
c-NTPP: Learning Cluster-Aware Neural Temporal Point Process

Fangyu Ding1, Junchi Yan1∗, Haiyang Wang2

1 Department of Computer Science and Engineering and MOE Key Lab of AI, Shanghai Jiao Tong University
2 Ant Group, Hangzhou, China

{arthur 99, yanjunchi}@sjtu.edu.cn, chixi.why@mybank.cn

Abstract

Event sequences in continuous time space are ubiquitous
across applications and have been intensively studied with
both classic temporal point process (TPP) and its recent deep
network variants. This work is motivated by an observation
that many of event data exhibit inherent clustering patterns
in terms of the sparse correlation among events, while such
characteristics are seldom explicitly considered in existing
neural TPP models whereby the history encoders are often
embodied by RNNs or Transformers. In this work, we pro-
pose a c-NTPP (Cluster-Aware Neural Temporal Point Pro-
cess) model, which leverages a sequential variational autoen-
coder framework to infer the latent cluster each event belongs
to in the sequence. Specially, a novel event-clustered attention
mechanism is devised to learn each cluster and then aggre-
gate them together to obtain the final representation for each
event. Extensive experiments show that c-NTPP achieves su-
perior performance on both real-world and synthetic datasets,
and it can also uncover the underlying clustering correlations.

1 Introduction
Temporal point process (TPP) (Rubin 1972; Hawkes 1971)
has been a popular and principled tool for modeling and pre-
dicting event sequence data in continuous time space, e.g.
user behavior sequences on social media platforms (Zhou,
Zha, and Song 2013), asset management (Yan et al. 2013),
personalized healthcare records (Choi et al. 2015), high fre-
quency financial transactions (Bacry and Muzy 2014) and
earthquake records (Ogata 1998). Inside the event sequence,
various types of asynchronous events often exhibit com-
plex dependencies on their history (Wu et al. 2018), making
events modeling even challenging.

With the development of deep learning, the so-called
neural temporal point process (NTPP) models (Xiao et al.
2017b,a) have been intensively devised for their high ca-
pacity for complex event sequence modeling. Popular neu-
ral backbones for sequential data are used in NTPP which
often serve as encoders to capture the history, e.g. the re-
current neural networks (RNNs) (Du et al. 2016; Mei and
Eisner 2017; Omi, Aihara et al. 2019; Shchur, Biloš, and

∗Correspondence author is Junchi Yan who is also affiliated
with Shanghai AI Laboratory, Shanghai, China.
Copyright c© 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Günnemann 2020), and attention mechanisms including the
Transformer (Zhang et al. 2020; Zuo et al. 2020). On the
other hand, a decoder is used to model the probability distri-
bution of the occurrence time and type of the next event.

In this paper, we tend to make an (arguable) observation
that many real-world event data often show inherent sparsity
in terms of correlation or causality over the events, which
can also be recognized from the event clustering perspec-
tive i.e. the correlations are within each cluster. Certainly,
such observation has been also implicitly or explicitly used
in literature. For example, the classic and widely adopted
Hawkes process (Hawkes 1971) (also known as the self-
exciting process) often uses a fast time decay kernel e.g. ex-
ponential kernel to model the dynamics of event sequence,
which in fact exhibits a sparse influence on the current event
from the history events. In practice, the sequence data is of-
ten not segmented based on the detection of large time in-
tervals and subsequences, which also leads to sparse depen-
dencies among events. In fact, sparsity is a ubiquitous nature
in many areas, and it also has been widely adopted as an in-
ductive bias not only to fit the data but also to mitigate the
illness of model learning as a regularizer (Zhou, Zha, and
Song 2013). Despite the recent efforts to such sparsity cor-
relation pattern in the domain of time series (contrastively
in the discrete time domain) with deep networks (Li et al.
2019; Zhou et al. 2021) especially for the Autoformer (Xu
et al. 2021) that leverages a decomposition method based
on the Auto-Correlation mechanism, little attention has been
paid to event data, especially from the NTPP perspective. In
fact, the currently dominant backbones used in NTPP like
RNN (Du et al. 2016) or Transformer (Zuo et al. 2020) pro-
vide no tailored scheme to capture the sparsity (if there is).

To capture the possible clustering of event influence, we
propose a novel representation learning framework for event
sequence, namely Cluster-Aware Neural Temporal Point
Process (c-NTPP). We decompose an event sequence into
different little correlated clustered subsequences in the man-
ner of sequential variational inference (Chung et al. 2015). A
discrete sequential variational autoencoder (SVAE) is lever-
aged to infer the latent cluster each event belongs to through
its encoder and decompose the event sequence into differ-
ent clusters. As for the SVAE decoder part, with the latent
clusters inferred, we formulate the probabilistic model for
the decomposed temporal point process (DTPP) which is an

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7369

analog to the reconstruction probability of a VAE. Moreover,
unlike the recurrent units or global attention used to model
the history events in existing NTPP models, we propose an
event-clustered attention mechanism to get an augmented
representation for each event based on each cluster.

The contributions of the paper are summarized as follows:
• To the best of our knowledge, we are the first to propose

a deep event clustering strategy for TPP with SVAE.
• Based on the inferred latent clusters for events, we de-

velop an event-clustered attention mechanism to im-
prove the event sequence representations learning and
also its interpretability, especially for the common event-
clustered sequences e.g. the Hawkes process.
• Extensive experiments show the expressiveness of our

proposed c-NTPP and the soundness of event clustering.
Further discussion. We give comments on its connection

to related techniques and open problems beyond this paper.
1) Difference between sparse Transformer models (Zhou

et al. 2021; Xu et al. 2021): In addition to the difference in
the research area (time series v.s. temporal point process)
and inner mechanisms (e.g. Autoformer’s Auto-Correlation
v.s. our sequential variational inference), it is worth noting
that our c-NTPP is not a sparse Transformer model to reduce
the computational complexity of Transformer architecture.
We aim at a more expressive TPP representation learning
which captures the sparsity of event sequences from the per-
spective of event clustering.

2) Handling dense and even correlation: In cases when
the maximum number of clustering K = 1, the clustering
structure does not exist, and then our model exactly degen-
erates to the THP (Zuo et al. 2020). In another word, THP is
a special case of our proposed model.

3) The relation among event types: In line with many peer
methods (Zuo et al. 2020), such relations are not specially
treated in this paper, though some other works (Zhou, Zha,
and Song 2013) pay more attention to this regard. We be-
lieve incorporating such type-level correlation sparsity into
our model may be nontrivial which we leave for future work.

2 Preliminaries and Related Works
Before diving into details, we first introduce some prelimi-
naries to facilitate the presentation of our approach.

2.1 Temporal Point Process
A TPP can be represented as a counting process N(t) which
counts the number of events that happened until time t.
Given a sequence of events at times {ti}Li=1, the TPP can be
characterized by the conditional intensity function λ(t|Ht)
reflecting the probability of the occurrence of an event in
[t, t+ dt) conditioned on the historyHt:

λ(t|Ht)dt = P(N(t+ dt)−N(t) = 1|Ht), (1)

where the notation of conditional intensity λ(t|Ht) is often
simplified to λ∗(t). The density can be derived as:

p∗(t) = λ∗(t) exp

(
−
∫ t

ti−1

λ∗(τ)dτ

)
. (2)

A multi-dimensional TPP (MTPP) also considers the
event type (a.k.a marker) of each event, each type m has a
conditional intensity function λ∗m(t) accordingly, they sum
up to the total intensity λ∗(t).

Given the event sequence X = {xi}Li=1 of length L,
where xi = (ti,mi) represents the i-th event, ti ∈ [0, T]
is the timestamp and mi ∈ {1, ...,M} is the marker, the
MTPP can be learned via Maximum Likelihood Estimation
(MLE). The log-likelihood of the sequence X over the time
span [0, T] is given by (Zhang et al. 2020):

L =
L∑
i=1

log λ∗mi
(ti)−

∫ T

0

λ∗(τ)dτ. (3)

2.2 Variational Autoencoder
A Variational Autoencoder (VAE) (Kingma and Welling
2013) is a generative model comprising of two parts: an
inference sub-model and a generative sub-model. The in-
ference part is an probabilistic encoder modeling the pos-
terior distribution q(z|x) and maps the observed variables
x to the latent variables z which approximate a prior p(z).
The generative part is a probabilistic decoder modeling the
likelihood p(x|z) and reconstructs the visible variables x
given the latent variables z. A VAE model could either use
a continuous prior (Kingma and Welling 2013) or a discrete
prior (Van Den Oord, Vinyals et al. 2017). The VAE model
can be efficiently trained by optimizing the evidence lower
bound (ELBO) of log p(x):

log p(x) ≥ Ez∼q(z|x)[log p(x|z)]− KL(q(z|x)‖p(z))

= L(q),
(4)

The ELBO objective consists of an expectation item which
is often approximated by sampling methods, and a KL di-
vergence item which often has an analytic (Kingma and
Welling 2013) or approximated (Nalisnick and Smyth 2016;
Joo et al. 2020) solution.

2.3 Temporal Point Process Clustering
There are existing sequence clustering works and event clus-
tering works discussing the clustering problem under the
context of the temporal point process.

Sequence clustering aims at distinguishing the event se-
quences with different temporal patterns. For instance, the
works (Wu et al. 2022; Xu and Zha 2017; Zhang et al. 2022)
learn mixture models by reinforcement learning or mean-
field variational inference to infer the latent clusters for event
sequence clustering.

The topic of our cluster inference method belongs to event
clustering. Unlike sequence clustering where different se-
quences are independent of each other, for event clustering,
the goal is to cluster events in a sequence and there are com-
plex dependencies among different events. We only iden-
tify (Yang and Zha 2013) which exactly shares the same
TPP cluttering problem setting with ours, which leverages
the mixture of the Hawkes process to model the influences
among different events. Meanwhile, there exists other event
clustering works, yet they all differ from our setting. The
work (Li et al. 2014) is tailored to the online search setting,

7370

and additional text content information about the query is
heavily explored (e.g. topic model) to achieve query clus-
tering and user intention understanding. While our approach
is purely based on time-stamp and marker. Moreover, our
method is neural while (Li et al. 2014) still relies on the
Hawkes process assumption which is questionable in many
real-world cases as evidenced by previous works (Du et al.
2016; Omi, Aihara et al. 2019). The work (Kim et al. 2017)
devises a topic model to do robust recommendation against
missing observations (the ‘silence’ problem), different top-
ics represent different temporal patterns of user behavior.
However, in (Yang and Zha 2013) and ours, the temporal
patterns (generating process) of different clusters are shared
but events in different clusters are weakly correlated.

3 The Proposed Model
In this section, we introduce our Cluster-Aware Neural Tem-
poral Point Process (c-NTPP) for the modeling of event se-
quences. More specifically, we infer the latent cluster each
event belongs to and propose a probability model for the de-
composed (clustered) event sequence. We provide a sequen-
tial variational autoencoder (SVAE) framework for end-to-
end learning and an event-clustered attention mechanism to
learn more expressive hidden representations for each event.

3.1 Cluster Inference for Events
We start by introducing some notations and the problem def-
inition. Given an event sequence X = {xi}Li=1, our goal is
to infer the latent variables Z = {zi}Li=1 corresponding to
each event, where each zi is a discrete 1-of-K vector repre-
senting the latent cluster event xi belongs to, i.e. zik = 1 iff
event xi belongs to the k-th cluster, and K is the predefined
maximum cluster number. Each zi is drawn from a Categor-
ical posterior distribution parameterized by πqi learned from
sequential information with a sequence-to-sequence model.

In line with the NTPP models, we first obtain the hidden
representations for each event as:

ei = EventEmb(xi),

h1:L = Seq2Seq(e1:L),
(5)

where we adopt the same design as the Transformer Hawkes
Process (THP) for our event embedding module EventEmb
and sequential encoder module Seq2Seq.

With the event embeddings and hidden representations
obtained, under the SVAE framework, we formulate the pos-
terior q(zi|x≤i) and prior p(zi|x<i) for each event as:

πqi = ϕq(ei,hi−1), (6)

πpi = ϕp(hi−1), (7)

q(zi|x≤i) = CategoricalK(πqi), (8)

p(zi|x<i) = CategoricalK(πpi), (9)

where ϕq and ϕp can be any flexible functions computing
the posterior and prior distribution parameters πqi and πpi
for each event. In c-NTPP, these two functions are given by:

πqi = softmax(Wq(ei + hi−1) + bq), (10)

πpi = [1/K, . . . , 1/K]>, (11)

Figure 1: Workflow of the proposed c-NTPP. Under the
SVAE framework, a sequential encoder Seq2Seq learns the
representations hi (with self-attention mechanism consistent
with THP) and ci (with the event-clustered attention mech-
anism proposed in Sec. 3.3) for each event xi in a sequence.
The parameters πq1:L for the posterior and πp1:L for the prior
are obtained as described in Sec. 3.1. With the sampled latent
Z(n)’s from the posterior q(Z|X), the likelihood p(X|Z(n))
used in the decoder of the SVAE is given by the likelihood of
decomposed TPP (DTPP) in Sec. 3.2. The training objective
of c-NTPP is the ELBO of SVAE, as discussed in Sec. 3.4.

where ϕq is a learnable function implemented with a linear
transformation (parameterized by Wq and bq) followed by
a softmax operation; and ϕp is a constant function for a uni-
form prior.

Therefore, the posterior q(Z|X) and prior p(Z) for the
entire sequence of length L are:

q(Z|X) =
L∏
i=1

CategoricalK(πqi), (12)

p(Z) =
L∏
i=1

CategoricalK(πpi). (13)

3.2 Likelihood of Decomposed TPP
With each event’s latent cluster identity inferred, an event se-
quence can be decomposed into K disjoint clusters. We de-
note the k-th cluster as Xk = {xi}i∈Ck

, where Ck is event
identity set of the k-th cluster. Given a cluster inference re-

7371

sult Z = {zi}Li=1, based on the independent assumption
that different clusters are weakly correlated, the conditional
probability of such a TPP decomposition can be modeled as
the product of the probabilities of K clusters:

p(X|Z) =
K∏
k=1

p(Xk), (14)

which is the conditional probability of the observed se-
quence X given the cluster inference result Z and the
posterior distribution parameters {πqi }Li=1. The substitution
λ∗
k(ti)
λ∗(ti)

= πqik can be made to avoid modeling the conditional
intensity function λ∗k for K clusters respectively, and to re-
duce the complexity of the cluster inference task byK times.
Eq.14 can be further derived as:

p(X|Z) =
K∏
k=1

p(Xk)

=
K∏
k=1

[
exp

(
−
∫ T

0

λ∗k(τ)dτ

) ∏
i∈Ck

λ∗k(ti)

]

=

[
K∏
k=1

exp

(
−
∫ T

0

λ∗k(τ)dτ

)][
K∏
k=1

∏
i∈Ck

λ∗k(ti)

]

= exp

(
−
∫ T

0

λ∗(τ)dτ

)
L∏
i=1

K∏
k=1

[λ∗k(ti)]
zik

= exp

(
−
∫ T

0

λ∗(τ)dτ

)
L∏
i=1

K∏
k=1

[λ∗(ti)π
q
ik]
zik

=

[
exp

(
−
∫ T

0

λ∗(τ)dτ

)
L∏
i=1

λ∗(ti)

][
L∏
i=1

K∏
k=1

πqik
zik

]
,

(15)
the conditional probability p(X|Z) in Eq. 15 also serves as
the likelihood function under our SVAE framework and it
turns out to be a multiplication of a traditional TPP likeli-
hood term of Eq.2 and a

∏L
i=1

∏K
k=1 π

q
ik
zik term. By opti-

mizing the ELBO objective in Sec.3.4, the two terms form
a self-modulating structure as jumps of the TPP likelihood
indicate the occurrence of outlier events and the changes of
the cluster property, which lead to a prediction guided latent
inference of πqi . We leave out the marker information for
notation conciseness.

As a decoder of the hidden representations, the condi-
tional intensity function λ∗ can be any highly flexible func-
tion. We use a neural network (NN) decoder in c-NTPP:

λ(t|hi) = Softplus(NN(Φ(t− ti) + hi)), (16)
where the time encoding function Φ adopts the same design
in (Zuo et al. 2020), encoding the interval t − ti, and the
softplus function ensures the intensity value positive.

We compute the non-event log-likelihood
∫ ti
ti−1

λ∗(τ)dτ

by Monte Carlo integration (Robert and Casella 1999).

3.3 Event-Clustered Attention Mechanism
To deal with the potential sparsity in event sequence data and
learn more expressive event representations, we propose the

event-clustered attention mechanism based on the decom-
posed TPP obtained above. Unlike the baselines regarding
the history as a whole, we take advantage of the decomposed
clusters according to a cluster inference result Z for the rep-
resentation learning for each event. The architecture of the
event-clustered attention mechanism is shown in Fig. 2.

The input of an event-clustered attention layer is a target
event information h

(l−1)
i and the history information of each

cluster {Hik}Kk=1, where Hik = {h(l−1)
j }j∈Ck∧j≤i, when

l = 1, i.e. for the first layer, the inputs are just the event
embeddings. For each cluster k, we first obtain the ‘query’,
‘key’ and ‘value’ according to the self-attention mechanism:

qi = h
(l−1)
i WQ, Kik = HikWK , Vik = HikWV ,

(17)
where WQ, WK and WV are the weight matrices, Hik is
the matrix version of Hik (i.e. the history event representa-
tion set of cluster k).

In line with the self-attention mechanism, we then obtain
the influence from the history information of the k-th cluster
for the i-th event as:

cik = Attn(qi,Kik,Vik). (18)

The final event-clustered representation ci is obtained by
aggregating these K representations corresponding to each
cluster with a certain aggregator AggK (e.g. mean aggrega-
tor, attention aggregator, etc.):

ci = AggK({cik}Kk=1). (19)

where we adopt the design of the AttSets (Yang et al. 2020)
for the attention aggregator in our work.

Under the SVAE framework, we could have N clus-
ter inference results sampled from the posterior, i.e.
∀n ∈ {1, . . . , N},Z(n) ∼ q(Z|X), we can learn N event-
clustered representations {c(n)i }Nn=1 for each event, we ag-
gregate them again with aggregator AggN and obtain the
final event-clustered representation:

ci = AggN ({c(n)i }
N
n=1), (20)

in practice, we can avoid the design of AggN by setting the
sample number N = 1.

Finally, by combining the representations hi and ci to-
gether (there are other possible ways such as averaging, at-
tentive aggregation, and concatenation. We use adding by
simplicity), the representation hi obtained from the sequen-
tial model Seq2Seq (Eq. 5) for each event xi is augmented
by the event-clustered representation ci:

hi := hi + ci, (21)

where hi and ci can be obtained from the same Seq2Seq
encoder. We do not use additional parameters for ci except
for the attention aggregators in the event-clustered attention
mechanism. WhenK = 1, c-NTPP degenerates to THP with
global attention and all the history events belong to a single
cluster.

7372

Figure 2: The event-clustered attention mechanism for TPP
modeling where the event sequence is decomposed into K
clusters according to a cluster inference result Z. For each
event, K number of representations cik are learned for each
cluster and then aggregated to the final representation ci.

3.4 End-to-End Gradient-Based Training
As shown in Fig. 1, our proposed c-NTPP is trained under
the SVAE framework and the training objective is the ELBO
(as described in Eq. 4). Based on the definitions of our pos-
terior Eq. 12 and prior Eq. 13, the KL divergence item in the
ELBO can be derived as:

KL[q(Z|X)‖p(Z)] =
L∑
i=1

K∑
k=1

πqik log
πqik
πpik

. (22)

Using Monte Carlo expectation and taking N samples of
the latent variables Z(n) ∼ q(Z|X), the ELBO is approx-
imated as below and can be end-to-end learned under the
SVAE framework via gradient descent:

L(q) =
1

N

N∑
n=1

log p(X|Z(n))− KL[q(Z|X)‖p(Z)]. (23)

The procedure of a forward pass of c-NTPP on an event
sequence is shown in Alg. 1. The input is the event se-
quence X = {xi}Li=1. After the phases of cluster inference,
sampling of latent Z(n), representation augmentation with
the event-clustered attention mechanism, and computation
of the training objective ELBO, the output is the represen-
tations of the events {hi}Li=1, the probabilities each event
belongs to each cluster {πqi }Li=1, and the ELBO training ob-
jectiveL. The modules in c-NTPP can be end-to-end learned
under the SVAE framework via gradient descent.

4 Experiments
Experiments are conducted on both synthetic and real-world
datasets. Evaluation metrics include fitting likelihood and
predictive performance for representation learning and its
ability in terms of latent cluster inference. Ablation stud-
ies are also performed to compare our proposed event-
clustered attention mechanism and its alternative aggrega-
tion schemes. We further analyze the latent cluster inference
result on our synthetic datasets which have latent clusters.

Algorithm 1: The forward pass of c-NTPP.
Input: The event sequence X = {xi}Li=1.
Parameter: The maximum cluster number K. The sam-
pling times number N .
Output: The representations {hi}Li=1. The latent cluster
distributions {πqi }Li=1. The ELBO training objective L.

1: e1:L = EventEmb(x1:L);
2: h1:L = Seq2Seq(e1:L);

// Cluster inference
3: πq1:L = ϕq(ei,hi−1);
4: πp1:L = ϕp(hi−1);

// Latent cluster sampling
5: for n = 1,. . . ,N do
6: Z(n) = z

(n)
1:L ∼ CategoricalK(πq1:L);

7: end for
// Event-clustered augmented representations

8: for n = 1,. . . ,N do
9: c

(n)
1:L = Seq2SeqEC(X,Z(n));

10: end for
11: h1:L = h1:L + AggN ({c(n)1:L}Nn=1);

// DTPP likelihood
12: for n = 1,. . . ,N do
13: p(X|Z(n)) =

∏L
i=1 π

q

i,z
(n)
i

λ∗(ti) exp(−
∫ T
0
λ∗(τ)dτ)

14: end for
// The ELBO training objective

15: L = 1
N

∑N
n=1 log p(X|Z(n))− KL[q(Z|X)‖p(Z)]

16: return {hi}Li=1, {πqi }Li=1, L

4.1 Datasets and Protocols
1) SYN. A synthetic dataset simulated by the open-source
library Tick (Bacry et al. 2017). We simulate a 2-D Hawkes
process whose conditional intensity function is specified by
λm(t) = µm +

∑
ti<t

αmmi
β exp(−β(t − ti)) where we

set the base intensities µ0 = µ1 = 1
300 , the kernel intensi-

ties α00 = α11 = 0.5, α01 = α10 = 0.1 and the decays
β = 0.5. The time window is set as T = 100 for each se-
quence. We construct SYN dataset by randomly selecting
event sequence pairs and mixing them together to get inde-
pendent subsequences (clusters) in each record.
2) FIN. The financial dataset (Du et al. 2016) contains high-
frequency transaction records collected from NYSE for a
stock in one day, with 0.7 million transactions. Each trans-
action contains the timestamp (in milliseconds) and possible
action (buy/sell). The input data is a single long sequence
and we cut it into pieces for training and testing. The action
type is a marker and we predict when an action occurs.
3) MMC. MIMIC II (Saeed et al. 2002) collects de-
identified clinical visit records of ICU patients for 7 years.
Each patient has a sequence of hospital visit events record-
ing the timestamps and their disease types. It contains 75
disease types as event markers.
4) RET. The Retweets dataset (Zhao et al. 2015) contains
sequences of tweets. Each sequence contains an origin tweet
(i.e., a user initiates a tweet), and a subsequent stream of

7373

Encoder #layers Decoder

RMTPP RNN 2 EXP
NHP RNN 2 HP
FullyNN RNN 2 NN
SAHP TFM 4 HP
THP TFM 4 NN
c-NTPP-n VTFM 4 NN
c-NTPP VTFM-EC 4 NN

Table 1: Model architecture comparison.

retweets. The timestamps and the user types are recorded,
and the users are grouped into three categories based on the
number of their followers: “small”, “medium”, and “large”.
5) SO. The StackOverflow dataset (Paranjape, Benson, and
Leskovec 2017) contains two years of user awards on the
question-answering website. Each user received a sequence
of badges (of 22 different types) and the reward history of
each user is treated as the event sequence.

4.2 Compared Models
The compared models are the state-of-the-art baselines and
several variants of our proposed c-NTPP. We summarize the
differences between these TPP models in terms of the en-
coder and the decoder architectures in Tab. 1, the column of
‘Encoder’ refers to the Seq2Seq module used to obtain the
representations of the events, the column of ‘# layers’ refers
to the layer number of the encoders, and the column of ‘De-
coder’ refers to the form of the conditional intensity function
which decodes the representations of the events. The ‘HP’
decoders refer to the intensity forms designed similar to that
of the Hawkes process.
1) RMTPP (Du et al. 2016) uses RNN to encode the his-
tory information from past events, and uses an exponential
function as the decoder to model the conditional intensity.
2) NHP (Mei and Eisner 2017) uses a continuous-time
LSTM to model self-modulating Hawkes processes and can
get a continuous-time representation for imitating.
3) FullyNN (Omi, Aihara et al. 2019) models the cumulative
intensity function (i.e.

∫ t
ti−1

λ∗(τ)dτ) with a neural network
monotonic increasing for t and takes advantage of the auto-
grad mechanism of deep learning frameworks to obtain the
conditional intensity function.
4) SAHP (Zhang et al. 2020) uses the self-attention mech-
anism to develop a sequential encoder for TPP and models
the intensity similar to the form of the Hawkes process.
5) THP (Zuo et al. 2020) leverages the Transformer encoder
for TPP representation learning. In the original work, the in-
tensity is parameterized by only one linear layer, which re-
sults in an intensity monotonic with time. Here we replace it
with a 2-layer NN decoder, which is a more general decoder
and also consistent with our c-NTPP model.
6) c-NTPP-n is c-NTPP with no event-clustered attention
mechanism, i.e. without the augmentation in Eq. 21. A clas-
sic Transformer encoder (global attention) is leveraged to
learn the posterior, prior, and intensity under the SVAE

Datasets SYN FIN MMC RET SO

RMTPP 3.114 - 4.535 8.995 3.756
NHP 3.025 1.387 2.659 8.256 3.019
FullyNN 2.714 1.346 2.902 8.015 2.939
SAHP 2.593 1.297 2.652 7.270 2.831
THP 2.597 1.326 2.596 7.419 2.851

c-NTPP-n 2.610 1.195 2.665 7.379 2.571
c-NTPP-m 2.558 1.173 2.138 7.400 2.551
c-NTPP-a 2.557 1.180 2.178 7.234 2.692

Table 2: Negative log-likelihood per event on synthetic and
real-world datasets. ‘-’ denotes the model fails to converge.

framework, we abbreviate this encoder as VTFM (varia-
tional transformer) in Tab. 1.
7) c-NTPP is our proposed model, whose encoder is a
VTFM equipped with the event-clustered attention mecha-
nism, we abbreviate it as VTFM-EC in Tab. 1. We further
compare the performance of the mean AggK (c-NTPP-m)
versus the attention AggK (c-NTPP-a).

4.3 Training Details
In general and without fine-tuning or cherry picking, we uni-
formly set the hidden size to 64 in RNN encoders, the model
dimension to 64, the feedforward network dimension to 128,
and the number of attention heads to 4 in Transformer en-
coders. The number of layers is set to 2 for RNN encoders
and 4 for Transformer encoders. Batch size is set to 16 and
SVAE sample number N is set to 1. The number of maxi-
mum clusters is pre-defined as 4. We set the dropout rate as
0.1. The random seed is fixed to 42 for reproducible results.

We use Adam optimizer with a learning rate of 0.0001 for
training. All the experiments run on a single RTX-2080Ti
(11GB) GPU, we cut the long sequences to a maximum se-
quence length of 128 to avoid the GPU memory overflow.
The pre-processing and the train-val-test split details of the
datasets are consistent with previous works (Mei and Eisner
2017; Zuo et al. 2020), the validation datasets are used to
find the optimal number of epochs to train on the training
datasets, which alleviates the overfitting problem.

4.4 Log-Likelihood Evaluation
In line with the recent TPP learning works (Mei and Eis-
ner 2017; Zhang et al. 2020; Zuo et al. 2020), we first use
the per-event negative log-likelihood (NLL) as the metric
for event sequence fitting (the lower the better).

We use the total conditional intensity learned from our
proposed c-NTPP to obtain the NLL although we use the
ELBO objective for training under the SVAE framework.

Tab. 2 reports the per-event NLL of these models on each
test set, we can see that c-NTPP outperforms other base-
lines and c-NTPP-n by large margins, which demonstrates
the expressiveness of the event-clustered attention mecha-
nism on the TPP sequence data compared to the global atten-
tion mechanism used in SAHP, THP and c-NTPP-n as well
as the RNN encoders used in RMTPP, NHP and FullyNN.

7374

Algorithm 2: Median Absolute Deviation (MAD) to detect
outliers and reduce the impact of huge time intervals.
Input: the time interval sequence seq = [∆t1, . . . ,∆tL].
Parameter: the scaling factor n.
Output: indices of the outliers in sequence.

1: median = median(seq)
2: mad = mean(abs(seq - median))
3: indices = find(abs(seq - median) > n ×mad)
4: return indices

4.5 Predictive Ability Analysis
For prediction, based on the conditional intensity function
λ(t|hi) computed from the representation hi of the i-th
event, the next event time prediction can be given by:

t̂i+1 =

∫ ∞
ti

t · p(t|hi)dt, (24)

where the conditional density function p(t|hi) is calculated
from the conditional intensity function λ(t|hi) by Eq. 2. The
integration is computed by Monte Carlo integration. To ob-
tain a more reasonable prediction error evaluation, in a simi-
lar spirit to the filtering techniques in literature, we in this
paper pay attention to those large time intervals between
events e.g. in the Retweets dataset which are very difficult to
predict as they are often rare events for existing TPP mod-
els. Hence the prediction metric is computing by excluding
these long interval events which is fulfilled by our devised
median absolute deviation (MAD) algorithm in Alg. 2 with
the scaling factor n = 10.

Note that as we cannot sample to infinity, the integration
upper limit in Eq. 24 by Monte Carlo integration is set to
ti added by twice the average of filtered time interval val-
ues 2∆t on the training set in substitution for infinity. The
median absolute deviation is applied for all datasets.

Note that although the prediction of these events are not
counted in the performance evaluation, these events are still
included in the training process and also as the input of the
prediction model. This is a mask scheme for evaluation and
inherently has nothing to do with data pre-processing for
both training and prediction.

The next event marker prediction is:
m̂i+1 = arg max

m∈{1,...,M}
λm(t̂i+1|hi), (25)

where t̂i+1 is the predicted timestamp for next event and
the subscript m refers to the discrete marker value in
{1, . . . ,M} (Note the difference from the cluster subscript k
in Sec. 3.2). The evaluation metric is Root Mean Square Er-
ror (RMSE) for event time prediction and accuracy for event
marker prediction. The results are summarized in Tab. 3 and
Tab. 4, showing that our three c-NTPP models outperform
the baselines on the event prediction tasks.

4.6 Ablation Studies
Results in Tab. 2, 3 and 4 show that c-NTPP-m and c-
NTPP-a both stably outperform the baselines (including c-
NTPP-n) except for the RMSE on Retweets dataset, which

Datasets SYN FIN MMC RET SO

RMTPP 1.532 - 5.658 96.52 9.125
NHP 1.528 11.38 5.539 94.98 8.889
FullyNN 1.519 11.35 5.512 95.62 8.661
SAHP 1.591 11.37 5.579 93.35 8.757
THP 1.517 11.35 5.510 93.03 8.624

c-NTPP-n 1.521 11.36 5.519 91.86 8.650
c-NTPP-m 1.516 11.35 5.506 92.42 8.661
c-NTPP-a 1.513 11.35 5.503 92.71 8.541

Table 3: RMSE of next event time prediction.

Datasets SYN FIN MMC RET SO

RMTPP 51.13 51.54 40.11 49.08 41.86
NHP 50.87 59.16 45.15 46.43 41.85
FullyNN 53.50 61.73 49.33 52.58 42.47
SAHP 75.26 62.55 57.46 59.15 43.15
THP 75.26 62.55 59.88 58.89 42.95

c-NTPP-n 75.26 62.63 59.88 58.59 43.23
c-NTPP-m 75.26 62.59 73.25 58.56 43.86
c-NTPP-a 75.26 62.61 69.18 59.13 43.51

Table 4: Next event marker prediction accuracy comparison.

demonstrates the expressiveness of our event-clustered at-
tention mechanism compared to the global attention mech-
anism used in c-NTPP-n and THP. Besides, c-NTPP-n and
THP again show competitive performance, indicating the ar-
chitecture of Transformer encoders used in c-NTPP-n and
THP are of similar expressiveness.

4.7 Latent Cluster Inference Analysis
We construct two synthetic datasets to evaluate the cluster-
ing ability of our method. One is directly concatenate two in-
dependent sequences without overlapping, while the other is
with overlapping. The sequences are generated the Hawkes
process used in the SYN dataset in Sec. 4.1.
1) SEP. We simulate 5,000 event sequences by the Hawkes
process and randomly select 2,500 pairs of event sequences.
Each event sequence in the separated (SEP) dataset is con-
structed by concatenating the latter sequence in each pair af-
ter the former one, and the timestamp of each event in the lat-
ter sequence is added by the ‘10x’ time span 10×T = 1000
for the Hawkes process simulation.
2) OVL. The overlapped (OVL) dataset does not modify the
timestamps in the two event sequences. It just mixes them
together and then sorts the resulting sequence by the times-
tamp. OVL is the same as SYN used in the event modeling
and prediction experiments.

Fig. 3 visualizes the latent cluster inference result, where
the inferred cluster for event xi is obtained by:

k̂i = arg max
k∈{1,...,K}

πqik, (26)

where the πqi is the posterior distribution parameter as de-
scribed in Eq. 6, which represents the cluster assignment

7375

0 5 10 15 20 25

0

5

10

15

20

(a) SEP Ground Truth
0 5 10 15 20 25

0

5

10

15

20

(b) SEP Inference

0 5 10 15 20 25

0

5

10

15

20

(c) OVL Ground Truth
0 5 10 15 20 25

0

5

10

15

20

(d) OVL Inference

Figure 3: Latent cluster inference with c-NTPP(-a) on SEP
and OVL. Each row denotes an event sequence in the
datasets. The colors indicate which cluster the events belong
to and the black region is the padding positions for each
event sequence. The left plots are the ground truths of the
SEP and OVL datasets respectively; the right plots are the
inference results for these two datasets produced by c-NTPP.

Datasets SEP OVL

MHP (Yang and Zha 2013) 0.8044 0.1392
c-NTPP 0.9837 0.4231

Table 5: Latent cluster inference on SEP and OVL datasets
in terms of Normalized Mutual Information (NMI).

probabilities for event xi.
We observe that different clusters can be clearly sepa-

rated on the SEP dataset. However, the demonstration on
the OVL dataset is relatively chaotic. Therefore, we use the
Normalized Mutual Information (NMI) metric to evaluate
the quality of the cluster inference by comparing the ground
truth clusters and the inferred clusters. As shown in Tab. 5,
the NMI values for c-NTPP exceed that with the baseline
MHP (Yang and Zha 2013) on both datasets, indicating the
improvement of the cluster inference quality.

The inference is performed by a single SVAE encoder for-
ward pass for both c-NTPP and MHP (Yang and Zha 2013).
Note that the work MHP (Yang and Zha 2013) is not open-
sourced, and due to its complexity, we here try to implement
a variant in the between, which aims to mimic MHP’s prin-
ciples. Instead of using the mean-field variational inference
in MHP, we train MHP’s model parameters by directly opti-
mizing the ELBO objective under the SVAE framework, and
event features are obtained by event embedding as done in
the THP method (Zuo et al. 2020).

Dataset # event LEN MAD DF

FIN 414800 2074 0.046 0.454
MMC 2419 4 0.155 0.139
SO 480413 72 0.580 0.260
RET 2173533 109 38.250 0.276
SEP 59953 12 1.082 0.075
OVL 59953 12 1.012 0.162

Table 6: Datasets statistics. LEN: average sequence length;
MAD: median absolute derivation; DF: degree of fluctuation
of cluster inference results provided by c-NTPP.

4.8 Maximum Cluster Number Analysis
The cluster inference result for a sequence is related to the
maximum cluster number K. When we set K = 1, the
model architecture of c-NTPP exactly degenerates to that of
THP, all the events in a sequence belong to a single clus-
ter and the event-clustered attention has the same effect as
the global attention in THP. More latent clusters might be
inferred with a larger K, and the trade-off is to bring more
computational complexity and variance. Fig. 3 also shows
that an appropriate cluster number for each sequence could
be learned with c-NTPP adaptively (i.e. there might be re-
dundant clusters) by optimizing the ELBO objective.

4.9 Dataset Analysis
We summarize the datasets statistics in Tab. 6, for each
dataset, we record the number of events (# event), average
sequence length (LEN), median absolute derivation (MAD)
value of time intervals and the degree of fluctuation (DF)
of cluster inference results provided by c-NTPP. A higher
DF corresponds to a more chaotic clustering pattern, for ex-
ploratory analysis on latent clusters, we give an example
of the above first FIN dataset consisting of high-frequency
transactions, note it has the highest DF score among all 6
datasets, indicating it is hard to predict and has less obvious
clustering pattern. We think the reason why our degenerated
version outperforms SOTA transformer-based models a lit-
tle, is two-fold: 1) there has been rich TPP literature, and the
SOTA performance tends to saturate; 2) there is perhaps lit-
tle clustering pattern in this testing data to boost prediction.
As there is no cluster label for real-world data, we introduce
the degree of fluctuation (DF) for cluster inference to mea-
sure the clustering pattern inside our 6 datasets: a higher DF
corresponds to a more chaotic clustering pattern.

5 Conclusion
In this paper, we have proposed c-NTPP, a TPP representa-
tion learning framework which is able to capture the spar-
sity of event sequence data from the perspective of event
clustering. Based on the cluster inference result under the
SVAE framework, the event-clustered attention mechanism
is leveraged to obtain a more expressive representation for
each event. Experiments show the superiority of our c-NTPP
against state-of-the-arts as well as the ability to uncover the
underlying clustering correlations in event sequences.

7376

Acknowledgements
This work was partly supported by National Natural Science
Foundation of China (U19B2035, 61972250, 62222607),
Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102), and fund from Ant Group.

References
Bacry, E.; Bompaire, M.; Gaı̈ffas, S.; and Poulsen, S. 2017.
tick: a Python library for statistical learning, with a partic-
ular emphasis on time-dependent modeling. arXiv preprint
arXiv:1707.03003.
Bacry, E.; and Muzy, J.-F. 2014. Hawkes model for price
and trades high-frequency dynamics. Quantitative Finance,
14(7): 1147–1166.
Choi, E.; Du, N.; Chen, R.; Song, L.; and Sun, J. 2015. Con-
structing disease network and temporal progression model
via context-sensitive Hawkes process. In ICDM.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. NeurIPS.
Du, N.; Dai, H.; Trivedi, R.; Upadhyay, U.; Gomez-
Rodriguez, M.; and Song, L. 2016. Recurrent Marked Tem-
poral Point Processes: Embedding Event History to Vector.
In SIGKDD.
Hawkes, A. 1971. Point spectra of some mutually exciting
point processes. Journal of the Royal Statistical Society. Se-
ries B (Methodological), 438–443.
Joo, W.; Lee, W.; Park, S.; and Moon, I.-C. 2020. Dirichlet
variational autoencoder. Pattern Recognition, 107: 107514.
Kim, H.; Iwata, T.; Fujiwara, Y.; and Ueda, N. 2017. Read
the Silence: Well-Timed Recommendation via Admixture
Marked Point Processes. In AAAI.
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Li, L.; Deng, H.; Dong, A.; Chang, Y.; and Zha, H.
2014. Identifying and labeling search tasks via query-based
hawkes processes. SIGKDD.
Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.;
and Yan, X. 2019. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing. NeurIPS.
Mei, H.; and Eisner, J. M. 2017. The neural hawkes process:
A neurally self-modulating multivariate point process. In
NeurIPS.
Nalisnick, E.; and Smyth, P. 2016. Stick-breaking varia-
tional autoencoders. arXiv preprint arXiv:1605.06197.
Ogata, Y. 1998. Space-time point-process models for earth-
quake occurrences. Annals of the Institute of Statistical
Mathematics.
Omi, T.; Aihara, K.; et al. 2019. Fully neural network based
model for general temporal point processes. In NeurIPS.
Paranjape, A.; Benson, A. R.; and Leskovec, J. 2017. Motifs
in Temporal Networks. In WSDM.
Robert, C. P.; and Casella, G. 1999. Monte Carlo statistical
methods. Springer.

Rubin, I. 1972. Regular point processes and their detection.
IEEE Transactions on Information Theory, 18(5): 547–557.
Saeed, M.; Lieu, C.; Raber, G.; and Mark, R. G. 2002.
MIMIC II: a massive temporal ICU patient database to sup-
port research in intelligent patient monitoring. In Computers
in cardiology.
Shchur, O.; Biloš, M.; and Günnemann, S. 2020. Intensity-
Free Learning of Temporal Point Processes. In ICLR.
Van Den Oord, A.; Vinyals, O.; et al. 2017. Neural discrete
representation learning. In NeurIPS, volume 30.
Wu, W.; Yan, J.; Yang, X.; and Zha, H. 2018. Decoupled
Learning for Factorial Marked Temporal Point Processes. In
SIGKDD.
Wu, W.; Yan, J.; Yang, X.; and Zha, H. 2022. Discovering
temporal patterns for event sequence clustering via policy
mixture model. IEEE TKDE, 34(2): 573–586.
Xiao, S.; Farajtabar, M.; Ye, X.; Yan, J.; Song, L.; and Zha,
H. 2017a. Wasserstein Learning of Deep Generative Point
Process Models. In NIPS.
Xiao, S.; Yan, J.; Yang, X.; Zha, H.; and Chu, S. 2017b.
Modeling The Intensity Function Of Point Process Via Re-
current Neural Networks. In AAAI.
Xu, H.; and Zha, H. 2017. A Dirichlet Mixture Model
of Hawkes Processes for Event Sequence Clustering. In
NeurIPS.
Xu, J.; Wang, J.; Long, M.; et al. 2021. Autoformer: Decom-
position transformers with auto-correlation for long-term se-
ries forecasting. In NeurIPS.
Yan, J.; Wang, Y.; Zhou, K.; Huang, J.; Tian, C.; Zha, H.;
and Dong, W. 2013. Towards Effective Prioritizing Water
Pipe Replacement and Rehabilitation. In IJCAI.
Yang, B.; Wang, S.; Markham, A.; and Trigoni, N. 2020.
Robust attentional aggregation of deep feature sets for multi-
view 3D reconstruction. IJCV, 128(1): 53–73.
Yang, S.-H.; and Zha, H. 2013. Mixture of mutually exciting
processes for viral diffusion. In ICML.
Zhang, Q.; Lipani, A.; Kirnap, O.; and Yilmaz, E. 2020.
Self-attentive Hawkes process. In ICML.
Zhang, Y.; Yan, J.; Zhang, X.; Zhou, J.; and Yang, X. 2022.
Learning mixture of neural temporal point processes for
event sequence clustering. In IJCAI.
Zhao, Q.; Erdogdu, M. A.; He, H. Y.; Rajaraman, A.; and
Leskovec, J. 2015. Seismic: A self-exciting point process
model for predicting tweet popularity. In SIGKDD.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In AAAI.
Zhou, K.; Zha, H.; and Song, L. 2013. Learning So-
cial Infectivity in Sparse Low-rank Networks Using Multi-
dimensional Hawkes Processes. In AISTATS.
Zuo, S.; Jiang, H.; Li, Z.; Zhao, T.; and Zha, H. 2020. Trans-
former Hawkes Process. In ICML.

7377

