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Abstract

We present a model-based offline reinforcement learning pol-
icy performance lower bound that explicitly captures dynam-
ics model misspecification and distribution mismatch and we
propose an empirical algorithm for optimal offline policy se-
lection. Theoretically, we prove a novel safe policy improve-
ment theorem by establishing pessimism approximations to
the value function. Our key insight is to jointly consider se-
lecting over dynamics models and policies: as long as a dy-
namics model can accurately represent the dynamics of the
state-action pairs visited by a given policy, it is possible to
approximate the value of that particular policy. We analyze
our lower bound in the LQR setting and also show compet-
itive performance to previous lower bounds on policy selec-
tion across a set of D4RL tasks.

Introduction
Offline reinforcement learning (RL) could leverage histor-
ical decisions made and their outcomes to improve data-
driven decision-making in areas like marketing (Thomas
et al. 2017), robotics (Quillen et al. 2018; Yu et al.
2020, 2021; Swazinna, Udluft, and Runkler 2020; Singh
et al. 2020), recommendation systems (Swaminathan and
Joachims 2015), etc. Offline RL is particularly useful when
it is possible to deploy context-specific decision policies, but
it is costly or infeasible to do online reinforcement learning.

Prior work on offline RL for large state and/or action
spaces has primarily focused on one of two extreme settings.
One line of work makes minimal assumptions on the under-
lying stochastic process, requiring only no confounding, and
leverages importance-sampling estimators of potential poli-
cies (e.g., Thomas, Theocharous, and Ghavamzadeh (2015);
Thomas et al. (2019)). Unfortunately, such estimators have a
variance that scales exponentially with the horizon (Liu et al.
2018b) and are often ill-suited to long horizon problems1.

An alternative, which is the majority of work in offline
RL, is to make a number of assumptions on the domain,
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1Marginalized importance sampling (MIS) methods (Liu et al.
2018a; Xie, Ma, and Wang 2019; Yin and Wang 2020; Liu, Bacon,
and Brunskill 2020) help address this but rely on the system being
Markov in the underlying state space

behavior data generation process and the expressiveness of
the function classes employed. The work in this space typi-
cally assumes the domain satisfies the Markov assumption,
which has been recently shown in the off-policy evaluation
setting to enable provably more efficient policy value esti-
mation (Kallus and Uehara 2020). Historically, most work
(e.g., Munos (2003); Farahmand, Munos, and Szepesvári
(2010); Xie and Jiang (2020); Chen and Jiang (2019)) as-
sumes the batch data set has coverage on any state-action
pairs that could be visited under any possible policy. More
recent work relaxes this strong requirement using a pes-
simism under uncertainty approach that is model-based (Yu
et al. 2020, 2021; Kidambi et al. 2020), model-free (Liu et al.
2020) or uses policy search (Curi, Berkenkamp, and Krause
2020; van Hasselt, Hessel, and Aslanides 2019). Such work
still relies on realizability/lack of misspecification assump-
tions. For model-free approaches, a common assumption is
that the value function class can represent all policies. Liu
et al. (2020) assume that the value function class is closed
under (modified) Bellman backups. A recent exception is
Xie and Jiang (2020), which only requires the optimal Q-
function to be representable by the value function class.
However, their sample complexity scales non-optimally (Xie
and Jiang 2020, Theorem 2), and they also make strong
assumptions on the data coverage – essentially the dataset
must visit all states with sufficient probability. Model-based
approaches such as Malik et al. (2019); Yu et al. (2020) as-
sume the dynamics class has no misspecification.

These two lines of work hint at possibilities in the mid-
dle: can we leverage the sample-efficient benefits of Markov
structure and allow for minimal assumptions on the data-
gathering process and potential model misspecification?
This can be viewed as one step towards more best-in-class
results for offline RL. Such results are relatively rare in RL,
which tends to focus on obtaining optimal or near-optimal
policies for the underlying domain. Yet in many important
applications, it may be much more practical to hope to iden-
tify a strong policy within a particular policy class.

Our insight is that the algorithm may be able to lever-
age misspecified models and still leverage the Markov as-
sumption for increased data efficiency. In particular, we take
a model-based offline RL approach to leverage dynamics
models that can accurately fit the space of state-action pairs
visited under a particular policy (local small misspecifica-
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tion), rather than being a good model of the entire possi-
ble state-action space (global small misspecification). Our
work is most closely related to the recently proposed Min-
imax Model Learning (MML) algorithm (Voloshin, Jiang,
and Yue 2021): MML optimizes for the model that mini-
mizes a value-aware error which upper bounds the differ-
ence of policy value in learned and real models. If the con-
sidered model class includes the true model, this can work
very well, but when the models are misspecified, this can be-
come overly conservative since it optimizes with respect to
a worst-case potential state-action distribution shift.

The key feature of our algorithm is to jointly optimize pol-
icy and dynamics. Prior model-based offline RL algorithms
typically estimate dynamics first, and then optimize a policy
w.r.t. the learned dynamics (Yu et al. 2020, 2021; Voloshin,
Jiang, and Yue 2021). But when the dynamics model class is
misspecified, there may not exist a unique “good dynamics”
that can approximate the value of every policy. As a result,
the learned policy may have a good estimated value under
the learned dynamics, but a poor performance in the real en-
vironment, or the learned policy may be overly conservative
due to the misestimated dynamics.

Our paper makes the following contributions. First, we
provide a finite sample bound that assumes a Markov model,
leverages the pessimism principle to work with many data-
gathering distributions, accounts for estimation error in the
behavior policy and, most importantly, directly accounts
for dynamics and value function model misspecification
(see Lemma 3). We prove the misspecification error of our
method is much tighter than other approaches because we
only look at the models’ ability to represent visited state-
action pairs for a particular policy. In that sense, we say
our algorithm relies on small local model dynamics mis-
specification. In Theorem 6, we show that when the dynam-
ics model class does not satisfy realizability, decoupling the
learning of policy and dynamics is suboptimal. This moti-
vates our algorithm which jointly optimizes the policy and
model dynamics across a finite set. Because of the tighter
pessimistic estimation, we can prove a novel safe policy im-
provement theorem (see Theorem 4) for offline policy opti-
mization (OPO). While our primary contribution is theoreti-
cal, our proposed method for policy selection improves over
the state-of-the-art MML Voloshin, Jiang, and Yue (2021) in
a simple linear Gaussian setting, and has solid performance
on policy selection on a set of D4RL benchmarks.

Related Works
There is an extensive and growing body of research on of-
fline RL and we focus here on methods that also assume a
Markov domain. Many papers focus on model-free meth-
ods (e.g., Fujimoto et al. (2018); Kumar et al. (2019, 2020)).
Nachum et al. (2019) and their follow-ups (Zhang et al.
2019; Zhang, Liu, and Whiteson 2020) learn a distribution
correction term, on top of which they perform evaluation or
policy optimization tasks. Uehara, Huang, and Jiang (2020);
Jiang and Huang (2020) study the duality between learn-
ing Q-functions and learning importance weights. Liu et al.
(2020) explicitly consider the distribution shift in offline RL
and propose conservative Bellman equations.

Algorithm Statistical Error Misspecification SPI

VAML Õ
(

p√
n

)
2 ✓(global) ✗

MBS-PI Õ
(

Vmaxζ
(1−γ)2

√
n

)
✓(global) ✓

MML Rn
3 ✓(global) ✗

Ours Õ
(

Vmax

1−γ

√
ζ
n

)
✓(local) ✓

Table 1: Comparison of error bounds with prior works.

Another line of research uses model-based methods (Ki-
dambi et al. 2020; Yu et al. 2020, 2021; Matsushima et al.
2020; Swazinna, Udluft, and Runkler 2020; Fu and Levine
2021; Farahmand, Barreto, and Nikovski 2017). Gelada
et al. (2019); Delgrange, Nowe, and Pérez (2022); Voloshin,
Jiang, and Yue (2021) learn the dynamics using different
loss functions. Yu et al. (2020) build an uncertainty quan-
tification on top of the learned dynamics and select a policy
that optimizes the lower confidence bound. (Argenson and
Dulac-Arnold 2020; Zhan, Zhu, and Xu 2021) focus on pol-
icy optimization instead of model learning.

In Table 1, we compare our error bounds with existing
results. Our statistical error (introduced by finite dataset) is
comparable with VAML (Farahmand, Barreto, and Nikovski
2017), MBS-PI (Liu et al. 2020) and MML (Voloshin, Jiang,
and Yue 2021). In addition, we consider misspecification er-
rors and safe policy improvement (SPI).

Problem Setup
A Markov Decision Process (MDP) is defined by a tuple
⟨T, r,S,A, γ⟩ . S and A denote the state and action spaces.
T : S × A → ∆(S) is the transition and r : S × A → R+

is the reward. γ ∈ [0, 1) is the discount factor. For a policy
π : S → ∆(A), the value function is defined as

V π
T (s) = Es0=s,at∼π(st),st+1∼T (st,at)[

∑∞
t=0 γ

tr(st, at)].

Let Rmax ≜ maxs,a r(s, a) be the maximal reward and
Vmax ≜ Rmax/(1 − γ). Without loss of generality, we as-
sume that the initial state is fixed as s0. We use η(T, π) ≜
V π
T (s0) to denote the expected value of policy π. Let
ρπT (s, a) ≜ (1 − γ)

∑∞
t=0 γ

t PrπT (st = s, at = a | s0)
be the normalized state-action distribution when we execute
policy π in a domain with dynamics model T. For simplicity
in this paper we assume the reward function is known.

An offline RL algorithm takes a dataset D =
{(si, ai, s′i)}ni=1 as input, where n is the size of the dataset.
Each (si, ai, s

′
i) tuple is drawn independently from a behav-

ior distribution µ. We assume that µ is consistent with the
MDP in the sense that µ(· | s, a) = T (s, a) for all (s, a).
For simplicity, we use Ê to denote the empirical distribu-
tion over the dataset D. In this paper, we assume that the

2VAML only considers linear function approximation and p is
the dimension of the feature vector.

3The Rademacher complexity. For the finite hypothesis, the
best-known upper bound is in the same order of ours.
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algorithm has access to an estimated behavior distribution µ̂
such that TV(µ, µ̂) is small. This estimation can be easily
obtained using a separate dataset (e.g., Liu et al. (2020)).

The algorithm can access three (finite) function classes
G, T ,Π. G is a class of value functions, T a class of dy-
namics and Π a class of policies. We assume that g(s, a) ∈
[0, Vmax] for all g ∈ G. We use T ⋆ to denote the ground-
truth dynamics. Note that T ⋆ may not be in T . Our goal is
to return a policy π ∈ Π that maximizes η(T ⋆, π).

Main Results
A standard model-based RL algorithm learns the dynamics
models first, and then uses the learned dynamics to estimate
the value of a policy, or optimize it. In this approach, it is
crucial to link the estimation error of the dynamics to the
estimation error of the value. Therefore, as a starting point,
we invoke the simulation lemma.

Lemma 1 (Simulation Lemma (Yu et al. 2020; Kakade and
Langford 2002)). Consider two MDPs with dynamics T, T ⋆,
and the same reward function. Then,

η(T, π)− η(T ⋆, π) =
γ

1− γ
E(s,a)∼ρπ

T
[

Es′∼T (s,a)[V
π
T⋆(s′)]− Es′∼T⋆(s,a)[V

π
T⋆(s′)]

]
. (1)

For a fixed ground-truth dynamics T ⋆, we define
Gπ

T (s, a) = Es′∼T (s,a)[V
π
T⋆(s′)] − Es′∼T⋆(s,a)[V

π
T⋆(s′)].

The simulation lemma states that the dynamics will
provide an accurate estimate of the policy value if
Es′∼T (s,a)[V

π
T⋆(s′)] matches Es′∼T⋆(s,a)[V

π
T⋆(s′)]. In other

words, to obtain a good estimate of a policy value, it is suf-
ficient to minimize the model error Gπ

T (s, a).
Since the value function V π

T⋆ is unknown, Yu et al. (2020)
upper bound the model error by introducing a class of test
functions G : S → R. When V π

T⋆ ∈ G, we have

|Gπ
T (s,a)|≤supg∈G

∣∣Es′∼T (s,a)g(s
′)−Es′∼T⋆(s,a)g(s

′)]
∣∣.

In an offline dataset D, typically we can only observe one
sample from T ⋆(s, a) per state-action pair. Hence the al-
gorithm cannot compute this upper bound exactly. In ad-
dition, the distribution of the dataset D is also different
from the one required by the simulation lemma ρπT . To ad-
dress these issues, we explicitly introduce a density ratio
w : S × A → R+. For a test function g ∈ G and a dynam-
ics model T , let fgT (s, a) ≜ Es′∼T (s,a)[g(s

′)]. Recall that Ê
denotes the empirical expectation over dataset D. Then our
model loss is defined as

ℓw(T, g) = |Ê[w(s, a)(fgT (s, a)− g(s′))]|. (2)

Distribution mismatch. We aim to upper bound policy eval-
uation error by the loss function even if there are state ac-
tion pairs with small probability mass under behavior dis-
tribution µ (i.e., the offline dataset does not have a perfect
coverage). Following Liu et al. (2020), we treat the un-
known state-action pairs pessimistically. Let ζ be a fixed
cutoff threshold. Recall that µ̂ is an estimation of the behav-
ior distribution. For a policy π and dynamics T , we define

wπ,T (s, a) ≜ I
[
ρπ
T (s,a)
µ̂(s,a) ≤ ζ

]
ρπ
T (s,a)
µ̂(s,a) as the truncated den-

sity ratio. For a fixed policy π, when w = wπ,T ,∣∣∣E(s,a)∼ρπ
T

[
Gπ

T (s, a)
]∣∣∣

≤
∣∣∣∣E(s,a)∼ρπ

T

[
I
[ρπT (s, a)
µ̂(s, a)

≤ ζ
]
Gπ

T (s, a)
]∣∣∣∣

+
∣∣∣E(s,a)∼ρπ

T

[
I
[ρπT (s, a)
µ̂(s, a)

> ζ
]
Gπ

T (s, a)
]∣∣∣

≤ |E(s,a)∼µ̂

[
w(s, a)Gπ

T (s, a)
]
|

+ Vmax

∣∣∣E(s,a)∼ρπ
T

[
I
[ρπT (s, a)
µ̂(s, a)

> ζ
]]∣∣∣

≤ |E(s,a)∼µ

[
w(s, a)Gπ

T (s, a)
]
|+ ζVmaxTV (µ̂, µ)

+ Vmax

∣∣∣∣E(s,a)∼ρπ
T

[
I
[ρπT (s, a)
µ̂(s, a)

> ζ
]]∣∣∣∣.

Hence, ignoring statistical error due to finite dataset, we can
upper bound the estimation error |η(T ⋆, π)− η(T, π)| by

γ

1− γ

(
sup
g∈G

∣∣∣ℓwπ,T
(g, T )

∣∣∣+ ζVmaxTV (µ̂, µ)

+ VmaxE(s,a)∼ρπ
T

[
I
[ρπT (s, a)
µ̂(s, a)

> ζ
]])

. (3)

Intuitively, the first term measures the error caused by im-
perfect dynamics T , the second term captures the estimation
error of the behavior distribution, and the last term comes
from truncating the density ratios.

Pessimistic Policy Optimization with Model
Misspecification
In this section, we explicitly consider misspecifications of
the function classes used for representing the value func-
tion and dynamics models (G and T , respectively). Most
prior theoretical work on model-based RL make strong as-
sumptions on the realizability of the dynamics model class.
For example, in the offline setting, Voloshin, Jiang, and Yue
(2021) focus on exact realizability of the dynamics model
(that is, T ⋆ ∈ T ). In the online setting, Jin et al. (2020) pro-
vide bounds where there is a linear regret term due to global
model misspecification. Their bounds require a T ∈ T such
that TV (T (s, a), T ⋆(s, a)) ≤ ϵ for all (s, a), even if the
state-action pair (s, a) is only visited under some poorly per-
forming policies. We now show that offline RL tasks can
need much weaker realizability assumptions on the dynam-
ics model class.

Our key observation is that for a given dynamics T and
policy π, computing the density ratio wπ,T is statistically
efficient. Note that to compute wπ,T we do not need any
samples from the true dynamics: instead, we only need to be
able to estimate the state-action density under a dynamics
model T for policy π. This allows us to explicitly utilize the
density ratio to get a relaxed realizability assumption.

Definition 2. The local value function error for a particular
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Algorithm 1: Model-based Offline RL with Local Misspeci-
fication Error

Require: estimated behavior distribution µ̂, truncation
threshold ζ.
for π ∈ Π, T ∈ T do

Compute wπ,T (s, a) = I
[
ρπ
T (s,a)
µ̂(s,a) ≤ ζ

]
ρπ
T (s,a)
µ̂(s,a) .

Compute lb(T, π) by Eq. (4).
end for
π ← argmaxπ∈Π maxT∈T lb(T, π).

dynamics model T and policy π is defined as

ϵV (T, π) ≜ inf
g∈G
|E(s,a)∼µ[wπ,T (s, a)(Es′∼T (s,a)[(g − V π

T⋆)(s′)]

+ Es′∼T⋆(s,a)[(g − V π
T⋆)(s′)])]|.

The term ϵV measures the local misspecification of the
value function class – that is, the error between the true
value of the policy V π

T⋆ and the best fitting value function
in the class G – only on the state-action pairs that policy π
visits under a particular potential dynamics model T . In con-
trast, previous results (Jin et al. 2020; Nachum et al. 2019;
Voloshin, Jiang, and Yue 2021) take the global maximum
error over all (reachable) (s, a), which can be much larger
than the local misspecification error ϵV (T, π).

With this local misspecification error, we can establish a
pessimistic estimation of the true reward. Let E be a high
probability event under which the loss function ℓwπ,T

(T, g)
is close to its expectation (randomness comes from the
dataset D). In the Appendix, we define this event formally
and prove that Pr(E) ≥ 1 − δ. The following lemma gives
a lower bound on the true reward. Proofs, when omitted, are
in the Appendix.

Lemma 3. Let ι = log(2|G||T ||Π|/δ). For any dynamics
model T and policy π, we define

lb(T, π) = η(T, π)− 1

1− γ

(
sup
g∈G

ℓwπ,T
(g, T )

+ VmaxE(s,a)∼ρπ
T

[
I
[ρπT (s, a)
µ̂(s, a)

> ζ
]])

. (4)

Then, under the event E , we have

η(T ⋆, π) ≥ lb(T, π)− 1

1− γ

(
ϵV (T, π)

− 2Vmax

√
ζι/n− ζVmaxTV (µ̂, µ)

)
. (5)

We use this to define our offline policy selection Alg. 1.
In contrast to existing offline model-based algorithms (Yu

et al. 2020; Voloshin, Jiang, and Yue 2021), our algorithm
optimizes the dynamics and policy jointly. For a given dy-
namics model, policy pair, our Alg. 1 computes the trun-
cated density ratio wπ,T which does not require collecting
new samples and then uses this to compute a lower bound
lb(T, π) (Eq. (4)). Finally, it outputs a policy that maximizes
the lower bound. We will shortly show this joint optimiza-
tion can lead to better offline learning.

Parameter ζ controls the truncation of the stationary im-
portance weights. Increasing ζ decreases the last term in the
lower bound objective lb(T, π), but it may also increase the
variance given the finite dataset size. Note that by setting
ζ = log(n) and letting n → ∞ (i.e., with infinite data), the
last term in Eq. (4) and the statistical error converge to zero.

Safe Policy Improvement
We now derive a novel safe policy improvement result, up
to the error terms given below. Intuitively this guarantees
that the policy returned by Alg. 1 will improve over the be-
havior policy when possible, which is an attractive property
in many applied settings. Note that recent work (Voloshin,
Jiang, and Yue 2021; Yu et al. 2020) on model-based of-
fline RL does not provide this guarantee when the dynamics
model class is misspecified. For a fixed policy π, define

ϵρ(π) ≜ infT∈T E(s,a)∼ρπ
T⋆

[TV (T (s, a), T ⋆(s, a))], (6)

ϵµ(π) ≜ E(s,a)∼ρπ
T⋆

[
I
[ρπT⋆(s, a)

µ̂(s, a)
> ζ/2

]]
. (7)

The term ϵρ measures the local misspecification error of the
dynamics model class in being able to represent the dynam-
ics for state-action pairs encountered for policy π. ϵµ rep-
resents that overlap of the dataset for an alternate policy π:
such a quantity is common in much of offline RL. In the fol-
lowing theorem, we prove that the true value of the policy
computed by Alg. 1 is lower bounded by that of the optimal
policy in the function class with some error terms.
Theorem 4. Consider a fixed parameter ζ. Let π̂ be the pol-
icy computed by Alg. 1 and T̂ = argmaxT lb(T, π̂). Let
ι = log(2|G||T ||Π|/δ). Then, with probability at least 1−δ,
we have

η(T ⋆, π̂) ≥ sup
π

{
η(T ⋆, π)− 6Vmaxϵρ(π)

(1− γ)2
− Vmaxϵµ(π)

1− γ

}
− ϵV (T̂ , π̂)

1− γ
− 4Vmax

1− γ

√
ζι

n
− 2ζVmaxTV (µ̂, µ)

1− γ
. (8)

To prove Theorem 4, we prove the tightness of lb(T, π) —
the lower bound maxT lb(T, π) is at least as high as the true
value of the policy with some errors. Consequently, maxi-
mizing the lower bound also maximizes the true value of the
policy. Formally speaking, we have the following Lemma.
Lemma 5. For any policy π ∈ Π, under the event E we have

max
T∈T

lb(T, π) ≥ η(T ⋆, π)− 6Vmaxϵρ(π)/(1− γ)2

− 1

1− γ

(
Vmaxϵµ(π)− 2Vmax

√
ζι/n− ζVmaxTV (µ̂, µ)

)
.

In the sequel, we present a proof sketch for Lemma 5.
In this proof sketch, we hide 1/(1 − γ) factors in the big-
O notation. For a fixed policy π, let T̂ be the minimizer of
Eq. (6). We prove Lemma 5 by analyzing the terms in the
definition of lb(T̂ , π) (Eq. (4)) separately.
i. Following the definition of Eq. (6), we can show that
∥ρπ

T̂
− ρπT⋆∥1 ≤ O(ϵρ(π)). Consequently we get

η(T̂ , π) ≥ η(T ⋆, π)−O(ϵρ(π)).
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ii. Recall that 0 ≤ g(s, a) ≤ Vmax for all g ∈ G.
Then for any (s, a) we have supg∈G |Es′∼T̂ (s,a)g(s

′) −
Es′∼T⋆(s,a)g(s

′)]| ≤ VmaxTV(T̂ (s, a), T ⋆(s, a)). Com-
bining the definition of ℓw(g, T ), Eq. (6) and statistical
error we get supg∈G ℓwπ,T

(g, T ) ≤ Õ(ϵρ(π) + 1/
√
n +

VmaxTV (µ̂, µ)) under event E .
iii. For the last term regarding distribution mismatch, we

combine Eq. (7) and Lemma 8. We can upper bound this
term by O(ϵρ(π) + ϵµ(π)).

iv. The final term arises due to the potential estimation error
in the behavior policy distribution.

Theorem 4 follows directly from combining Lemma 3 and
Lemma 5. Note that Theorem 4 accounts for estimation er-
ror in the behavior policy, misspecification in the dynamics
model class, and misspecification in the value function class,
the latter two in a more local, tighter form than prior work.

Illustrative Example
To build intuition of where our approach may yield benefits,
we provide an illustrative example where Alg. 1 has better
performance than existing approaches: an MDP whose state
space is partitioned into several parts. The model class is re-
stricted so that every model can only be accurate on one part
of the state space. When each deterministic policy only vis-
its one part of the state space, the local misspecification error
is small — for each policy, there exists a dynamics model
in the set which can accurately estimate the distribution of
states and actions visited under that policy. In contrast, if the
dynamics are learned to fit the whole state space, the estima-
tion error will be large.

More precisely, for a fixed parameter d, consider a MDP
where S = {s0, · · · , sd} ∪ {sg, sb}. There are d actions
denoted by a1, · · · , ad. The true dynamics are deterministic
and given by

T ⋆(s0, ai) = si, T ⋆(si, aj) =

{
sg, if I [i = j] ,

sb, if I [i ̸= j] ,
(9)

T ⋆(sg, ai) = sg, T ⋆(sb, ai) = sb, ∀i ∈ [d]. (10)

And the reward is r(s, ai) = I [s = sg] , ∀i ∈ [d].
The transition function class T is parameterized by θ ∈

Rd. For a fixed θ, the transition for states s1, . . . , sd is

Tθ(si, aj) =

{
sg, w.p. 1

2

(
1 + e⊤j θ

)
,

sb, w.p. 1
2

(
1− e⊤j θ

)
,

(11)

where ej is the j-th standard basis of Rd. The transitions
for states s0, sg, sb is identical to the true dynamics T ⋆.
But the transition model Tθ in the function class must use
the same parameter θ to approximate the dynamics in states
s1, · · · , sd, which makes it misspecified.
Decoupling learning the dynamics model and policy is
suboptimal. Most prior algorithms first learn a dynamics
model and then do planning with that model. However, note
here that the optimal action induced by MDP planning given
a particular Tθ is suboptimal (assuming a uniformly random
tie-breaking). This is because, for any given θ, that dynam-
ics model will estimate the dynamics of states s1, · · · , sd

as being identical, with identical resulting value functions.
Note this is suboptimality will occur in this example even if
the dataset is large and covers the state–action pairs visited
by any possible policy (ϵµ(π) = 0), the value function class
is tabular and can represent any value function ϵV = 0, the
behavior policy is known or the resulting estimation error is
small (TV (µ̂, µ) = 0, and ζ = 0). In such a case, Theo-
rem 4 guarantees that with high probability, our algorithm
will learn the optimal policy because there exist couplings
of the dynamics models and optimal policies such that the
local misspecification error ϵρ = 0. This demonstrates that
prior algorithms (including MML (Voloshin, Jiang, and Yue
2021)) that decouple the learning of dynamics and policy
can be suboptimal. We now state this more formally:

Theorem 6. Consider any (possibly stochastic) algorithm
that outputs an estimated dynamics Tθ ∈ T . Let πθ be the
greedy policy w.r.t. Tθ (with ties breaking uniformly at ran-
dom). Then

max
π

η(T ⋆, π)− η(T ⋆, πθ) ≥
(A− 1)γ2

A(1− γ)
. (12)

As a side point, we also show that the off-policy estima-
tion error in Voloshin, Jiang, and Yue (2021) is large when
the dynamics model class is misspecified in Proposition 7.
We defer this result to the Appendix.

Experiments
While our primary contribution is theoretical, we now inves-
tigate how our method can be used for offline model-based
policy selection with dynamics model misspecification. We
first empirically evaluate our method on Linear-Quadratic
Regulator (LQR), a commonly used environment in optimal
control theory (Bertsekas et al. 2000), in order to assess: Can
Algorithm 1 return the optimal policy when we have both
model and distribution mismatch? We also evaluate our ap-
proach using D4RL (Fu et al. 2020), a standard offline RL
benchmark for continuous control tasks. Here we consider:
Given policies and dynamics pairs obtained using state-of-
the-art offline model-based RL methods with ensemble dy-
namics, does Alg. 1 allow picking the best policy, outper-
forming previous methods?

Linear-Quadratic Regulator (LQR)
LQR is defined by a linear transition dynamics st+1 =
Ast + Bat + η, where st ∈ Rn and at ∈ Rm are state and
action at time step t, respectively. η ∼ N (0, σ2I) is ran-
dom noise. LQR has a quadratic reward function R(s, a) =
−(sTQs + aTRa) with Q ∈ Rn×n and R ∈ Rm×m be-
ing positive semi-definite matrices, Q,R ⪰ 0. The op-
timal controller to maximize the sum of future rewards∑H

t=1−(sTt Qst+aTt Rat) until the end of horizonH has the
form at = −Kst (K ∈ Rm×n) (Bertsekas et al. 2000). The
value function is also a quadratic function, V (s) = sTUs+q
for some constant q and positive semi-definite matrixU ⪰ 0.
In the experiment, the state space is [−1, 1].
Misspecified transition classes. Consider a 1D version of
LQR with A(x) = (1 + x/10), B(x) = (−0.5 − x/10),
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Figure 1: Left: Visualization of true policy value η(T ⋆, π). Our algorithm picks the optimal policy, whereas MML picks a
suboptimal policy. Middle: Visualization of negative lower bounds lb(T, π) for different policies and models (indexed by the
values of (v, u)). Right: We show the interquartile mean (IQM) scores of two model-based lower bounds (MML and MBLB)
and a recent model-based policy learning algorithm (MOPO) on D4RL.

Q = 1, R = 1 and noise η ∼ N (0, 0.05). Our true dy-
namics is given by x∗ = 6, and the corresponding optimal
policy has K = −1.1. Function classes used by Alg. 1 are
finite and computed as follows: (i) the value function class
G contains the value functions of 1D LQR with parameters
x ∈ {2, 4, 10} and K ∈ {−1.1,−0.9,−0.7}; (ii) the transi-
tion class T is misspecified. We use the following transition
class Tu ∈ T parametrized by u,

Tu =

{
st+1 = A(x∗)st −B(x∗)at, st ∈ [u, u+ 1],

st+1 = st, otherwise,

with u ∈ {−0.75,−0.5,−0.25, 0, 0.25}. In other words,
the capacity of the transition class is limited – each func-
tion can only model the true dynamics of a part of the
states; (iii) the policy class is given by πv parameterized
by v, and πv(s) = −1.1(s − v) + N (0, 0.01) with v ∈
{−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6}. Intuitively, πv tries to
push the state toward s = v.

Since the state and action spaces are one dimensional, we
can compute the density ratio wπ,T efficiently by discretiza-
tion. The implementation details are deferred to Appendix.
Baseline. We compare our algorithm to minimizing MML
loss as described in the OPO algorithm of Voloshin, Jiang,
and Yue (2021, Algorithm 2). MML strictly outperformed
VAML (Farahmand, Barreto, and Nikovski 2017) as shown
in the experiments of (Voloshin, Jiang, and Yue 2021);
hence, we only compare to MML in our experiments.
Results. Figure 1 (Left) shows the return of different poli-
cies under the true environment. Our method picks the op-
timal policy for the true model, whereas MML picks the
wrong policy. In Figure 1 (Middle), we also visualize dif-
ferent terms in the definition of lb(T, π) (Eq. (5)). Note that
the model loss for different policy is different (model loss for
(v, u) = (0, 0) is significantly larger than (0.0.−0.25), even
if the dynamics are the same). This is because the model loss
is evaluated with a different density ratio.

This highlights the main benefit of our method over the
baseline. Since the model class is misspecified, maximizing
over the weight function w in the MML loss results in an

unrealistically large loss value for some models. However,
if the chosen policy does not visit the part of the state space
with a large error, there is no need to incur a high penalty.

D4RL
D4RL (Fu et al. 2020) is an offline RL standardized bench-
mark designed and commonly used to evaluate the progress
of offline RL algorithms. This benchmark is standard for
evaluating offline policy learning algorithms. Here, we use
a state-of-the-art policy learning algorithm MOPO (Yu et al.
2020) to propose a set of policy-transition model tuples –
for N policy hyperparameters and K transition models, we
can get M × K tuples: {(π1, T1), (π1, T2), ..., (πN , TK)}.
The MOPO algorithm learns an ensemble of transition mod-
els and randomly chooses one to sample trajectories during
each episode of training. Instead, we choose one transition
model to generate trajectories for the policy throughout the
entire training. In our experiment, we choose M = 1 and
K = 5, and train each tuple for 5 random seeds on Hopper
and HalfCheetah tasks (see Appendix). We then compute the
model-based lower bound for each (πi, Tj), and select the
optimal policy that has the highest lower bound. We learn the
dynamics using 300k iterations and we train each policy us-
ing 100k gradient iterations steps with SAC (Haarnoja et al.
2018) as the policy gradient algorithm, imitating MOPO (Yu
et al. 2020) policy gradient update.

MML. Voloshin, Jiang, and Yue (2021) recommended
two practical implementations for computing MML lower
bounds. The implementation parametrizes w(s, a)V (s′)
jointly via a new function h(s, a, s′). We refer readers to
Prop 3.5 from Voloshin, Jiang, and Yue (2021) for a detailed
explanation. We describe how we parametrize this function
as follows:
• Linear: Voloshin, Jiang, and Yue (2021) showed that if
T, V, µ are all from the linear function classes, then a
model T that minimizes MML loss is both unique and
identifiable. This provides a linear parametrization of
h(s, a, s′) = ψ(s, a, s′)T θ, where ψ is a basis function.
We choose ψ to be either a squared basis function or a
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Dataset Type Env MOPO MML
(Squared)

MML
(Polynomial)

MML
(RKHS)

MBLB
(Linear)

MBLB
(Quad)

medium hopper 175.4
(95.3)

379.4
(466.4)

375.6
(459.5)

375.0
(459.9)

591.7
(523.1)

808.5
(502.7)

med-expert hopper 183.8
(94.4)

160.9
(131.5)

116.5
(148.4)

61.4
(35.0)

261.1
(157.9)

242.5
(134.0)

expert hopper 80.4
(63.4)

93.8
(87.9)

61.6
(61.9)

70.0
(56.2)

118.2
(61.6)

121.0
(72.5)

medium halfcheetah 599.8
(668.4)

1967.6
(1707.5)

2625.1
(937.2)

3858.2
(1231.1)

3290.4
(1753.1)

2484.2
(1526.8)

med-expert halfcheetah -486.6
(48.1)

-188.5
(137.2)

-77.0
(252.5)

-343.2
(225.2)

207.4
(509.5)

192.8
(432.0)

Table 2: We report the mean and (standard deviation) of selected policy’s simulator environment performance across 5 random
seeds. MML and MBLB are used as model-selection procedures where they select the best policy for each seed. Our method is
choosing the most near-optimal policy across the datasets.

polynomial basis function with degree 2.
• Kernel: Using a radial basis function (RBF) over S ×
A × S and computing K((s, a, s′), (s̃, ã, s̃′)), Voloshin,
Jiang, and Yue (2021) showed that there exists a closed-
form solution to compute the maxima of the MML loss
(RKHS). Here, there is no need for any gradient update,
we only sample s′ from T .

MBLB (Ours). For a continuous control task, we compute
our model-based lower bound (MBLB) as follows:
Compute η(T, π). Although it is reasonable to directly use a
value function V π

T trained during policy learning to compute
η(T, π), Paine et al. (2020); Kumar et al. (2021) points out
how this value function often severely over-estimates the ac-
tual discounted return. Therefore, we estimate the expected
value of policy π using the generalized advantage estima-
tor (GAE) (Schulman et al. 2016). For a sequence of tran-
sitions {st, at, r(st, at), st+1}t∈[0,N ], it is defined as: At =∑t+N

t′=t (γλ)
t′−t(r(st′ , at′) + γVϕ(st′+1)− Vϕ(st′)), with λ

a fixed hyperparameter and Vϕ the value function estimator
at the previous optimization iteration. Then, to estimate the
value function, we solve the non-linear regression problem
minimizeϕ

∑t+N
t′=t (Vϕ(st′)−V̂t′)2 where V̂t = At+Vϕ(st′).

We also provide a comparison to using the standard TD-1
Fitted Q Evaluation (FQE) (Le, Voloshin, and Yue 2019) in-
stead in Table A1 in the Appendix. We find that using GAE
provides better policy evaluation estimations.
Behavior density modeling. We use a state-of-the-art nor-
malizing flow probability model to estimate the density of
state-action pairs (Papamakarios et al. 2021). For ρπT , we
sample 10,000 trajectories from T, π, and estimate the cor-
responding density; for the behavior distribution µ, we use
the given dataset D. We empirically decide the number of
training epochs that will give the model the best fit.
Compute supg∈G |ℓwπ,T

(g, T )|. We parametrize g either as
a linear function of state: g(s) = mT s, or a quadratic func-
tion of the state: g(s) = sTMs+ b. We use gradient ascent
on ℓwπ,T

(g, T ) to maximize this objective.

Results. We report the results in Table 2. There is gen-
eral overlap across seeds for the performance between vari-
ous methods, but our approach has the best average perfor-
mance or is within the standard deviation of the best. We also
show that for different choices of how we parameterize the
w(s, a)V (s′) distribution (MML) and how we choose the
family of g test function (MBLB), we are selecting differ-
ent final policies. However, overall, MBLB can pick better-
performing final policies with two different parametrizations
while MML is choosing lower-performing policies with its
three parametrizations. We find that our approach of select-
ing among the set of policies computed from each of the
models used by MOPO consistently outperforms the policy
produced by MOPO in the considered tasks.

To summarize these results, we report the interquartile
mean (IQM) scores of each method in Figure 1 (Right). IQM
is an outlier robust metric proposed by Agarwal et al. (2021)
to compare deep RL algorithms. We create the plot by sam-
pling with replacement over all runs on all datasets 50000
times. Though there is significant overlap, our method gen-
erally outperforms policies learned from MOPO.

Conclusion
There are many directions for future work. The current
lb(T, π) implementation with density ratio wπ,T (s, a) is not
differentiable: an interesting question is to make this differ-
entiable so that we can directly optimize a policy. Another
interesting question would be to construct estimators for the
local misspecification errors ϵρ, ϵµ and ϵV , which could be
used to refine the model class to optimize performance.

To conclude, this paper studies model-based offline rein-
forcement learning with local model misspecification errors,
and proves a novel safe policy improvement theorem. Our
theoretical analysis shows the benefit of this tighter analy-
sis and approach. We illustrate the advantage of our method
over prior work in a small linear quadratic example and
also demonstrate that it is competitive or has stronger per-
formance than recent model-based offline RL methods on
policy selection in a set of D4RL tasks.
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Fox, E.; and Garnett, R., eds., Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc.
Voloshin, C.; Jiang, N.; and Yue, Y. 2021. Minimax Model
Learning. In International Conference on Artificial Intelli-
gence and Statistics, 1612–1620. PMLR.
Xie, T.; and Jiang, N. 2020. Batch value-function
approximation with only realizability. arXiv preprint
arXiv:2008.04990.
Xie, T.; Ma, Y.; and Wang, Y. 2019. Towards optimal off-
policy evaluation for reinforcement learning with marginal-
ized importance sampling. Advances in neural information
processing systems.
Yin, M.; and Wang, Y.-X. 2020. Asymptotically effi-
cient off-policy evaluation for tabular reinforcement learn-
ing. In International Conference on Artificial Intelligence
and Statistics, 3948–3958. PMLR.
Yu, T.; Kumar, A.; Rafailov, R.; Rajeswaran, A.; Levine,
S.; and Finn, C. 2021. Combo: Conservative of-
fline model-based policy optimization. arXiv preprint
arXiv:2102.08363.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
Finn, C.; and Ma, T. 2020. MOPO: Model-based Offline
Policy Optimization. arXiv preprint arXiv:2005.13239.
Zhan, X.; Zhu, X.; and Xu, H. 2021. Model-Based Of-
fline Planning with Trajectory Pruning. arXiv preprint
arXiv:2105.07351.
Zhang, R.; Dai, B.; Li, L.; and Schuurmans, D. 2019. Gen-
DICE: Generalized Offline Estimation of Stationary Values.
In International Conference on Learning Representations.
Zhang, S.; Liu, B.; and Whiteson, S. 2020. Gradientdice:
Rethinking generalized offline estimation of stationary val-
ues. In International Conference on Machine Learning,
11194–11203. PMLR.

7431


