.0339• 0.5011± 0.0270• 0.6473± 0.0237• 0.4943± 0.0103•
PL-SVM 0.7612± 0.0242• 0.3009± 0.0221• 0.5996± 0.0975• 0.5190± 0.0295• 0.4498± 0.0107•
SURE 0.7808± 0.0292• 0.4733± 0.0220• 0.6691± 0.0210 0.7403 ± 0.0379 0.5335± 0.0103•
SURE-CENDA 0.7781± 0.0487 0.4597± 0.0380• 0.3662± 0.0432• 0.6777± 0.0278• 0.5327± 0.0112•
SURE-DELIN 0.7727± 0.0316• 0.4392± 0.0341• 0.3716± 0.0339• 0.6403± 0.0365• 0.5316± 0.0093•
IPAL 0.7424± 0.0333• 0.5301± 0.0300 0.5381± 0.0226• 0.7073± 0.0203• 0.5499± 0.0106•
AGGD 0.7763± 0.0333• 0.5000± 0.0304• 0.6745 ± 0.0254 0.7335± 0.0238 0.5434± 0.0101•
PL-LE 0.7576± 0.0373• 0.5068± 0.0243• 0.6414± 0.0249• 0.7235± 0.0285• 0.5360± 0.0200•

Table 5: Classification accuracy of each algorithm on the real-world datasets.

Dataset Lost MSRCv2 Mirflickr BirdSong Soccer Player

UCL-KNN (ours) 0.5312 ± 0.0665 0.4221± 0.0452 0.5043 ± 0.0354 0.6413± 0.0250 0.4998 ± 0.0106
PL-KNN 0.3877± 0.0317• 0.4539 ± 0.0339◦ 0.5011± 0.0270 0.6473 ± 0.0237 0.4943± 0.0103•
UCL-SVM (ours) 0.7656 ± 0.0431 0.3937 ± 0.0405 0.5453± 0.0261 0.5938 ± 0.0268 0.4742 ± 0.0134
PL-SVM 0.7612± 0.0242 0.3009± 0.0221• 0.5996 ± 0.0975 0.5190± 0.0295• 0.4498± 0.0107•

Table 6: Classification accuracy of combining UCL with KNN or SVM on real-world datasets.

more complicated due to the inexact information. Thus, our
experiments on PN PARTITION employ the confidence par-
titioning strategy of UCL while only reserving the parameter
τh = 0.6 to divide training data into two parts. We conduct
experiments on three synthetic datasets where one false pos-
itive label is randomly picked up (i.e., r = 1) as well as three
real-world datasets. As shown in Figure 3, our partitioning
strategy makes successful progress on each dataset.

zoo glass yeast Lost MSRCv2Mirflicker
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 no partition      PN partition      UCL

Figure 3: Ablation studies on the partitioning strategy.

Extension to Other Classifiers In Table 6, we test the
combination of UCL with another two popular PLL clas-

sifiers, i.e., UCL-KNN and UCL-SVM, on five real-world
datasets. We can observe that in the t-test at 0.05 significance
level UCL-KNN achieves 2/2/1 (win/tie/loss) compared to
PL-KNN, and UCL-SVM achieves 3/2/0 (win/tie/loss) com-
pared to PL-SVM. This indicates that there is still much room
for improving the versatility of our approach. Notice that our
default choice of classifier, i.e., SURE, is more powerful than
k-NN and SVM, we recommend combining label-specific
features with strong classifiers.

Conclusion

This paper for the first time studies the utility of label-
specific features for PLL. It answers the fundamental ques-
tion “Can label-specific features help PLL?” in the affir-
mative. Our proposed approach UCL consistently improves
the performance on both synthetic datasets and real-world
datasets. However, when combined with weak classifiers,
the positive effect of label-specific features is unnoticeable,
and the performance may even deteriorate. We believe this
paper can motivate more research by generating more in-
formative label-specific features and combining them with
more powerful classifiers such as deep neural networks.
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