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Abstract
Reinforcement learning (RL) has achieved impressive perfor-
mance in various domains. However, most RL frameworks
oversimplify the problem by assuming a fixed-yet-known
environment and often have difficulty being generalized to
real-world scenarios. In this paper, we address a new chal-
lenge with a more realistic setting, Incremental Reinforce-
ment Learning, where the search space of the Markov De-
cision Process continually expands. While previous methods
usually suffer from the lack of efficiency in exploring the un-
seen transitions, especially with increasing search space, we
present a new exploration framework named Dual-Adaptive
ϵ-greedy Exploration (DAE) to address the challenge of In-
cremental RL. Specifically, DAE employs a Meta Policy and
an Explorer to avoid redundant computation on those suffi-
ciently learned samples. Furthermore, we release a testbed
based on a synthetic environment and the Atari benchmark to
validate the effectiveness of any exploration algorithms un-
der Incremental RL. Experimental results demonstrate that
the proposed framework can efficiently learn the unseen tran-
sitions in new environments, leading to notable performance
improvement, i.e., an average of more than 80%, over eight
baselines examined.

Introduction
Reinforcement learning (RL) methods mainly aim at train-
ing agents to conduct continuous control and decision-
making tasks and have demonstrated encouraging perfor-
mance improvement in various domains, including game
playing (Baker et al. 2019; Hu et al. 2021), autonomous
driving (Kiran et al. 2021), and robot controlling (Won,
Gopinath, and Hodgins 2021). Despite the recent progress
in RL, it remains challenging to train the RL agents through
extensive interactions with the environments. Thus, sev-
eral early efforts focus on improving the sample effi-
ciency (Schulman et al. 2017; Van Hasselt, Hessel, and
Aslanides 2019; Kaiser et al. 2019), exploration strate-
gies (Burda et al. 2018; Zhang et al. 2021; Ermolov and
Sebe 2020) and value estimation (Hessel et al. 2018; Ba-
dia et al. 2020) to strengthen the capability of RL agents.
However, most prior works assume that the environment re-
mains unchanged, hence having difficulty being generalized
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Conventional RL

upgrade

Figure 1: Illustration of Incremental RL. Conventional RL
(left) has fixed state and action spaces. Whereas in Incre-
mental RL, state and action spaces can be upgraded into
larger ones whenever the task of interest is updated.

to new scenarios. In contrast, the sets of states and actions
would usually be enlarged by means that we cannot fore-
see in the future since real-world applications update from
time to time (Wang et al. 2019). One straightforward idea is
to retrain the agents as the environments vary, which is un-
desirable due to the computational overhead of the training
process (Kaiser et al. 2019). For example, an autonomous
vehicle company (Kiran et al. 2021) may first train an agent
to drive the car following the lanes. In the next version, they
may want to launch a new desirable feature on this agent
to recognize traffic lights and intersections. Under the con-
ventional RL setting, the training process has to start over
again when developing new states and actions. Note, how-
ever, that humans can effectively learn a task from their pre-
vious experience and inference the strategies to unseen situ-
ations (Wang et al. 2020).

Based on these observations, we formulate a new RL
problem, named Incremental Reinforcement Learning (In-
cremental RL), where the agents can adapt their behavior in-
crementally as the environment changes, utilizing previous
knowledge to benefit the future decision-making process. A
close topic, i.e., lifelong reinforcement learning (Brunskill
and Li 2014; Abel et al. 2018), trains an agent for a se-
quence of similar tasks and encourages the agent to trans-
fer the experience from previous tasks to the new one faster.
However, the works mentioned above learn the policy from
the environment with fixed-yet-known state and action sets.
Thus, it is nontrivial to solve Incremental RL because the
search space of the solution would grow exponentially, cor-
responding to the size of the state and action spaces. While
one can initialize the parameters of a function approximation
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from the previous environment, the previous global optimum
may be a local one that barely fits the latter environment. In
light of this, we investigate how to utilize prior knowledge
to quickly adapt the agent to new state and action spaces. As
illustrated in Fig. 1, Incremental RL emerges by adjusting
the previously learned policy to new environments with the
state and action spaces continually enlarged incrementally.

To address the challenges mentioned above, Incremental
RL can be regarded as a special exploration problem of RL
under an inherent bias from the previous training process.
Precisely, after an agent has been trained within a specific
environment and the corresponding state, action spaces in-
crease, the goal of that agent would then be to maintain
past experiences while exploring new transitions, i.e., state-
action pairs. Thus, aiming at this target, we propose a novel
exploration algorithm named Dual-Adaptive ϵ-greedy Ex-
ploration (DAE). DAE takes advantage of two strategies, the
Meta Policy and the Explorer, where the Meta Policy adap-
tively sets the value of ϵ by assessing the exploration con-
vergence of the current state; and the Explorer estimates the
occurrence of actions, given the current state, and adaptively
explore the least-tried actions. Furthermore, we release a
new testbed based on an exponential-growing environment
and the Atari benchmark (Mnih et al. 2013) to evaluate the
efficiency of any algorithms under Incremental RL, includ-
ing the one we proposed, DAE.

Our contributions can be summarized as follows:

• To the best of our knowledge, we are the first to formally
model and formulate the challenge of Incremental Rein-
forcement Learning (Incremental RL).

• Accordingly, we propose a novel exploration algorithm
for Incremental RL called Dual-Adaptive ϵ-greedy Ex-
ploration (DAE), which can (1) adaptively make a trade-
off between exploitation/exploration, and (2) give adap-
tive exploration guidance to the agent.

• Two benchmarks of Incremental RL and the correspond-
ing baselines are proposed to accompany the challenges.
Experiments show that DAE can efficiently solve Incre-
mental RL compared to the eight baselines examined.

Problem Formulation
Markov Decision Process
Markov Decision Process (MDP) (Puterman 1990) can be
defined as a tuple M = (S,A, T ,R, γ), where S is the set
of all possible states, A is the action space of all available ac-
tions, T : S×A → P(S) is the transition function that maps
states and actions to the probability distribution of state tran-
sitions, R : S × A → r is the predefined reward function,
and lastly, γ ∈ [0, 1] is the discount factor. For each time
step t, an agent with policy π : S → P(A) is to interact
with the environment as follows: the current state st ∈ S
is returned by the environment, and an action sampled from
the policy at ∼ π(st) is conducted. Following, the reward
rt and next state st+1 ∼ T (st, at) are yielded back from the
environment. Overall, the goal of the agent is to maximize
the discounted accumulated reward, the estimation function
of which is called the value function V or the action-value

function Q in value-based reinforcement learning:

Vπ(s) = max
a∼A

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt|s0 = s

]
(1)

Deep Q-Learning
In order to maximize the discounted accumulated reward,
we first obtain a function of the Q-value. With sufficient
state-action pairs, we can learn the Q-value of the policy
π by satisfying the Bellman optimality equation:

Qπ(st, at) = R(st, at) + γ max
at+1∼A

Qπ(st+1, at+1) (2)

In fact, the combinations of S and A are usually countless
to be tabularly memorized by a machine. Thence, agents of
deep architectures dominate the domain of reinforcement
learning by the general Q-value of all state-action pairs.
Under the deep Q-learning setting, one can update Qπ of
the policy πθ by performing gradient descent with MSE of
Equation (2) and with respect to the parameters θ of the pol-
icy. After building a model to estimate the Q-value, we can
optimize the policy with experiences collected by interacting
with the environment and acting greedily.

While greedily exploiting highest-rewarded actions may
lead to sub-optimal behavior, the exploration allows an agent
to improve its current knowledge about each state-action
pair, leading to long-term benefits. ϵ-greedy (Sutton 1995)
is a simple but widely-adopted exploration method in RL,
which searches the unseen transitions in the environment by
choosing random actions under a fixed and small probability
ϵ. Nonetheless, it suffers from the lack of efficiency (Dabney,
Ostrovski, and Barreto 2021), which could bring the failure
of Incremental RL with increasing search space.

Incremental Reinforcement Learning
As the environment continually grows in real-world appli-
cations, we introduce a new challenge named Incremental
Reinforcement Learning (Incremental RL), which can be
formally defined as an MDP. A near-optimal policy π∗ is
firstly trained on a MDP M of tuple (S,A,R, T , γ) with
|S| = n and |A| = m. Based on Q-learning, the search
space of M is the number of transitions (state-action pairs):
|S × A| = n∗m. Yet, the MDP M is extended to M′ after-
ward, where M′ is a tuple (S ′,A′,R′, T ′, γ′) and S ⊂ S ′,
A ⊂ A′ and |S ′| = q > n, |A′| = k > m. It is not am-
biguous that the search space of the new MDP M′ is strictly
greater than the original one, |S ′ ×A′| = q∗k > n∗m. Last
but not least, existing transitions are assumed unchanged to
focus this study on learning new transitions while preserv-
ing learned behavior. Thereby, the reward function R′ and
transition function T ′ are augmented from the original ones
such that the corresponding outputs of new transitions are
defined, i.e., R ⊂ R′ and T ⊂ T ′.

While prior RL algorithms assume a fixed-yet-known set
of actions to explore the changeless environment (Ostrovski
et al. 2017; Burda et al. 2018), the state and action spaces
of the agent usually continually increase in practice. When
state and action spaces are enlarged, it is inefficient to re-
train the policy by re-collecting and re-learning for billions
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of interactions between the agent and the environment (Abel
et al. 2018). To avoid power and time-consuming training,
we should better utilize the trained policy and directly fine-
tune the model. In our implementation, to reuse the value
estimation of the trained policy, if the input dimension ex-
pands, new input neurons are appended into the deep Q-
network and initialized with (He et al. 2015) and old states
can be regarded as zero-padded (features missing), main-
taining their Q-values. This strategy is also applied to other
components of the agent. Especially, the Q-values of newly-
added actions shall be no larger than existing Q-values to
avoid the influence on prior estimations due to the Bell-
man optimality equation mentioned in Section . Accord-
ingly, new output neurons are inserted into the policy net-
work with their weights and biases initialized by a zero-
mean and small-variance normal distribution.

Dual-Adaptive ϵ-greedy Exploration
As we defined in Section , the new MDP M′ is the old MDP
M with an incremental expansion. Intuitively, the dynamics
of the state-action pairs observed in the early MDP remain
unchanged in the latter MDP, and only novel transitions are
worth exploring. A naive but effective way to solve Incre-
mental RL may be to maintain the behavior of the agent
in transitions S ×A and to explore those unseen transitions
(S ′ × A′) − (S × A). Nevertheless, the previously trained
agent has its default trajectory in M, which can be seen as
an initialization bias of M′ (Dabney, Ostrovski, and Bar-
reto 2021). It could result in the difficulty of finding a near-
optimal policy of M′ based on and against the greedy policy
of M. Thence, it is one straightforward perspective to deem
Incremental RL as an exploration problem under the strong
inductive bias of prior experience.

Compared to the conventional RL problems, several chal-
lenges arise in Incremental RL. First, the algorithm has to
automatically determine when to conduct exploitation and
exploration as the environment changes. Second, the explo-
ration scheme has to correctly estimate the least but worth-
tried actions to reduce the sampling overhead from repeated
trying. To efficiently solve Incremental RL, we transform it
into a special exploration problem and propose a new ex-
ploration framework, Dual-Adaptive ϵ-greedy Exploration
(DAE), to address the above challenges.

Adaptive Exploitation-Exploration Trade-off
In vanilla ϵ-greedy Exploration, ϵ is often a scalar that is
fixed throughout the training. Though some prior works use
decaying ϵ to gradually reduce the global exploration (Dab-
ney, Ostrovski, and Barreto 2021), these methods neglect the
differences between states and could cause over-exploration
to those well-explored states and under-exploration to the
others. While Value-Difference Based Exploration (Tokic
2010) considers state-dependent exploration rate, the static
ϵ-TD-Error mapping could be inapplicable to the expanding
state space and reward function in Incremental RL.

To adaptively make a trade-off between exploitation and
exploration, we propose the Meta Policy Ψ, which is a
heuristic method that determines the continuous variable ϵt,

taking states as inputs: the Meta Policy would yield a smaller
exploration probability ϵt if a state is well-explored, other-
wise, a larger ϵt would be returned,

ϵt = Ψ(st), s.t. 0 ≤ Ψ(st) ≤ 1, ∀st ∈ S (3)

, which is fashioned into a binary classification task (labels
of 0 for well-explored states and 1 for under-explored states)
and learned by gradient descent with Binary Cross-Entropy
Loss. Since there is a lack of ground truth to determine
whether the model should prefer exploitation or exploration,
our Ψ is a trainable model with a pseudo ground truth y for
the given state defined as follows:

y =

{
1, if TD-Error rate > τ

0, otherwise
,

Especially, TD-Error rate refers to the absolute error rate
of the LHS and the RHS of Eq. 2, indicating the value-
estimation convergence (Tokic 2010), i.e., a high TD-Error
rate implies that the value estimation may not have con-
verged, and more exploration might be required to fulfill
the agent’s knowledge in the current state. (Note that we
cannot directly utilize TD-Error rates since they are avail-
able only after action selection.) Then, y is set to 1 to allow
more exploration if the TD-Error rate is higher than a hyper-
parameter τ , serving as a threshold of uncertainty, or 0, oth-
erwise. In particular, we only update Ψ when exploration is
conducted because the Meta Policy is to evaluate whether a
state is well-explored or not and encourage the agent to be
more explorative in those states with more uncertainty.

Adaptive Action Exploration
ϵ-greedy uniformly selects random actions when exploring,
which causes inefficient sampling. To avoid the aforemen-
tioned issue and to only explore the rarely-taken actions,
we propose an Explorer Φ to estimate the occurrence num-
ber of all available actions given a state. Unfortunately, the
combinations of the state and action spaces are often innu-
merable and even increasing in Incremental RL thus hard to
be analyzed in practice. So instead, given the current state,
we estimate the underlying counting of available actions in a
normalized form, referred to as the Relative Frequency (RF).

Φ(a|st) ∼ RF (a|st),

s.t.
∑

Φ(a|st) = 1,Φ(a|st) >= 0, ∀a ∈ A.
(4)

We adopt a deep neural network followed by a Softmax
function as the Explorer Φ, which encodes the states to pre-
dict the relative frequency of each action. Note that Φ can
be end-to-end trained by gradient ascent with the objective
function set to the logarithmic probability of taken actions.
An intuition to this update is to increase the relative fre-
quency of any taken action at, given the state st.

Overall Framework
After introducing the two strategies proposed above, we
hereby illustrate the overall framework of Dual-Adaptive ϵ-
greedy Exploration (DAE).1 During the training process, the

1https://github.com/weiding98/DAE

7389



Figure 2: Dual-Adaptive ϵ-greedy Exploration.

exploitation-exploration trade-off is controlled by the value
of ϵ as we often see in the regular ϵ-greedy Exploration.
Nonetheless, in DAE, ϵ is adaptively inferenced by the Meta
Policy Ψ, instead of a global and static value. Then, with
the probability of ϵt = Ψ(st), the agent will explore by
taking the least-tried actions estimated by the Explorer Φ,
rather than picking random actions; and with the odd of
1 − ϵt, greedy actions that exploit current policy will be
conducted. It is worth noting that both the above methods
are state-conditional, ensuring adaptive exploration for dis-
tinct states. Overall, DAE explores more in states with un-
certain Q-values by taking rare moves, thus reducing redun-
dant samples of vanilla ϵ-greedy.

To address Incremental RL, the new states in the new en-
vironments would be granted higher exploration probability
by the Meta Policy because these unseen states would not
have been learned and would only be noise to the Meta Pol-
icy. The old states would be explored under relatively low ϵ,
assuming the previous environment is well-learned and the
value estimation has converged. The emergence of new ac-
tions may cause the Q-value of old states to be inaccurate
and trigger the Meta Policy to explore more in these states
again. As a result, the Meta Policy adapts the agent in In-
cremental RL by exploring more in the new states while ex-
ploiting more in the old ones. Besides, the Q-values of those
newly-added actions are usually initialized with small val-
ues, thus the agents would not likely try those newly-added
actions and suffer from the strong inductive bias from prior
experience. To overcome such bias, the Explorer would en-
courage the agent to sample those new actions more fre-
quently by initializing new output neurons with small val-
ues, i.e., Φ(a|s) ≈ 0, ∀a ∈ A′ − A. While conventional
exploration methods cannot adapt to the changes of state-
action space and reward functions through time (Badia et al.
2020; Tang et al. 2017; Burda et al. 2018), the Explorer
is state-sensitive and value-independent, ensuring least-tried
actions are sampled and benefiting long-term planning in
the expanding environment of Incremental RL. Even though
the Explorer favors least-tried actions, these actions will
no longer be the least-tried after the relative frequencies of
which are increased, preventing another sampling bias. The
detailed pseudo codes are presented in Algorithm 1.

Expanding World
We aim to answer the following questions in our experi-
ments (Section , , ). (1) As the environment changes, does
our method incrementally adjust the previously learned pol-
icy to fit the new environment? (2) How efficient and perfor-
mant is our method compared to prior work?

Algorithm 1: Dual-Adaptive ϵ-greedy Exploration
Function DAE(Q,M)

Initialize the Explorer Φ
Initialize the Meta Policy Ψ
E← number of episodes
T← max steps of an episode
for episode← 1 to E do

Observe s0 fromM
for time step t← 1 to T do

if random(0, 1) < ϵt = Ψ(st) then
Select novel action
at ← argmin

a
Φ(a|st)

Update Ψ = Ψ+ α∇(y logΨ(st) + (1−
y) log(1−Ψ(st)))

else
Select greedy action
at ← argmax

a
Q(a|st)

Update Φ = Φ+ α∇ log Φ(at|st)
Take action at

Observe st+1 fromM

Figure 3: An illustration of Expanding World.

Therefore, we build our first benchmark, Expanding
World, to validate whether DAE can efficiently solve Incre-
mental RL.

Setup As illustrated in Fig. 3, we propose a new bench-
mark of Incremental RL, Expanding World, that the state
and action spaces continuously expand. This environment
consists of a course of length N where the dimension of the
state space d ∈ {1, ..., N} increases. The value of each di-
mension is restricted in {0, 1, 2}, resulting in the state space.

Sd = {sd}, ∀ sd = (s1, ..., sd)

s.t. si ∈ {0, 1, 2}, ∀ i ∈ {1, ..., d}
(5)

When the environment expands, the corresponding action
space becomes

Ad = {a+
1 , a

−
1 , ..., a

+
d , a

−
d , NOOP}, (6)

including the increment a+∗ and decrement a−∗ on each di-
mension, and a no-operation action NOOP. Thus, the num-
ber of combinations of state and action spaces exponentially
grows up with respect to the number of dimensions, i.e.,
|Sd×Ad| = [3d]∗ [(2∗d)+1]. Besides, the reward function
is defined as follows.

Rd(sd) =

{
1, if

∑d
i=1 si = 2, s.t. ∀si ̸= 1

0, otherwise
, (7)

which indicates a reward of value 1 will be given if and only
if an arbitrary dimension is 2 and the others are 0. Each re-
ward will only be given once before the environment resets,
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Figure 4: Training overhead on Expanding World: number of
training steps taken to attain near-optimal policies while the
state and action spaces increase. All agents are NOT initial-
ized when the dimension increases, except for the ϵ-greedy
(Retrain) method. The results are averaged over 20 random
seeds and clipped at 150K training steps.

hence the maximal total reward is equal to the current di-
mension d. The dimension increases if and only if the maxi-
mum reward is achieved in testing. The length of the course
N is set to 10 and the environment resets every 500 steps or
if the max total reward is reached. The agent will be trained
for 200K steps in total and be tested every 2K steps. The
number of training steps taken to reach and conquer each
stage of the course will be the assessment of an algorithm’s
exploration efficiency.
Baselines We employ DQN (Mnih et al. 2013) as the frame-
work of the policy and compare DAE with the other six
widely-used, state-of-the-art exploration methods.
(1) ϵ-greedy exploration (Sutton 1995) randomly samples
actions from an action set with a small probability ϵ, as
we discussed in Section . (2) Upper Confidence Bound
(UCB) (Strehl and Littman 2008) is a count-based explo-
ration method that considers the occurrence of each ac-
tion and forces the agent to attempt actions that are seldom
chosen. (3) Softmax (Bridle 1989) samples actions from
a probability distribution based on the Q-value. (4) Noisy
Nets (Fortunato et al. 2018) leverages a noisy stream on
top of the conventional linear function. Every time the en-
vironment resets, we reset the noisy stream to start the ex-
ploring process again. (5) Random Network Distillation
(RND) (Zhang et al. 2021) is an intrinsically-motivated ex-
ploration as it encourages the agent to explore new situations
that have rarely been encountered. Every time the environ-
ment resets, the target and predictor networks are enlarged.
(6) ArgminQ is also a variant of ϵ-greedy, which explores
by sampling the action with the least Q-value estimated.
Quantitative Results In Fig. 4, the training time of re-
training an agent from scratch grows exponentially along
with the dimension of the environment. Naive fine-tuning
from a previously trained policy with UCB or ϵ-greedy fails
to improve the efficiency of finding optimal solutions ei-
ther. Although UCB considers the frequency of each ac-
tion and forces the model to select statistically rare actions,
the exploration process is not state-sensitive, i.e., globally
counts the occurrence of each action. Most interestingly,
ArgminQ, sharing a similar idea with DAE, could not el-
egantly solve Incremental RL either, showing that actions
with less Q-value do not necessarily deserve explored. Soft-

Figure 5: The change of ϵt and the relative frequency av-
eraged over 20 random seeds. Notably, we consider those
newly-available states as the new states and others as the old
states for each stage. Also, newly-added actions are catego-
rized into groups A1∼A10, depending on which stage they
were added into the training. The number of training steps
for each stage is set to 2 ∗ 104 (grey-dashed lines), for better
value convergence. The curves are moving-averaged (Hessel
et al. 2018) for more readability.

max seriously suffers from the strong learning bias intro-
duced by Incremental RL because those newly added ac-
tions would have a relatively low Q-value compared to
those well-learned actions, introducing exploration bias to
the agent. Despite the self-annealing, state-conditional ex-
ploration it maintains, the noisy stream in Noisy Nets could
early converge especially when the search space grows,
which happens in Incremental RL. In the meanwhile, RND
is a curiosity-based exploration strategy, it explores pas-
sively by giving bonus rewards only when novel states are
found, rather than directly taking novel actions. Thus, the
achievement of RND is still based on primitive ones like ϵ-
greedy or Softmax and could not be simply transferred to
Incremental RL. These three aforementioned methods can
barely pass six stages in Expanding World. On the con-
trary, despite the exponential-growing environment, DAE
can solve this nontrivial challenge in near-linear time, i.e.,
76.37% and 73.58% less than retraining and ϵ-greedy (best
baseline), by adaptive exploitation-exploration trade-off and
adaptive action selection of exploration.
Further Analysis In Fig. 5, the desired property of DAE
is also showcased: the adaptive ϵt of the Meta Policy and
the adaptive action selection of the Explorer. We can see
that every time the environment expands, the Meta Policy
Ψ would adaptively assign a higher exploration probabil-
ity for the agent to adapt itself to the new environment (not
only the new states, but the agent would also be more ex-
plorative when in the old states since the value estimation
would have become more uncertain). Moreover, this behav-
ior would converge by yielding lower ϵt when the value
function is not varying anymore. The relative frequencies
of newly-added actions, estimated by the Explorer, are ex-
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Method Mean Median
best final best final

RL Rainbow 5.57 5.02 3.42 2.46

Incremental
RL

Rainbow 3.23 3.23 2.11 2.11

DAE 6.11 6.11 3.97 3.97

Table 1: The normalized scores of Incremental Atari.

tremely low, encouraging the agent to sample more for these
novel actions. Yet, the distribution of the relative frequency
would be near-uniform after the learning of the Explorer i.e.,
greedy actions would still have higher relative frequency,
preventing exploration of these well-learned actions.

Incremental Atari
Here, we provide another benchmark for Incremental RL
based on Atari games (Bellemare et al. 2013) with much
more complex dynamics, leading to more training overhead.
Setup Arcade Learning Environment (ALE) is a platform
that evaluates RL agents with 57 challenging Atari2600
games. In Incremental Atari, we carefully select 14 games
with different levels of difficulty, each of which has 18
meaningful actions, i.e., all actions in ALE. To simulate
the scenario of Incremental RL, only six primitive actions
(NOOP, FIRE, UP, RIGHT, LEFT, DOWN) are initially avail-
able to enable the agent to play the games. The rest 12 ad-
vanced actions are randomly divided into three groups and
added into the environment sequentially (any prior knowl-
edge of masked actions is forbidden to meet the setting of
Incremental RL). Note that besides the action set, the state
set also continually expands as many states need specific ac-
tions to be approached. The number of training frames/steps
is limited to 200M/50M , and each group of random ex-
tra actions will be included after every 50M environment
frames (Hessel et al. 2018). Evaluation will be conducted af-
ter every 1M training steps, where episodic reward averaged
over ten individual games will be recorded. For generality,
NOOP starts regime (Hessel et al. 2018), which inserts 30
NOOP actions before the agent begins acting, is adopted in
testing. We report the mean and median episodic reward of
the best and the last agent by human-random normalization
since different games achieve different levels of rewards.
Baselines With the complicated dynamics of games, we
adopt the state-of-the-art method Rainbow as our base-
lines in Incremental Atari. Rainbow is widely-adopted for
applied-data research (Grigorescu et al. 2020; Zhang, Pa-
tras, and Haddadi 2019; Luong et al. 2019) due to its prac-
tical hardware requirement, which meets the scenario of
Incremental RL in the real world. Rainbow (Hessel et al.
2018) consists of 6 extensions of DQN, combined to jointly
achieve higher performance in RL, one of them is the Noisy
Nets which fails to solve Expanding World in Section . Rain-
bow and Rainbow with the help of DAE are compared in this
benchmark to demonstrate the necessity of DAE.
Quantitative Results Besides Incremental RL, we also in-
clude the performance of the baseline method on conven-
tional RL where all actions are available throughout the

(a) Mean and median human-random normalized rewards are pre-
sented as function of interaction counts with environments.

(b) Four representative games in Incremental Atari, i.e., boxing,
defender, chopper command, and double dunk.

Figure 6: The normalized scores of Incremental Atari.
Grey dashed lines indicate increments on the environments.
For more readability (Hessel et al. 2018), every curve is
smoothed with a moving average of 10.

training, i.e., Rainbow (RL), to demonstrate the exploration
overhead Incremental RL may bring. According to Table 1,
the performance of Rainbow drops by 35.15% under the
setting of Incremental RL, compared to regular RL, show-
ing that conventional exploration strategies cannot properly
adjust the policy effectively as the environment changes. In
the meanwhile, without being downgraded, our method even
outperforms Rainbow (RL) by 22.40%, leading to a 88.76%
performance increase upon Rainbow on Incremental Atari
averagely. Based on the aforementioned results, our method
(DAE) presents the capability of adapting previously learned
agents to new environments and the potential of being an
exploration-efficient algorithm for conventional RL.
Further Analysis In Fig. 6b, we also visualize the learn-
ing process of four representative cases for detailed analy-
sis. In boxing, actions available in the first stage are suffi-
cient for the agent to learn to play the game, while DAE
still achieves the optimal solution faster than the baseline.
In defender, the baseline model barely improves after being
granted more choices of actions because the greedy policy
burdens the exploration process. Contrarily, with the guid-
ance of DAE, the agent explores the novel transitions which
are not possible in previous stages, thus deviating from the
sub-optimal trajectory and re-searching for superior policy.
In chopper command, DAE is able to reach an acceptable
result, while the baseline model fails as all actions are given.
Last, in double dunk, the baseline is stuck in local-optima,
whereas DAE finds a much better solution within limited
training time in stage four where the agent attains the full
action set to play well in this environment. Overall, DAE
efficiently explores the rare transitions, as the environment
changes even in games of various difficulties, demonstrating
the generalizability of our method.

First-Visit Visualization
Besides the two aforementioned Incremental RL bench-
marks, we further evaluate the exploration efficiency of
DAE for general RL via conducting the First-Visit Visual-
ization (Dabney, Ostrovski, and Barreto 2021). These tasks
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Figure 7: First-Visit Visualization. Blue and green areas take
fewer steps to be reached, whereas yellow and red areas take
more times.

show the state coverage of an exploration algorithm and how
quickly it can discover all of the states. Specifically, the
number of steps the agent takes to discover, i.e., first visit,
each state are recorded and visualized into heat maps.
Setup Similar to (Dabney, Ostrovski, and Barreto 2021),
four small-scale hard-exploration environments are
employed, including MountainCar (Sutton and Barto
2018), GridWrold (Dabney, Ostrovski, and Barreto
2021), Labyrinth (Ermolov and Sebe 2020) and Multi-
Room (Chevalier-Boisvert, Willems, and Pal 2018), to
evaluate the state coverage and efficiency.
Baseline The experiments of this section are fully explo-
rative, i.e., ϵ = 1, thus we compare DAE (only the Explorer
is active) with only two value-free baselines, ϵ-greedy and
ϵz-greedy (Dabney, Ostrovski, and Barreto 2021). ϵz-greedy
is another extension of ϵ-greedy, which conducts random ac-
tions under probability ϵ with random duration (rather than
1 step in ϵ-greedy) sampled from a heavy-tailed distribution.
Quantitative Results First, MountainCar is a power-lack
car stuck in a valley, which is a 2D environment with the
position on the x-axis and the car velocity. Available actions
are driving LEFT, RIGHT and NOOP. The goal is to control
the car, build momentum, and climb the hill on the right. In
Fig. 7, vanilla ϵ-greedy fails to achieve the goal of Mountain-
Car (dashed line on the right) within limited steps, while ϵz-
greedy and DAE succeed. Though the advantages of action-
repeating exploration methods in MountainCar, ϵz-greedy
still shows some blind spots that cannot be quickly explored.
Following, GridWorld is a 23 × 23 grid environment with
four actions: move UP, DOWN, LEFT, and RIGHT. The agent
is initially placed on the top-middle of the square and aims to
explore all the states (grids). DAE shows outstanding explo-
ration coverage compared to the other two methods. Similar
to GridWorld, Labyrinth is a 5 × 5 maze. Still, walls block
between grid and grid, and only a few openings exist for
the agent to travel through, making it a trickier environment
than GridWorld to explore. ϵz-greedy shows its drawback of
action repeating, which causes numerous meaningless steps

of hitting walls. Whereas DAE still outperforms by higher
exploration efficiency. Finally, MultiRoom, the most chal-
lenging task, consists of six rooms, and closed doors are to
be opened before the agent can pass through and get to an-
other room. DAE still demonstrates its exploration efficacy
by reaching all six rooms; yet, ϵ-greedy finds only five of
them, and ϵz-greedy barely sees two.

Related Works
Lifelong RL In lifelong RL (Wu, Gupta, and Kochenderfer
2020; Tanaka and Yamamura 1997), the agent must solve
a sequence of dynamically changing tasks. The insight of
this challenge is how the agent can improve the sample effi-
ciency by utilizing common knowledge from previous tasks
and quickly adapt to the upcoming tasks (some earlier ef-
forts (Wang et al. 2019; Wang, Li, and Chen 2019; Wang,
Chen, and Dong 2021) also refer to this line of study as In-
cremental RL). However, in prior works of lifelong RL, the
state and action spaces are fixed throughout the learning pro-
cess. In contrast, Incremental RL discussed in the paper is
answering the question ”how an agent could efficiently learn
new transitions while not forgetting what it has learned?”.
Exploration in RL The exploration methods can be cate-
gorized into reward-free and reward-based methods. In the
line of reward-free, the exploration is reward-independent,
and their drawback of inefficiency could be magnified un-
der Incremental RL. For instance, blind exploration sam-
ples random actions, which cannot avoid redundant sam-
pling. Intrinsically-motivated explorations passively grant
extra rewards to transitions that find rare states and can-
not be solely adopted without other exploration methods. In
another line of reward-based methods, neither randomized
action-selection methods nor optimism-based methods can
resist the learning bias introduced by Incremental RL since
these methods explore the environment based on the value
estimation. Consequently, newly involved actions would be
greatly ignored by the methods above and could lead to
the failure to adapt to new environments. Furthermore, the
works mentioned above assume learning the policy from the
environment with fixed-yet-known action and state sets. In
contrast, without the dependency on Q-value, DAE can ef-
ficiently explore more in states with uncertain value estima-
tion and discover novel transitions by taking the least-tried
actions, which are usually worth trying under Q-learning, for
the changes in the new environments.

Conclusions
This paper introduces a new challenge of RL, i.e., Incremen-
tal RL, with continually expanding state and action spaces.
When the search space increases, retraining is computation-
ally infeasible. Thus, we further formulate Incremental RL
as a hard exploration problem under strong learning bias and
propose a novel algorithm named Dual-Adaptive ϵ-greedy
Exploration (DAE) to reduce the exploration overhead. In
addition, a new testbed with two benchmarks is provided to
evaluate potential works for Incremental RL fairly. Exten-
sive experiments demonstrate the stated advantage of DAE
compared to the eight baselines examined.

7393



Acknowledgments
This work is in part supported by MOST Project No. 111-
2221-E-002-135-MY3 and No. 111-2223-E-002-006, Tai-
wan.

References
Abel, D.; Jinnai, Y.; Guo, S. Y.; Konidaris, G.; and Littman,
M. 2018. Policy and value transfer in lifelong reinforcement
learning. In ICML.
Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the atari human benchmark. In ICML.
Baker, B.; Kanitscheider, I.; Markov, T.; Wu, Y.; Pow-
ell, G.; McGrew, B.; and Mordatch, I. 2019. Emergent
tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253–279.
Bridle, J. 1989. Training stochastic model recognition algo-
rithms as networks can lead to maximum mutual informa-
tion estimation of parameters. NeurIPS, 2.
Brunskill, E.; and Li, L. 2014. Pac-inspired option discovery
in lifelong reinforcement learning. In ICML.
Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2018.
Exploration by random network distillation. arXiv preprint
arXiv:1810.12894.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Min-
imalistic gridworld environment for openai gym. https:
//github.com/maximecb/gym-minigrid. Accessed: 2023-3-
17.
Dabney, W.; Ostrovski, G.; and Barreto, A. 2021.
Temporally-Extended ε-Greedy Exploration. In ICLR.
Ermolov, A.; and Sebe, N. 2020. Latent World Models
For Intrinsically Motivated Exploration. arXiv preprint
arXiv:2010.02302.
Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Hessel, M.;
Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.;
et al. 2018. Noisy Networks For Exploration. In ICLR.
Grigorescu, S.; Trasnea, B.; Cocias, T.; and Macesanu, G.
2020. A survey of deep learning techniques for autonomous
driving. Journal of Field Robotics, 37(3): 362–386.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on im-
agenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, 1026–1034.
Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Os-
trovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI.
Hu, J.; Jiang, S.; Harding, S. A.; Wu, H.; and Liao, S.-
w. 2021. Rethinking the implementation tricks and mono-
tonicity constraint in cooperative multi-agent reinforcement
learning. arXiv preprint arXiv:2102.03479.

Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Camp-
bell, R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Koza-
kowski, P.; Levine, S.; et al. 2019. Model-based reinforce-
ment learning for atari. arXiv preprint arXiv:1903.00374.
Kiran, B. R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab,
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