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Abstract

We study risk-sensitive reinforcement learning (RL) based on
an entropic risk measure in episodic non-stationary Markov
decision processes (MDPs). Both the reward functions and the
state transition kernels are unknown and allowed to vary arbi-
trarily over time with a budget on their cumulative variations.
When this variation budget is known a prior, we propose two
restart-based algorithms, namely Restart-RSMB and Restart-
RSQ, and establish their dynamic regrets. Based on these re-
sults, we further present a meta-algorithm that does not require
any prior knowledge of the variation budget and can adaptively
detect the non-stationarity on the exponential value functions.
A dynamic regret lower bound is then established for non-
stationary risk-sensitive RL to certify the near-optimality of
the proposed algorithms. Our results also show that the risk
control and the handling of the non-stationarity can be sep-
arately designed in the algorithm if the variation budget is
known a prior, while the non-stationary detection mechanism
in the adaptive algorithm depends on the risk parameter. This
work offers the first non-asymptotic theoretical analyses for
the non-stationary risk-sensitive RL in the literature.

1 Introduction
Risk-sensitive RL considers problems in which the objective
takes into account risks that arise during the learning process,
in contrast to the typical expected accumulated reward objec-
tive. Effective management of the variability of the return in
RL is essential in various applications in finance (Markowitz
1968), autonomous driving (Garcıa and Fernández 2015) and
human behavior modeling (Niv et al. 2012).

While classical risk-sensitive RL assumes that an agent
interacts with a time-invariant (stationary) environment, both
the reward functions and the transition kernels can be time-
varying for many risk-sensitive applications. For example,
in finance (Markowitz 1968), the federal reserve adjusts the
interest rate or the balance sheet in a non-stationary way and
the market participants should adjust their trading policies
accordingly. In the medical treatments (Man et al. 2014), the
patient’s health condition and the sensitivity of the patient’s
internal body organs to the medicine vary over time. This
non-stationarity should be accounted for to minimize the
risk of any potential side effects of the treatment. A similar
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requirement holds for the power grid control (Ding, Lavaei,
and Arcak 2021) where the power grid contingency needs to
be prepared with the time-varying electricity loads.

Despite the importance and ubiquity of non-stationary risk-
sensitive RL problems, the literature lacks provably efficient
algorithms and theoretical results. In this work, we study
risk-sensitive RL with an entropic risk measure (Howard and
Matheson 1972) under episodic Markov decision processes
with unknown and time-varying reward functions and state
transition kernels.

The non-stationary RL problem with an entropic risk mea-
sure has the following technical challenges. (1) Due to the
non-stationarity of the model, any estimation error of the
expectation operator may be tremendously amplified in the
value function when the risk parameter β is small. (2) In
addition, the exponential Bellman equation (see Equation
(3)) used in our risk-sensitive analysis associates the instanta-
neous reward and value function of the next step in a multi-
plicative way (Fei et al. 2021). However, this multiplicative
feature of the exponential Bellman equation will also involve
the policy evaluation errors due to the non-stationary drift-
ing as multiplicative terms, which makes it more difficult to
gauge the bounds than the risk-neural non-stationary setting
in which all policy evaluation errors are in an additive way.
(3) Furthermore, the non-linearity of the objective function
(see Equation (1)) makes it difficult to obtain an unbiased es-
timation of the value function, which is needed in the design
of a non-stationary detection mechanism in risk-neutral non-
stationary RL (Wei and Luo 2021). (4) It is unclear whether
the risk control and the handling of the non-stationarity can
be separately designed when achieving the optimal dynamic
regret. To address these difficulties, we develop a novel anal-
ysis to carefully quantify the effect of the non-stationarity in
risk-sensitive RL. Our main theoretical contributions, sum-
marized in Table 1, are as follows
• When the variation budget is known a prior, we propose

two provably efficient restart algorithms, namely Restart-
RSMB and Restart-RSQ, and establish their dynamic re-
grets. The stationary version of the model-based method
Restart-RSMB is also the first model-based risk-sensitive
algorithm in the stationary setting in the literature.

• When the variation budget is unknown (parameter-free),
we propose a meta-algorithm that adaptively detects the
non-stationarity of the exponential value functions. The
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proposed adaptive algorithms, namely Adaptive-RSMB
and Adaptive-RSQ, can achieve the (almost) same dynamic
regret as the algorithms requiring the knowledge of the
variation budget.

• We establish a lower bound result for non-stationary RL
with entropic risk measure that certifies the near-optimality
of our upper bounds.

• Our results also show that the risk control and the handling
of the non-stationarity can be separately designed if the
variation budget is known a prior, while the non-stationary
detection mechanism in the adaptive algorithms depends
on the risk parameter.

1.1 Related Work
Non-stationary RL. Non-stationary RL has been mostly
studied in the risk-neutral setting. When the variation bud-
get is known a prior, a common strategy for adapting to the
non-stationarity is to follow the forgetting principle, such
as the restart strategy (Mao et al. 2020; Zhou et al. 2020;
Zhao et al. 2020; Ding and Lavaei 2022), exponential de-
cayed weights (Touati and Vincent 2020), or sliding win-
dow (Cheung, Simchi-Levi, and Zhu 2020; Zhong, Yang,
and Szepesvári 2021). In this work, we focus on the restart
method mainly due to its advantage of the simplicity of the
the memory efficiency (Zhao et al. 2020) and generalize it
to the risk-sensitive RL setting. However, the prior knowl-
edge of the variation budget is often unavailable in practice.
The work (Cheung, Simchi-Levi, and Zhu 2020) develop a
Bandit-over-Reinforcement-Learning framework to relax this
assumption, but it leads to the suboptimal regret. To achieve
a nearly-optimal regret without the prior knowledge of the
variation budget, (Auer, Gajane, and Ortner 2019) and (Chen
et al. 2019) maintain a distribution over bandit arms with
properly controlled variance for all reward estimators. For
RL problems, the seminar work (Wei and Luo 2021) pro-
poses a black-box reduction approach that turns a certain
RL algorithm with optimal regret in a (near-)stationary envi-
ronment into another algorithm with optimal dynamic regret
in a non-stationary environment. However, the above works
only consider risk-neutral RL and may not apply to the more
general risk-sensitive RL problems.

Risk-sensitive RL. Many risk-sensitive objectives have
been investigated in the literature and applied to RL, such as
the entropic risk measure, Markowitz mean-variance model,
Value-at-Risk (VaR), and Conditional Value at Risk (CVaR)
(Moody and Saffell 2001; Chow and Ghavamzadeh 2014; De-
lage and Mannor 2010; La and Ghavamzadeh 2013; Di Cas-
tro, Tamar, and Mannor 2012; Tamar, Glassner, and Man-
nor 2015; Tamar et al. 2015; Howard and Matheson 1972).
Our work is closely related to the entropic risk measure.
Following the seminal paper (Howard and Matheson 1972),
this line of work includes (Bäuerle and Rieder 2014; Borkar
2001; Borkar and Meyn 2002; Borkar 2002; Cavazos-Cadena
and Fernández-Gaucherand 2000; Coraluppi and Marcus
1999; Di Masi and Stettner 1999; Fernández-Gaucherand and
Marcus 1997; Fleming and McEneaney 1995; Hernández-
Hernández and Marcus 1996; Osogami 2012; Fleming and
McEneaney 1992; Shen, Stannat, and Obermayer 2013; Fei

et al. 2020; Fei, Yang, and Wang 2021; Fei et al. 2021). In
particular, when transitions are unknown and simulators of
the environment are unavailable, the first non-asymptotic re-
gret guarantees are established under the tabular setting in
(Fei et al. 2020) and the function approximation setting in
(Fei, Yang, and Wang 2021). Then, a simple transformation
of the risk-sensitive Bellman equations is proposed in (Fei
et al. 2021), which leads to improved regret upper bounds.
However, the above papers all assume that the environment
is stationary, and therefore their results may quickly collapse
in a non-stationary environment.

2 Problem Formulation
2.1 Notations
For a positive integer n, let [n] ∶= {1,2, . . . , n}. Given a
variable x, the notation a = O(b(x)) means that a ≤ C ⋅ b(x)
for some constant C > 0 that is independent of x. Similarly,
a = Õ(b(x)) indicates that the previous inequality may also
depend on the function log(x), where C > 0 is again inde-
pendent of x. In addition, the notation a = Ω(b(x)) means
that a ≥ C ⋅ b(x) for some constant C > 0 that is independent
of x.

2.2 Episodic MDP and Risk-Sensitive Objective
In this paper, we study risk-sensitive RL in non-stationary
environments via episodic MDPs with adversarial bandit-
information reward feedback and unknown adversarial tran-
sition dynamics. At each episode m, an episodic MDP is
defined by the finite state space S , the finite action space A,
a collection of transition probability measure {Pm

h }Hh=1 spec-
ifying the transition probability Pm

h (s′ ∣ s, a) from state s to
the next state s′ under action a ∈ A, a collection of reward
functions {rmh }Hh=1 where rmh ∶ S ×A → [0,1] , and H > 0
as the length of episodes. In this paper, we focus on a bandit
setting where the agent only observes the values of reward
functions, i.e., rmh (smh , amh ) at the visited state-action pair
(smh , amh ). We also assume that reward functions are deter-
ministic to streamline the presentation, while our analysis
readily generalizes to the setting where reward functions are
random.

For simplicity, we assume the initial state sm1 to be fixed
as s1 in different episodes. We use the convention that the
episode terminates when a state sH+1 at step H+1 is reached,
at which the agent does not take any further action and re-
ceives no reward.

A policy πm = {πm
h }h∈[H] of an agent is a sequence of

functions πm
h ∶ S → A, where πm

h (s) is the action that the
agent takes in state s at step h at episode m. For each h ∈ [H]
and m ∈ [M], we define the value function V π,m

h ∶ S → R of
a policy π as the expected value of the cumulative rewards
the agent receives under a risk measure of exponential utility
by executing π starting from an arbitrary state at step h.
Specifically, we have

V π,m
h (s)

∶= 1
β
log{Eπ,Pm [exp(β

H

∑
i=h

rmi (si, ai)) ∣ sh = s]} (1)
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Algorithm D-Regret Parameter-free Model-free Separation

Restart-RSMB Õ (e∣β∣H ∣S ∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) ✗ ✗ ✓

Restart-RSQ Õ (e∣β∣H ∣S ∣ 13 ∣A∣ 13H 9
4M

2
3B

1
3 ) ✗ ✓ ✓

Adaptive-RSMB Õ (e∣β∣H ∣S ∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) ✓ ✗ ✗

Adaptive-RSQ Õ (e∣β∣H ∣S ∣ 13 ∣A∣ 13H 5
3M

2
3B

1
3 ) ✓ ✓ ✗

Lower bound Ω( e
2∣β∣H

3 −1
∣β∣ ∣S ∣ 13 ∣A∣ 13M 2

3B
1
3 ) N/A N/A N/A

Table 1: We summarize the dynamic regrets and lower bound obtained in this paper. Here, β is the risk parameter, H is the
horizon of each episode, M is the total number of episodes, B is the total variation measurement, and ∣S ∣ and ∣A∣ are the
cardinalities of the state and action spaces.

where the expectation Eπ,Pm is taken over the random state-
action sequence {(xm

i , ami )}
H
i=h, the action ami follows the

policy πm
i (⋅ ∣ xm

i ), and the next state xi+1 follows the transi-
tion dynamics Pm

i (⋅ ∣ xm
i , ami ). Here β ≠ 0 is the risk param-

eter of the exponential utility: β > 0 corresponds to a risk-
seeking value function, β < 0 corresponds to a risk-averse
value function, and as β → 0 the agent tends to be risk-neutral
and we recover the classical value function V π,m

h (s) =
Eπ,Pm [∑H

t=1 r
m
h (st, at) ∣ s0 = s] in standard RL.

We further define the action-value function Qπ,m
h ∶ S×A →

R, for each h ∈ [H] and m ∈ [M], which gives the expected
value of the risk measured by the exponential utility when the
agent starts from an arbitrary state-action pair and follows
the policy π afterwards; that is,

Qπ,m
h

∶= 1
β
log{exp (β ⋅ rmh (s, a))E [exp(β

H

∑
i=h

rmi (st, at))

∣sh = s, ah = a
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

=rmh (s, a) +
1

β
log{E [exp(β

H

∑
i=h+1

rmi (st, at))

∣sh = s, ah = a
⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

for all (s, a) ∈ S × A. Under some mild regularity con-
ditions (Bäuerle and Rieder 2014), for each episode m,
there always exists an optimal policy, denoted as π∗,m, that
yields the optimal value V π∗,m,m

h (s) ∶= supπ V
π,m
h (s) for

all (h, s) ∈ [H]×S . For convenience, we denote V π∗,m,m
h (s)

as V ∗,mh (s) when it is clear from the context.

2.3 Exponential Bellman Equation
For all (s, a, h,m) ∈ S×A×[H]×[M], the Bellman equation
associated with π is given by

Qπ,m
h (s, a) = rmh (s, a) +

1

β
log {Es′∼Pm

h
(⋅∣s,a) [eβ⋅V

π,m
h+1

(s′)]} ,
(2a)

V π,m
h (s) = Qπ,m

h (s, π(s)), V π,m
H+1 (s) = 0. (2b)

In Equation (2), it can be seen that the action value Qπ,m
h of

step h is a non-linear function of the value function V π,m
h+1

of the later step. Based on Equation (2), for h ∈ [H] and
m ∈ [M], the Bellman optimality equation is given by

Q∗,mh (s, a) = rmh (s, a) +
1

β
log {Es′∼Pm

h
(⋅∣s,a) [eβ⋅V

∗,m
h+1

(s′)]} ,

V ∗,mh (s) =max
a∈A

Q∗,mh (s, a), V ∗,mH+1(s) = 0.
It has been recently shown in (Fei et al. 2021) that under the
risk-sensitive measurement, it is easier to analyze a simple
transformation of the Bellman equation (by taking exponen-
tial on both sides of (2)), which is called exponential Bellman
equation: for every policy π and tuple (s, a, h,m), we have

eβ⋅Q
π,m
h
(s,a) = Es′∼Pm

h
(⋅∣s,a) [eβ(r

m
h (s,a)+V

π,m
h+1

(s′))] . (3)

When π = π∗,m, we obtain the corresponding optimality
equation

eβ⋅Q
∗,m
h
(s,a) = Es′∼Pm

h
(⋅∣s,a) [eβ(r

m
h (s,a)+V

∗,m
h+1

(s′))] . (4)

Note that Equation (3) associates the current and future cu-
mulative utilities (Qπ,m

h and V π,m
h+1 ) in a multiplicative way,

rather than in an additive way as in the standard Bellman
equations (2).

2.4 Non-stationarity and Variation Budget
In this work, we focus on a non-stationary environment where
the transition function Pm

h and reward functions rmh can vary
over the episodes. We measure the non-stationarity of the
MDP over an interval I in terms of its variation in the reward
functions and transition kernels:

Br,I ∶= ∑
m∈I

H

∑
h=1

sup
s,a
∣rmh (s, a) − rm+1h (s, a)∣ ,

BP,I ∶= ∑
m∈I

H

∑
h=1

sup
s,a
∥Pm

h (⋅ ∣ s, a) −Pm+1
h (⋅ ∣ s, a)∥

1
.
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Note that our definition of variation only imposes restric-
tions on the summation of non-stationarity across differ-
ent episodes, and does not put any restriction on the dif-
ference between two steps in the same episode. We further
let Br ∶= Br,[1,M], Bp ∶= Bp,[1,M], and B ∶= Br +Bp, and
assume B > 0.

2.5 Performance Metrics
Since both the reward and the transition dynamics vary over
the episodes and are revealed only after a policy is decided,
the agent aims to ensure the long-term optimality guarantee
over some given period of episodes M . Suppose that the
agent executes policy πm in episode m. We now define the
dynamic regret as the difference between the total reward
value of policy {π⋆,m}Mm=1 and that of the agent’s policy πm

over M episodes:

D-Regret(M) ∶=
M

∑
m=1
(V ∗,m1 − V πm,m

1 ) .

3 Restart Algorithms with The Knowledge of
Variation Budget

3.1 Periodically Restarted Risk-Sensitive
Model-Based Method

We first present the Periodically Restarted Risk-sensitive
Model-based method (Restart-RSMB) in Algorithm 1. It
consists of two main stages: estimation of value function
(line 7-13) with the periodical restart (line 5) and the policy
execution (line 15).

To estimate the value function under the unknown non-
stationarity, we take the optimistic value evaluation to prop-
erly handle the exploration-exploitation trade-off and apply
the restart strategy to adapt to the unknown non-stationarity.
In particular, we reset the visitation counters Nm

h (s, a, s′)
and Nm

h (x, a) to zero every W episodes (line 5). Then, the
reward and transition dynamics are estimated using only the
data from the episode ℓm = (⌈m

W
⌉ − 1)W + 1 to the episode

m by

P̂m
h (s′ ∣ s, a) =

Nm
h (s,a,s

′)+ λ
∣S∣

Nm
h
(s,a)+λ , (5a)

for all (s, a, s′) ∈ S ×A × S,

r̂mh (s, a) =
∑m−1

τ=ℓm 1{(s,a)=(sτh,a
τ
h)}r

τ
h(s

τ
h,a

τ
h)

Nm
h
(s,a)+λ , (5b)

for all (s, a) ∈ S ×A,
which are used to compute the estimated cumulative rewards
at step h (line 9). To encourage a sufficient exploration in
the uncertain environment, Algorithm 1 applies the counter-
based Upper Confidence Bound (UCB). Under the entropic
risk measure, this bonus term takes the form
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 ((eβ(H−h+1) − 1) + eβ(H−h+1)β)
√
∣S ∣ log(6WH ∣S ∣∣A∣/p)

Nm
h
(s,a)+1 ,

if β > 0,
C1 ((1 − eβ(H−h+1)) − β)

√
∣S ∣ log(6WH ∣S ∣∣A∣/p)

Nm
h
(s,a)+1 ,

if β < 0,
(6)

Algorithm 1: Periodically Restarted Risk-sensitive Model-
based RL (Restart-RSMB)

1: Inputs: Time horizon M , restart period W ;
2: for m = 1, . . . ,M do
3: Set the initial state xm

1 = x1 and ℓm = (⌈m
W
⌉−1)W +1;

4: if m = ℓm then
5: Qm

h (s, a), V m
h (s) ← H − h + 1 if β > 0,

Qm
h (s, a), V m

h (s)← 0 if β < 0,
Nm

h (s, a) ← 0,Nm
h (s, a, s′) ← 0 for all

(s, a, s′, h) ∈ S ×A × S × [H] ;
6: end if
7: for h =H, . . . , 1 do
8: for (s, a) ∈ S ×A do
9: wm

h (s, a) =
∑s′ P̂m

h (s′ ∣ s, a) [eβ[r̂
m
h (s,a)+V

m
h+1(s

′)]] where

P̂m
h , r̂mh are defined in (5);

10: Gm
h (s, a)←⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min{eβ(H−h+1),wm
h (s, a) + Γm

h (s, a)} ,
if β > 0;

max{eβ(H−h+1),wm
h (s, a) − Γm

h (s, a)} ,
if β < 0;

where Γm
h is defined in (6);

11: V m
h (s)←maxa′∈A

1
β
logGm

h (s, a′);
12: end for
13: end for
14: for h = 1,2, . . . ,H do
15: Take an action amh ←

argmaxa′∈A
1
β
log{Gm

h (smh , a′)}, and observe
rh(smh , amh ) and smh+1;

16: Nm
h (smh , amh ) ← Nm

h (smh , amh ) + 1;
Nm

h (smh , amh , smh+1)← Nm
h (smh , amh , smh+1, ) + 1;

17: end for
18: end for

for some constant C1 > 1. Bonus terms of the form (6) are
called “doubly decaying bonus” since they shrink determin-
istically and exponentially across the horizon steps due to
the term eβ(H−h+1), apart from decreasing in the visit count.
We refer the reader to (Fei, Yang, and Wang 2021) for more
discussion.

3.2 Periodically Restarted Risk-Sensitive
Q-Learning

Next, we introduce Periodically Restarted Risk-sensitive Q-
learning (Restart-RSQ) in Algorithm 2, which is model-free
and inspired by RSQ2 in (Fei et al. 2021). Similar to Al-
gorithm 1, we use the optimistic value evaluation to handle
the exploration-exploitation trade-off and apply the restart
strategy to adapt to the unknown non-stationarity. In partic-
ular, we re-initialize the value functions Qm

h (s, a), V m
h (s)

and reset the visitation counter Nm
h (x, a) to zero every W

episodes (line 5). The algorithm then updates the exponential
Q values using the Q-learning style update (line 11-12) for
the state action pair that just visited (line 8). The learning rate
αt is defined as H+1

H+t , which is motivated by (Jin et al. 2018)
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Algorithm 2: Periodically Restarted Risk-sensitive Q-
learning (Restart-RSQ)

1: Inputs: Time horizon M , restart period W ;
2: for m = 1, . . . ,M do
3: Set the initial state xm

1 = x1 and ℓm = (⌈m
W
⌉−1)W +1;

4: if m = ℓm then
5: Qm

h (s, a), V m
h (s) ← H − h + 1 if β > 0,

Qm
h (s, a), V m

h (s) ← 0 if β < 0, Nm
h (s, a) ← 0

for all (s, a, h) ∈ S ×A × [H] ;
6: end if
7: for h = 1,2, . . . ,H do
8: Take an action amh ←

argmaxa′∈A
1
β
log{Gm

h (smh , a′)}, and observe
rmh (smh , amh ) and smh+1;

9: Nm
h (smh , amh )← Nm

h (smh , amh ) + 1;
t← Nm

h (smh , amh );
10: Set αt = H+1

H+t and define Γm
h,t(smh , amh ) as in (7);

11: wm
h (smh , amh ) = (1 − αt) ⋅ Gh(smh , amh ) + αt ⋅
[eβ[rmh (smh ,am

h )+V
m
h+1(s

′)]] ;
12: Gm

h (smh , amh )←
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min{eβ(H−h+1),wm
h (smh , amh )
+αtΓ

m
h,t(smh , amh )} , if β > 0;

max{eβ(H−h+1),wm
h (smh , amh )

−αtΓ
m
h,t(smh , amh )} , if β < 0;

13: V m
h (smh )←maxa′∈A

1
β
logGm

h (smh , a′);
14: end for
15: end for

and ensures that only the last O( 1
H
) fraction of samples in

each epoch is given non-negligible weights when used to
estimate the optimistic Q-values under the non-stationarity.
Algorithm 2 also applies the UCB by incorporating a “doubly
decaying bonus” term that takes the form

Γm
h,t(smh , amh )

←C2 ∣eβ(H−h+1) − 1∣
√
∣S ∣ log(MH ∣S ∣∣A∣/δ)

t
(7)

for some constant C2 > 1.

3.3 Theoretical Results and Discussions
We now present our main theoretical results for Algorithms 1
and 2.

Theorem 3.1 For every δ ∈ (0,1], with probability at least
1 − δ there exists a universal constant c1 > 0 (used in Algo-
rithm 1) such that the dynamic regret of Algorithm 1 with
W =M 2

3B−
2
3 ∣S ∣ 23 ∣A∣ 13 is bounded by

D-Regret(M) ≤Õ (e∣β∣H ∣S ∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) .

Theorem 3.2 For every δ ∈ (0,1], with probability at least
1 − δ there exists a universal constant c2 > 0 (used in Algo-
rithm 2) such that the dynamic regret of Algorithm 2 with

Algorithm 3: Risk-sensitive MALG with Stationary Tests and
Restarts (Adaptive-ALG)

1: Inputs: ALG and its associated ρ(⋅), n̂ = log2M + 1,
ρ̂(m) = 6n̂ log(M

δ
)ρ(m);

2: for n = 0,1, . . . , do
3: Set mn ← m and run MALG-Initialization (see Ap-

pendix) for the block [mn,mn + 2n − 1];
4: while m <mn + 2n do
5: Identify the unique active instance covering the

episode m and denote it as alg;
6: Construct the optimistic estimator gm for the active

instance alg;
7: Follow alg’s decision πm, receive estimated value

Rm = eβ∑
H
h=1 rmh , and update alg;

8: Set Um = {
minτ∈[mn,m] gτ , if β > 0,
maxτ∈[mn,m] gτ , if β < 0;

9: Perform Test1 and Test2; Increment t← t + 1;
10: If either test returns fail, then restart from Line 2.
11: end while
12: end for
13: Test1: Return fail if m = alg.e for some order-k alg and
⎧⎪⎪⎨⎪⎪⎩

1
2k ∑

alg.e
τ=alg.sRτ −Ut ≥ 9ρ̂(2k), if β > 0,

Ut − 1
2k ∑

alg.e
τ=alg.sRτ ≥ 9ρ̂(2k), if β < 0;

14: Test2: Return fail if
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
m−mn+1 ∑

m
τ=mn

(gτ −Rτ) ≥ 3ρ̂(m −mn + 1),
if β > 0,

1
m−mn+1 ∑

m
τ=mn

(Rτ − gτ) ≥ 3ρ̂(m −mn + 1),
if β < 0,

W =M 2
3H−

3
4B−

2
3 ∣S ∣ 23 ∣A∣ 13 is bounded by

D-Regret(M) ≤Õ (e∣β∣H ∣S ∣ 13 ∣A∣ 13H 9
4M

2
3B

1
3 ) .

The proofs of the two theorems are provided in Appendices.
Note that the above results generalize those in the literature
of risk-neutral non-stationary RL. In particular, when β → 0,
we recover the regret bounds with the same dependence on
M and B for the restart model-based RL (Domingues et al.
2021) and restart Q-learning (Mao et al. 2020).

4 Adaptive Algorithm without The
Knowledge of Variation Budget

In Theorems 3.1 and 3.2, we need to set the restart period
to W = O(B− 2

3M
2
3 ), which clearly requires the variation

budget B in advance. To overcome this limitation, we propose
a meta-algorithm that adaptively detects the non-stationarity
without the knowledge of B, while still achieving the similar
dynamic regret as in Theorems 3.1 and 3.2. In particular, we
generalize the black-box approach (Wei and Luo 2021) to
the risk-sensitive RL setting and design a non-stationarity
detection based on the exponential Bellman equations (3).

4.1 Risk-Sensitive Non-Stationary Detection
We first sketch the high-level idea of the black-box reduction
approach for risk-sensitive non-stationary RL with β > 0.
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Note that the dynamic regret can be bounded and decomposed
as follows:

D-Regret(M)

≤ 1
β

M

∑
m=1
(eβV

∗,m
1 − eβV

m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R1

+ 1
β

M

∑
m=1
(eβV

m
1 − eβV

πm,m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R2

(8)

where V m
1 is an UCB-based optimistic estimator of the value

function as constructed in Algorithms 1 and 2. In a station-
ary environment with β > 0, the base algorithms, such as
Algorithms 1 and 2 without the restart mechanism (that is,
W = M ), ensure that R1 is simply non-positive and R2 is
bounded by Õ(M 1

2 ). However, in a non-stationary environ-
ment, both terms can be substantially larger. Thus, if we can
detect the event that either of the two terms is abnormally
larger than the promised bound for a stationary environment,
we learn that the environment has changed substantially and
should restart the base algorithm. This detection can be easily
performed for R2 since both eβV

m
1 and eβV

πm,m
1 are observ-

able 1, but not for R1 since V ∗,m1 is unknown. To address
this issue, we fully utilize the fact that eβV

m
1 is a UCB-based

optimistic estimator to facilitate non-stationary detection.
We illustrate the idea of non-stationary detection for risk-

sensitive RL in Figure 1. Here, the value of V ∗,m1 drastically
increases which results to an increase in eβV

∗,m
1 for β > 0

and an decrease in eβV
∗,m
1 for β < 0. If we start running

another instance of base algorithm after this environment
change, then its performance will gradually approach due to
its regret guarantee in a stationary environment. Since the
optimistic estimators should always be an upper bound of the
learner’s average performance in a stationary environment for
β > 0 or a lower bound of the learner’s average performance
in a stationary environment for β < 0, if, at some point, we
find that the new instance of the base algorithm significantly
outperformances/underperformances (depending on the value
of β) this quantity, we can infer that the environment has
changed.

4.2 Multi-Scale ALG (MALG) and
Non-Stationarity Tests

To detect the non-stationarity at different scales, we schedule
and run instances of the base algorithm ALG in a randomized
and multi-scale manner. In particular, Adaptive-ALG runs
MALG in a sequence of blocks with doubling lengths. Within
each block, Adaptive-ALG first initializes a MALG schedule
(see Appendix), and then interacts the unique active instance
at each episode with the environment (lines 5-7 in Algorithm
3). At the end of each episode, Adaptive-ALG performs two
non-stationarity tests (line 10 in Algorithm 3), and if either
of them returns fail, the restart is triggered. We now describe
these three parts in detail below.

MALG-initialization. MALG is run for an interval of
length 2n (unless it is terminated by the non-stationarity de-
tection), which is called a block. During the initialization,

1More precisely, ∑M
m=1 e

βV
πm,m
1 can be estimated from

∑
M
m=1 e

β∑H
h=1 rmh using the Azuma’s inequality.

(a) β > 0.

(b) β < 0.

Figure 1: An illustration of the risk-sensitive non-stationarity
detection. The green curves represent the learner’s average
performance in new ALG. Since both Um and learner’s aver-
age performance depend on the risk-sensitive parameter β in
a non-linear way. The non-stationarity detection relies on the
choice of β and thus the risk control and the handling of the
non-stationarity can not be separately designed.

MALG partions the block equally into 2n−k sub-intervals of
length 2k for k = 0,1, . . . , n, and an instance of based algo-
rithm (denoted by ALG) is scheduled for each of these sub-
intervals with probability ρ(2n)

ρ(2k) , where ρ is a non-increasing
function associated with the bound on R2 for ALG in a
stationary environment (see Appendix). We refer to these
instances of length 2k as order-k instances.

MALG-interaction. After the initialization, MALG starts
interacting with the environment as follows. In each episode
m, the unique instance alg that covers this episode with
the shortest length is considered as active, while all others
are regarded as inactive. MALG follows the decision of the
active instance alg and updates it after receiving the feedback
from the environment. All inactive instances do not make
any decisions or updates, that is, they are paused but may
be resumed at some future episode. We refer the reader to
Appendix for an illustrative example for MALG procedure.

Non-stationarity detection For β > 0, two non-
stationarity tests are performed for the two terms in the de-
composition (8). In particular, Test1 prevents R1 from grow-
ing too large by testing if there is some order−k instance’s
interval during which the learner’s average performance
1
2k ∑

alg.e
τ=alg.sRτ is larger than the promised optimistic estima-

tor Um =minτ∈[mn,m] gτ (for a stationary environment) by
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a certain amount. On the other hand, Test2 prevents R2 from
growing too large by directly testing if its average is large
than the promised regret bound. The two non-stationarity
tests for β < 0 are similar but with 1

2k ∑
alg.e
τ=alg.sRτ and Um

exchanged in TEST1, as well as with gτ and Rτ exchanged
in TEST2.

4.3 Theoretical Results and Discussions
For simplicity, we denote the revised Algorithms 1 and 2
without the restart mechanism (that is, W = M ) as RSMB
and RSQ, respectively. We now present our main theoretical
result for Algorithm 3 when the base algorithms are RSMB
and RSQ, respectively.

Theorem 4.1 For every δ ∈ (0,1], with probability at least
1 − δ it holds for Algorithm 3 that

D-Regret(M) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H2M
2
3B

1
3 ) ,

if ALG is RSMB,
Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H 5

3M
2
3B

1
3 ) ,

if ALG is RSQ.

The above results show that the dynamic regret bound of
the adaptive Algorithm 3 (almost) matches that of the restart
Algorithms 1-2 that require the knowledge of the variation
budget. The proof of Theorem 4.1 relies on the results in
Theorems 3.1-2 and is provided in Appendix.

5 Lower Bound
We now present a lower bound on the dynamic regret which
complements the upper bounds in Theorems 3.1, 3.2 and 4.1.

Theorem 5.1 For sufficiently large M , there exists an in-
stance of non-stationary MDP with H horizons, state space
S , action space A and variation budget B such that

D-Regret(M) ≥Ω
⎛
⎝
e

2∣β∣H
3 − 1
∣β∣ ∣S ∣ 13 ∣A∣ 13M 2

3B
1
3
⎞
⎠
.

Theorem 5.1 shows that the exponential dependence on ∣β∣
and H in Theorems 3.1, 3.2 and 4.1 is essentially indispens-
able and that the results in Theorems 3.1, 3.2 and 4.1 are
nearly optimal in their dependence on ∣A∣,M and B. When
β → 0, we recover the existing lower bound for the non-
stationary risk-neutral episodic MDP problems (Mao et al.
2020).

The proof is given in Appendix. In the proof, the hard in-
stance we construct is a non-stationary MDP with piecewise
constant dynamics on each segment of the horizon, and its dy-
namics experience an abrupt change at the beginning of each
new segment. In each segment, we construct a ∣S ∣∣A∣-arm
bandit model with Bernoulli reward for each arm. This bandit
model can be seen as a special case of our episodic MDP
problem, and then we show the expected regret, in terms of
the logarithmic-exponential objective, that any bandit algo-
rithm has to incur.

6 Risk Control Under the Non-stationarity

Risk control in non-stationary RL is more challenging since
the rewards and dynamics are time-varying and unknown. In
this section, we discuss some key ideas behind our methods
and proofs.

Normalized dynamics estimation in model-based al-
gorithm. In model-based algorithms for non-stationary
risk-neutral RL, the un-normalized dynamics estimation
(Domingues et al. 2021; Ding and Lavaei 2022) is sufficient
for achieving a near-optimal regret because the effect of the
model estimation error due to the “unnormalization” on the
dynamic regret is little. However, it is critical to use the
normalized dynamics estimation (5a) in Algorithm 1. This
is because that a small model estimation error due to the
“unnormalization” may be amplified when β → 0. We note
that the stationary version of our Algorithm 1 is also the
first model-based algorithm with a theoretical guarantee for
stationary risk-sensitive RL problems in the literature.

Multiplicative feature of the exponential Bellman equa-
tion. The multiplicative feature of the exponential Bellman
equation will involve the policy evaluation error as multi-
plicative terms. These terms are easy to bound in a stationary
environment in light of the optimistic estimator of the expo-
nential value function. However, due to the non-stationary
drifting of the environment, the estimator V m

h may no longer
be an optimistic estimator and the errors of the optimistic
estimator are all in the form of a multiplicative way due to
the nature of the exponential Bellman equation. We need to
introduce additional terms to guarantee each multiplicative
terms are non-negative as in the proof of Theorem 3.2.

Non-stationarity detection on the exponential value
functions. Different from non-stationarity detection for risk-
neutral RL (Wei and Luo 2021), we design non-stationarity
detection mechanism for the exponential value functions (3)
instead of the value functions (1) in Algorithm 3. This is
because the non-linearity of the risk-sensitive value function
makes it difficult to obtain its unbiased estimation, which is
needed in the design of non-stationary detection mechanism.

Separation design of the risk-control and the non-
stationarity. When the variation budget is known, the risk-
control and the handling of the non-stationarity can be sepa-
rately designed in the algorithm, that is, the restart frequency
in Algorithms 1 and 2 does not depend on the risk parameter
β and only depends on the non-stationarity of the environ-
ment B. If we know the environment’s variation budget in
advance, then we can schedule the restart frequency ahead
no matter the risk-sensitivity. On the other hand, without
such knowledge of the variation budget, the adaptive non-
stationary detection needs to take into account the risk pa-
rameter β because the promised regret bound, the optimistic
estimator, and the unbiased sample of the exponential value
functions all depend on β.
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