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Abstract

We propose new differential privacy solutions for when ex-
ternal invariants and integer constraints are simultaneously
enforced on the data product. These requirements arise in real
world applications of private data curation, including the pub-
lic release of the 2020 U.S. Decennial Census. They pose a
great challenge to the production of provably private data prod-
ucts with adequate statistical usability. We propose integer sub-
space differential privacy to rigorously articulate the privacy
guarantee when data products maintain both the invariants
and integer characteristics, and demonstrate the composition
and post-processing properties of our proposal. To address the
challenge of sampling from a potentially highly restricted dis-
crete space, we devise a pair of unbiased additive mechanisms,
the generalized Laplace and the generalized Gaussian mecha-
nisms, by solving the Diophantine equations as defined by the
constraints. The proposed mechanisms have good accuracy,
with errors exhibiting sub-exponential and sub-Gaussian tail
probabilities respectively. To implement our proposal, we de-
sign an MCMC algorithm and supply empirical convergence
assessment using estimated upper bounds on the total variation
distance via L-lag coupling. We demonstrate the efficacy of
our proposal with applications to a synthetic problem with in-
tersecting invariants, a sensitive contingency table with known
margins, and the 2010 Census county-level demonstration data
with mandated fixed state population totals.

1 Introduction
Motivation. Differential privacy (DP) is a formal mathemati-
cal framework that quantifies the extent to which an adversary
can learn about an individual from sanitized data products.
However, data curators may be mandated, by law or by policy,
to release sanitized data products that obey certain externally
determined constraints, in a manner that existing differential
privacy solutions are not designed to address. Two challeng-
ing types of constraints are invariants (Ashmead et al. 2019),
which are exact statistics calculated from the confidential
data (such as sum, margins of a contingency table, etc), and
integer characteristics, pertaining to data of count nature. The
challenge is exacerbated when the sanitized data product is
required to respect both.

Data privatization that simultaneously satisfies man-
dated invariants and preserves integral characteristics is of
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paramount importance to a myriad of data products by offi-
cial statistical agencies. One of the prominent example is the
Disclosure Avoidance System (DAS) of the 2020 Decennial
Census of the United States. The Census Bureau is mandated
to observe a set of invariants for its decennial census data
products, such as its constitutional obligation to enumerate
state populations for the apportionment house seats. As the
decennial census data products are count data, the bureau
must ensure that the sanitized release are also integer-valued.
In addition, the bureau strives to maintain the consistency of
the data products with common knowledge to various degrees,
such as the the non-negativity of count data and possible log-
ical relationships between different tabulated quantities. The
challenge thus remains: how to design sanitized data products
that respect the pre-specified constraints, while maintaining
rigorous privacy and good statistical properties? This is the
central problem we address in this paper.

Our contribution. In this paper, we develop the integer
subspace differential privacy scheme, through which we for-
mulate and implement mathematically rigorous privacy mech-
anisms that meet the following utility objectives: 1) respecting
mandated invariants, 2) maintaining integral characteristics,
and 3) achieving good statistical properties including unbi-
asedness, accuracy, as well as probabilistic transparency
of the mechanism specification. Invariants not only restrict
the universe of databases of interest, but also partially de-
stroys the relevance of neighbors, since databases differing
by precisely one entry may or may not meet the same invari-
ants. To this end, we adapt the classical differential privacy
definition to incorporate invariant constraints with two mod-
ifications (i) we limit the comparison of databases only to
those that satisfy the same invariants, in a manner similar
to pufferfish privacy (Kifer and Machanavajjhala 2014); and
(ii) for databases that meet the same invariants, we use their
metric distance as a multiplicative factor to the privacy loss
parameter under the more general smooth differential privacy
framework (Chatzikokolakis et al. 2013; Desfontaines and
Pejó 2019). We show that integer subspace differential pri-
vacy preserves composition and post-processing properties.

To design a differential privacy mechanism that simulta-
neously respects invariants and integer requirement poses a
number of new challenges. For additive mechanisms, the per-
turbation noise vector needs to be limited to the “null space”
of the invariants so as not to violate the constraints. When
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the invariants are linear, this requires solving a linear system
with integer coefficients, i.e. Diophantine equations, limiting
the privacy noise to a (transformed) discrete lattice space. To
this end, we propose generalized discrete Laplace and Gaus-
sian mechanisms for the discrete lattice space. Both mecha-
nisms are transparently specified additive mechanisms that
enjoy demonstrated unbiasedness and accuracy via bounds
on tail probabilities. The tail bounds call for extra technicality
as the lattice spaces we deal with are generally not spheri-
cally symmetric. To implement the proposed mechanisms,
we design a Gibbs-within-Metropolis sampler, with a transi-
tion kernel that is always limited to the desired subspace to
achieve sampling efficiency. To provide empirical guidance
on the Markov chain’s convergence to target, we supply an
assessment scheme using the L-lag coupling method pro-
posed by (Biswas, Jacob, and Vanetti 2019). We demonstrate
the efficacy of our proposal with applications to a synthetic
problem with intersecting invariants, a contingency table
with known margins concerning delinquent children (Federal
Committee on Statistical Methodology 2005), and the 2010
Census county-level demonstration data with mandated fixed
state population totals.

Related work. There has been an extensive line of work
on differential privacy and its alternative definitions; see a re-
cent survey and the references therein (Desfontaines and Pejó
2019). On the other hand, invariants pose a relatively recent
challenge to formal privacy, and we focus our review below
on prior work concerning invariants. It has been recognized
that invariants which are non-trivial functions of the confi-
dential data compromise the differential privacy guarantee
in its classic sense, and that the invariants must be incor-
porated into the privacy guarantee (Gong and Meng 2020;
Seeman, Slavkovic, and Reimherr 2022). Towards designing
formally private mechanisms that meet prescribed invariant
constraints, the only prior work in this direction is named sub-
space differential privacy (Gao, Gong, and Yu 2022) where
the inputs satisfy a set of linear constraints and the sanitized
outcome shall meet the same invariants. However, subspace
differential privacy only considers data products that are real-
valued. To impose the additional integral requirement on the
data outputs is not trivial: as the TopDown algorithm (Abowd
et al. 2022) already demonstrates, simple rounding or pro-
jection will either violate the invariants or introduce biases.
He, Machanavajjhala, and Ding (2014) consider known con-
straints of the dataset (e.g. population counts for each state)
which restricts the possible set of datasets, but the output of
their mechanism need not satisfy the known constraints. We
focus on mechanisms whose output also satisfy the count-
ing constraints. Another line of work (Cormode, Kulkarni,
and Srivastava 2017) consider additional structural properties
for the mechanism’s output (e.g. monotone, symmetric, fair).
However, those properties are independent of the private data
and can be seen as internal distributional consistency. Lastly
we note a related, but different line of previous work con-
cerning internal consistency of the data outputs (Barak et al.
2007; Hay et al. 2009), such as maintaining the sum of counts
over some partitioning of a set to be identical as the total sum.
This type of consistency requirement is independent of the
value of the private data, and can be satisfied by certain types

of DP mechanisms, such as local DP schemes when each
data item is independently perturbed and normal algebraic
operations are applied on the perturbed output. In contrast,
invariant constraints considered in this work are in general
non-trivial functions of the confidential data.

To impose invariants and preserve integrality for Cen-
sus data, the TopDown algorithm (Abowd et al. 2022) em-
ploys a discrete Gaussian mechanism (Canonne, Kamath,
and Steinke 2020) to inject integer-valued noise during the
so-called measurement phase, to form noise-infused counts
to be tabulated into multi-way contingency tables at various
levels of geographic resolution. This is followed by the so-
called estimation phase, a constrained optimization to impose
invariants (such as state population totals, etc) and controlled
rounding to integer solutions (see Table 1 of Abowd et al.
2022). In general, this approach first imposes unconstrained
noise and performs post-processing to meet the additional
constraints. One limitation of this solution is that it is not
easy to characterize the probabilistic distribution of the result-
ing privacy noise after post-processing, as this distribution
crucially depends on the particular values of the input data.
Thus, the post-processing approach may destroy the prob-
abilistic transparency of the privatized data product (Gong
2022). Our solution maintains the transparency of the privacy
mechanism as well as the statistical independence between
the confidential data and the privacy errors, which are of
paramount importance to downstream applications derived
from these noisy data products. Furthermore, since invariants
and integer value constraints are our first priority besides
privacy, we supply a rigorously updated definition of differ-
ential privacy under this setting by limiting the discussion
only among databases that satisfy these constraints.

2 Integer Subspace Differential Privacy
In this work, we model private data as a histogram ~x =

(x1, . . . , xd)
> ∈ Nd, where xi ∈ N is the number of indi-

viduals with feature i ∈ [d] := {1, . . . , d}. A trusted curator
holds the database ~x, and provides an interface to the database
through a randomized mechanism M : Nd → Zd where we
require the output to always take integer values. As moti-
vated in introduction, our goal is to design good mechanisms
whose output is close to the original histogram that satisfies
not only certain privacy notions, but also invariant constraints
and integral requirements.

The notion of differential privacy ensures that no individ-
ual’s data has much effect on the probabilistic characteristic
of the output from the mechanism M (Dwork et al. 2006;
Barber and Duchi 2014). Formally, we say that a randomized
mechanism M : Nd → Zd is (ε, δ)-differentially private if
for some ε, δ ≥ 0, all neighboring databases ~x and ~x′ with
‖~x− ~x′‖ = 1, and all event S ⊆ Zd,

Pr [M (~x) ∈ S] ≤ eε · Pr [M (~x′) ∈ S] + δ, (1)

where ‖~x− ~x′‖ is a distance norm of two databases (~x, ~x′).
Depending on the application, the norm may be chosen either
as `1 norm or `2 norm.

The notion of differential privacy in (1) satisfies a more
general notion of smooth differential privacy (Chatzikoko-
lakis et al. 2013). M is (ε, δ)-smooth differentially private if
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for all datasets ~x, ~x′ and all event S ,

Pr[M(~x) ∈ S] ≤ eε‖~x−~x
′‖ Pr[M(~x′) ∈ S]+

eε‖~x−~x
′‖ − 1

eε − 1
δ.

(2)
Previous works mostly consider the pure smooth differential
privacy with δ = 0, and we generalize it to the approximated
case.1 Compared to (1), the definition in (2) replaces the
neighboring relationship of (~x, ~x′) by a norm function.

From the data curator’s perspective, in addition to privacy
concerns, there often exists external constraints that the pri-
vatized output M must meet. These constraints can often be
represented as counting functions defined below.

Definition 1 (counting invariant constraints). Given a collec-
tion of subsetsA = {A1, . . . , Ak} on [d] with k ≤ d, we say
a function f : Nd → Zd is A-invariant if∑

i∈A
xi =

∑
i∈A

f(~x)i, for all ~x ∈ Nn and A ∈ A.

Alternatively, given a collection of counting invariant con-
straints A, we define an equivalence relationship ≡A so that
~x ≡A ~x′ if

∑
i∈A xi =

∑
i∈A x

′
i for all A ∈ A. Then an

A-invariant f satisfies ~x ≡A f(~x) for all ~x.
Note that when a privatized output is subject to counting

invariant constraints as above, we may not use the standard
neighboring relation because two neighboring datasets differ-
ing by one element may not satisfy the same counting con-
straint. In particular, the feasible outputs of an A-invariant
mechanism lie within an integer subspace. Therefore, we em-
ploy smooth differential privacy, and only control the privacy
loss on datasets that satisfy the same counting constraints,
i.e., only “secret pairs” of databases within the same equiva-
lent classes. This formulation was also used in previous work
such as pufferfish privacy (Kifer and Machanavajjhala 2014).

Definition 2. We say a mechanism M is (ε, δ)-differentially
private on an equivalence relation ≡ if for all equivalent pair
~x ≡ ~x′ and event E on the output space

Pr[M(~x) ∈ E] ≤ eε‖~x−~x
′‖ Pr[M(~x′) ∈ E]+

eε‖~x−~x
′‖ − 1

eε − 1
δ.

Moreover, given a collection of counting constraint A, we
say M is A-induced integer subspace differentially private
with privacy loss budget (ε, δ), ifM isA-invariant and (ε, δ)-
differentially private on an equivalence relation ≡A.

Many invariant constraints can be formulated using count-
ing constraints. Below are some examples.

Example 3. Suppose A = {[d]} is a singleton. All datasets
with the same number of agents are equivalent under ≡{[d]},
so the differential privacy on ≡{[d]} reduces to the original
(bounded) differential privacy.

1When δ = 0, (2) reduces to Pr[M(~x) ∈ E] ≤ eε‖~x−~x
′‖ ·

Pr[M(~x′) ∈ E]. However, for the approximated smooth differential
privacy, the error term grows as the distance ‖~x − ~x′‖ increases.
When ‖ · ‖ is a norm, a mechanism on the histogram is (ε, δ)-DP if
and only if the mechanism is (ε, δ)-smooth DP.

Example 4. Privatized census data products must ensure
that the total population of each state is reported exactly as
enumerated. Given k states, and Al ⊂ [d] be the collection
of features that belong to state l. we can define counting
invariants A = {A1, . . . , Ak} where A1, . . . , Ak forms a
partition on the universe [d].

Example 5. We can encode the invariant condition on a√
d×
√
d two-dimensional contingent table where the sum

of each row and each column sums are fixed as a collection
of counting constraints. Formally, given

√
d ∈ N, the set A

contains the following subsets on [d], for all i and j Ri =

{i
√
d + ` : 0 ≤ ` <

√
d} and Cj = {j + `

√
d : 0 ≤ ` <√

d}. That is A = {Ri, Cj : 0 ≤ i, j <
√
d}.

Composition and post-processing properties for Defini-
tion 2 also hold due to similar arguments as the differential
privacy, but with the additional requirement of equivalence
over databases. Let≡(A1,A2) be the equivalence relation such
that x ≡(A1,A2) x

′ implies x ≡A1
x′ and x ≡A2

x′.

Proposition 6 (Composition). Let M1 be (ε1, δ1)- differ-
entially private on equivalence relation ≡A1

and M2 be
(ε2, δ2)- differentially private on equivalence relation ≡A2

.
For any pair of databases x, x′ having x ≡(A1,A2) x′,
the composed mechanism M1,2(x) = (M1(x),M2(x)) is
(ε1 + ε2, δ1 + δ2)-differentially private on ≡A1,A2

.

Proposition 7 (Post-processing). If M is (ε, δ)-differentially
private over ≡, then for a arbitrary randomized mapping
F : Y → Z , F ◦M is (ε, δ)-differentially private over ≡.

Details of Proposition 6 and 7 can be found in Appendix
A of this paper’s full version (Dharangutte et al. 2022). Note
that when privacy mechanisms that obey different invariant
constraints are imposed, it might be possible to infer aspects
of the confidential data following logical consequences from
both. It is not clear how to define post-processing for invariant
constraints in those situations.

3 Generalized Laplace and Gaussian
Mechanisms

Now we study A-induced integer differentially private mech-
anisms that satisfy counting invariant constraints. The main
challenge is that counting invariant constraints significantly
restrict the feasible output space, especially when the output
is required to take only integer values. To resolve this issue,
we first show that counting invariant constraints on integer-
valued output can be written as a lattice space. Then we
propose revised Laplace and Gaussian mechanisms on a lat-
tice space. We discuss how to implement these mechanisms
via sampling and MCMC in the Implementation section.

3.1 Counting Invariants and Lattice Spaces
In this section, we show the output space of integer datasets
satisfying counting invariant constraints are lattice spaces.
A lattice Λ is a discrete additive subgroup of Rd. Given a
matrix B ∈ Rd×m consisting of m basis ~b1, . . . ,~bm with
1 ≤ m ≤ d, a lattice generated by the basis is Λ(B) ={
B~v =

∑m
i=1 vi

~bi : ~v ∈ Zm
}
.
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Proposition 8. Given a collection of counting invariants
A = {A1, . . . , Ak}, there exists a lattice ΛA = Λ(CA)with
basis CA ∈ Zd×(d−k) so that a function f : Nd → Zd is
A-invariant if and only if for all ~x ∈ Nd

f(~x)− ~x ∈ ΛA.

Note that as CA is an integer-valued matrix, ΛA is a subset
of the integer grid Zd. As we impose more counting invari-
ants, the lattice ΛA becomes sparser, making it harder to find
a feasible solution for an A-invariant mechanism.

Proof. Given a collection of counting invariant constraints
A = {A1, . . . , Ak} and a dataset ~x, finding a feasible output
~y with ~y ≡A ~x is equivalent to solving the following linear
equations in (3), where A ∈ {0, 1}k×d is an incidence matrix,
for all i ∈ [d] and l ≤ k Al,i = 1 if i ∈ Al and zero otherwise.
Then ~y ≡A ~x if and only if

A~y = A~x. (3)

Since we require ~y ∈ Zd, the problem of solving ~y is
known as solving the linear Diophantine equation (Gilbert
and Pathria 1990; Schrijver 1998; Greenberg 1971), and can
be done by computing the Smith normal form of A. Specif-
ically, given an integer-valued matrix A ∈ Zk×d of rank k,
there exists U ∈ Zk×k,V ∈ Zd×d and D ∈ Zk×d with

UAV = D (4)

so that U and V are unimodular matrices that are invertible
over the integers, and D is a diagonal matrix (i.e. the Smith
normal form of A) with Dl,l 6= 0 for all l ∈ [k].

With the above decomposition, we can characterize the
integer solutions of (3). ~y is a solution of (3), if and only if
A(~y − ~x) = 0 and it is equivalent to DV −1(~y − ~x) = 0,
since U is unimodular. Because D is diagonal and has rank
k, ~y is a solution if and only if there exists ~w ∈ Zd so that
~y = ~x + V ~w and wl = 0 for all l ≤ k. Additionally, if we
define CA ∈ Zd×(d−k) that consists the bottom d− k rows
of V , then ~y is a solution if and only if ~y − ~x ∈ {CA~v :
~v ∈ Zd−k} = Λ(CA). We call A full rank if the rank of
A ∈ {0, 1}k×d is k, the associated CA as the basis ofA, and
ΛA := Λ(CA). The integer solutions of (3) is the lattice ΛA
shifted by ~x. Therefore, if M : Nd → Zd is A-invariants the
output given input ~x is contained in ~x+ ΛA := {~x+ ~z : ~z ∈
ΛA}, M(~x) ∈ ~x+ ΛA.

3.2 Generalized Laplace Mechanism
Now we can define a generalized Laplace mechanism whose
output space satisfies Proposition 8. We adopt the classical
exponential mechanism to this restricted output space and
show the resulting mechanisms are as required. Because the
output space Proposition 8 is unbounded, we show the utility
guarantee by controlling the dimension of the lattice spaces
which may be of interest by itself. First, we formally define
the generalized Laplace mechanism.
Definition 9. Given a collection of counting invariant con-
dition A of full rank and ε > 0, the generalized Laplace
mechanism is MLap,A,ε(~x) = ~x+ ~z with ~z sampled from

qε(~z) ∝ exp (−ε‖~z‖)1[~z ∈ ΛA] (5)

where ΛA is defined in Proposition 8.

Note that if the counting constraint is vacuous, i.e. A = ∅
with d = 1, and the output can be real number, the gener-
alized Laplace mechanism reduces to the original Laplace
mechanism on histograms. Additionally, if we require integer-
valued output with A = ∅, the generalized Laplace mecha-
nism becomes the double geometric mechanism.
Theorem 10. Given full rank A and ε > 0, mechanism
MLap,A,ε : Nd → Zd in Definition 9 is A-induced integer
subspace with (ε, 0).

The proof is similar to the privacy guarantee of Laplace
mechanisms, and is presented in Appendix B of this paper’s
full version (Dharangutte et al. 2022). The implementation
of the generalized Laplace mechanisms in Definition 9 is
non-trivial and is elaborated in Implementation section.

After the privacy guarantee, we turn to discuss the utility
of the generalized Laplace mechanism. First, (6) establishes
the unbiasedness of the generalized Laplace mechanism. The
tail bound needs additional work, because the output spaces
of the conventional exponential mechanism are often finite,
which is not the case here. We resolve this issue using the
bounded-dimension property of lattices spaces (Lemma 11),
and prove the error bound is sub-exponential in (7). There is
a long line of work (Landau 1915; Tsuji 1953; Bentkus and
Gotze 1999) that approximate the number of lattice points
in sphere by the volume. Using these ideas, we prove the
following lemma (with proof in Appendix B) of this paper’s
full version (Dharangutte et al. 2022) for Theorem 12.
Lemma 11. Let B ∈ Rd×m be a rank m ≤ d matrix. For
all r > 0 large enough, |{~z ∈ Λ(B) : ‖~z‖2 ≤ r}| ≤

2Vm√
det(B>B)

rm where Vm is the volume of them dimensional

unit sphere.
Theorem 12 (unbiasedness and accuracy). Given A of k
counting constraints and ε > 0, MLap,A,ε in Definition 9 is
unbiased

E[MLap,A,ε(~x)] = ~x, (6)
and, if ‖ · ‖ is `2-norm, there exists a constant K > 0 so that
for all ~x ∈ Nd, and large enough t > 0,

Pr[‖MLap,A,ε(~x)− ~x‖2 ≥ t] ≤ Ktd−k exp(−εt). (7)

Moreover, K can be 4·2d−kVd−k√
det(C>ACA)

where Vd−k is the volume

of the (d− k) dimensional unit sphere.
Note that as the dimension d−k increases 2d−kVd−k → 0,

so K is determined by 1/
√

det(C>ACA).

3.3 Generalized Gaussian Mechanism
In this section, we propose generalized Gaussian mechanisms
that relate to Lattice-based cryptography discussed in Sec-
tion 4. We first define Gaussian random variables on lattices.
Given a lattice Λ ⊂ Rd, and ~c ∈ Rd, the spherical Gaussian
random variable ~Z on Λ with variance σ and center ~c is

Pr[~Z = ~z] ∝ exp

(
− 1

2σ2
‖~z − ~c‖22

)
, ∀~z ∈ Λ. (8)

Note that the generalized Gaussian mechanism utilizes an `2
norm to measure the noise scale.
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Definition 13. Given a collection of counting invariant con-
dition A of full rank, ε > 0, and δ > 0, the generalized
Gaussian mechanism is defined as MG,A,ε,δ(~x) = ~x + ~z
where ~z is the Gaussian random variable on ΛA with cen-
ter at 0 and variance σ2

ε,δ = 2cA ln 1/δ
ε2 for some constant

cA = O(max{(d− k) ln(d− k), lnK}) that only depends
on the dimension and the collection of counting constraints
where K is defined in Theorem 12.

While the variance scale in the original Gaussian mecha-
nisms is independent of the dimension, generalized Gaussian
mechanism’s σε,δ in Definition 13 depends on the dimension.
This may be due to a lack of symmetry of the lattice space.
Recall that the proof of the original Gaussian mechanism
reduces the high dimensional case to the one dimensional
setting, thanks to the Gaussian being spherically symmetric.
However, our lattice space ΛA is generally not spherically
symmetric, and simple reduction does not work.
Theorem 14. Given full rank A, ε and δ with 0 < δ < ε <
1/e, mechanism MG,A,ε,δ : Nd → Zd in Definition 13 is
A-induced integer subspace differentially private with (ε, δ).

After the privacy guarantee, we turn to show the utility of
the generalized Gaussian mechanism. First, since the distribu-
tion function of the discrete Gaussian is an even function, the
additive errors of the discrete Gaussian mechanism is unbi-
ased (9). Furthermore, similar to Gaussians on the Euclidean
space, Gaussians on lattices are sub-Gaussian.2

Theorem 15 (unbiasedness and accuracy). Given the condi-
tion in Theorem 14, MG,A,ε,δ in Definition 13 is unbiased,

E[MG,A,ε,δ(~x)] = ~x, for all ~x ∈ Nd. (9)

Additionally, there exists a constant K > 0 defined in Theo-
rem 12 so that for all ~x ∈ Nd, and large enough t > 0,

Pr[‖MG,A,ε,δ(~x)− ~x‖2 ≥ t] ≤ Ktd−ke
− t2

2σ2
ε,δ . (10)

Last, we remark that previous work has used discrete Gaus-
sian mechanisms (Canonne, Kamath, and Steinke 2020)for
integer valued noises. But these mechanisms do not satisfy
(non-trivial) invariants constraints. Note that when there is no
invariant constraint, the resulting lattice space becomes an in-
teger grid and our generalized Gaussian mechanism reduces
to the discrete Gaussian mechanism.

4 Implementation
We discuss implementation issues of discrete Gaussian and
generalized Laplace in lattice spaces. In general the design of
exact samplers for complex privacy mechanisms (such as the
Exponential mechanism, to which our generalized Laplace
mechanism is a special case) is a widely acknowledged chal-
lenge in the literature. Section 3 of Abowd et al. (Abowd et al.
2022) specifically discussed this challenge in the context of
invariants and integer constraints and concluded that direct

2This is nontrivial, because the support of Gaussian in (8) is not
uniform. For instance, suppose Λ is not a lattice space, but has 2r

2

points in each integer radius r shell, the a Gaussian on such a space
is not sub-Gaussian.

sampling from the Exponential mechanism is “infeasible” for
their TopDown algorithm. We address this problem in two
ways. For certain discrete Gaussian, we can use exact sam-
plers; for generalized Laplace we develop an efficient and
practical solution using Markov chain Monte Carlo (MCMC).
Our experiments all use the MCMC sampler for practicality.

Sampling discrete Gaussian on a lattice. There are sev-
eral efficient algorithms to sample discrete variables within
negligible statistical distance of any discrete Gaussian dis-
tribution whose scales are not exceedingly narrow (Gentry,
Peikert, and Vaikuntanathan 2008; Peikert 2010). Moreover,
(Brakerski et al. 2013) provide an exact Gaussian sampler.

Theorem 16 (Lemma 2.3 in Brakerski et al. (2013)). There
is a probabilistic polynomial-time algorithm that takes as
input a basis B = (~b1, . . . ,~bm) for a lattice Λ(B) ⊂ Rd, a
center ~c ∈ Rd and parameter σ = Ω(maxi ‖~bi‖2 ln d) and
outputs a vector that is distributed exactly as (8).

We note that, however, it is believed to be computation-
ally difficult to sample efficiently on general lattice spaces
if the target distribution is not sufficiently dispersed. Most
lattice-based cryptographic schemes (Folláth 2014) are based
on the hardness assumption of solving the short integer so-
lution (SIS) problem and the learning with errors (LWE)
problem (Brakerski et al. 2013), and the ability of an efficient
sampler of a narrow distribution on general lattice efficiently
would enable us to solve short integer solution and break
lattice-based cryptographic schemes.

MCMC sampling for generalized Laplace on a lattice.
Since a discrete Gaussian mechanism only provides (ε, δ)-
DP, it is important to develop pure-DP mechanisms using
the generalized Laplace mechanism on a lattice. We de-
vise an MCMC sampling scheme to instantiate the gener-
alized Laplace mechanism (Definition 9). As a practical so-
lution, MCMC has been theoretically studied in the litera-
ture; e.g. Wang, Fienberg, and Smola (2015) for stochastic
gradient Monte Carlo and Ganesh and Talwar (2020) for dis-
cretized Langevin MCMC. The challenge to designing such
a sampling scheme is twofold. First, the invariants render the
target state space highly constrained. To achieve sampling
efficiency requires efficient proposals, which ideally satisfy
the invariants themselves in order to maintain a reasonable
acceptance rate (c.f. Gong and Meng 2020). Second, MCMC
algorithms are generally not exact samplers, and may fail to
converge to the target distribution in finite time, thus incur
additional cost to privacy that can be difficult to quantify for
a given application. To this end, we 1) target only the additive
noise component of the mechanism, ensuring that any privacy
leakage due to sampling is independent of the underlying
confidential data; and 2) devise an empirical convergence
assessment for the upper bound on the total variation (TV)
distance between the chain’s marginal distribution the target,
based on the L-lag coupling method proposed by (Biswas,
Jacob, and Vanetti 2019).

Proposal design. We wish to sample the additive noise
~z employed by the generalized Laplace mechanism. For
an incidence matrix A ∈ Zk×d specifying the invariants,
recall its Smith normal form D = UAV in (4). Con-
sider a jumping distribution with probability mass function
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g (~u) = gA
(
V −1~u

)
, where

gA (~e) =
k∏
j=1

1 {ej = 0}
d∏

j=k+1

ηj (ej) , (11)

for ~e = (e1, . . . , ed) a pre-jump object whose first k entries
are exactly zero, and ~u = V ~e the proposed jump. The ηj’s
in (11) can be set to any interger-valued univariate prob-
abilities that are unbiased and symmetric around zero. A
straightforward choice is the double geometric distribution,
with mass function ηj (e) = 1−a

1+aa
‖e‖1 and parameter a. Note

that the jumping distribution g connects to gA in (11) without
a Jacobian because ~u and ~e are integer-valued and V is invert-
ible. The proposed jump ~u ∼ g is unbiased and symmetric,
i.e. Eg(~u) = 0 and g(~u) = g(−~u), and always respects the
desired invariants specified by A:

A~u = U−1UAV ~e = U−1D~e = U−10 = 0.

A Metropolis sampling scheme. The target distribution
qε (~z) is given in (5) and is known only up to a normalizing
constant. Algorithm 1 in Appendix D of this paper’s full
version (Dharangutte et al. 2022) presents a Gibbs-within-
Metropolis sampler that produces a sequences of dependent
draws

(
~z(l)
)
0≤l≤nsim from the target distribution qε in (5)

known only up to a normalizing constant. We use an addi-
tive jumping distribution whose element-wise construction
is described in (11). The algorithm incurs a transition kernel
that dictates how the chain moves from an existing state to
the next one: ~z(l) ∼ K

(
~z(l−1), ·

)
. The initial distribution π0

may be chosen simply as g for convenience. The choice of ηj
is a tuning decision for the algorithm, and should be made to
encourage fast mixing of the chain. We discuss our choices
for examples in the Experiments section. Note that steps 5
through 7 of Algorithm 1 updates the proposed jump in a
Gibbs sweep (i.e. one dimension at a time), utilizing the fact
that the pre-jump object ~e is element-wise independent under
gA. Doing so facilitates the L-lag coupling, to be discussed
next, for assessing empirical convergence of the chain. In
practice, these updates may be performed simultaneously.

Empirical convergence assessment using L-lag coupling.
We perform empirical convergence assessment of the pro-
posed algorithm using L-lag coupling. Construct a joint tran-
sition kernel K̃ of two Markov chains, each having the same
target distribution qε induced by the marginal transition ker-
nel K as defined in Algorithm 1. The joint kernel K̃, given
by Algorithm 2 in Appendix D, is a maximal coupling ker-
nel such that the L-th lag of the two chains will couple in
finite time with probability one. The random L-lag meeting
time, which Algorithm 3 in Appendix D samples, provides
an estimate of the upper bound on the TV distance,

dTV (q(l)ε , qε) ≤ E
[
max

(
0,
⌈(
τ (L) − L− l

)
/L
⌉)]

between the target distribution qε and the marginal distri-
bution of the chain at time l, denoted q(l)ε (Biswas, Jacob,
and Vanetti 2019, Theorem 2.5). The upper bounds are ob-
tained as empirical averages over independent runs of cou-
pled Markov chains. The lag L > 0 would need to be set,
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Figure 1: Estimated TV bound from target

County Low Medium High Very High Total

Alpha -1 -1 0 2 0
Beta 5 4 -2 -7 0

Gamma -5 -3 5 3 0
Delta 1 0 -3 2 0

Total 0 0 0 0 0

Table 1: Generalized Laplace additive noise (ε = 0.25, q() =
`1-norm ), which preserves row and column margins.

and we discuss its choice in the next section and Appendix
D. Compared to earlier work which uses MCMC to instanti-
ate privacy mechanisms, our use of L-lag coupling provides
real-time (rather than asymptotic) assessment on the MCMC
convergence behavior. The number of iterations needed to en-
sure convergence is empirically assessed via the upper bound
on the total variation (note that this is still an estimate). In
general, there is a tradeoff between the number of iterations
and an extra privacy loss budget δ′, in the sense that Eq. (5)
can be absorbed as another additive error in the DP guarantee.

5 Experiments
Intersecting counting constraints. Consider a synthetic ex-
ample in which a set of three counting constraints A =
(A1, A2, A3) are defined over 14 records, where the intersec-
tion of all subsets of constrains are nonempty. The constraints
are schematically depicted by Fig. 3 in Appendix E of this
paper’s full version (Dharangutte et al. 2022), and may be
encoded by an incident matrix A ∈ Z3×14, with each row
corresponding to one of A1, A2 and A3, and each element
being 1 at indices corresponding to the record within that
constraint and 0 otherwise. We apply Algorithm 1 to instanti-
ate the generalized Laplace mechanism, with both `1-norm
and `2-norm targets, to privatize a data product that conforms
to the constraint A. To ensure adequate dispersion of the tar-
get distribution, we set ε = 0.25, a value on the smaller end
within the range of meaningful privacy protection (e.g. Dwork
2011). The pre-jump proposal distributions ηj are double ge-
ometric distributions, with parameter a = exp (−1) for the
`1-norm target and a = exp (−1.5) for the `2-norm target.
Details on the tuning, the noise distribution and convergence
assessment can be found in Appendix E of this paper’s full
version (Dharangutte et al. 2022). In particular, Fig. 4 in Ap-
pendix E shows that the chains empirically converge around
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Figure 2: Privacy noise from the generalized Laplace mechanism ( Definition 9) via Algorithm 1 (blue squares: one instance;
boxplot: 1000 instances) for county populations of Illinois in increasing county sizes. State population total is invariant. The
proposed noises are integer-valued and unbiased. For comparison are DAS errors from the Nov 2020 vintage 2010 Census
demonstration data (Van Riper, Kugler, and Schroeder 2020) (red dots).

105 iterations for the `1 and 106 for the `2-norm target.
Delinquent children by county and household head edu-
cation level. The Federal Committee on Statistical Method-
ology published a fictitious dataset concerning delinquent
children in the form of a 4× 4 contingency table, tabulated
across four counties by education level of household head (Ta-
ble 4 in Federal Committee on Statistical Methodology 2005,
reproduced in Table 2 of Appendix E), to illustrate various
traditional SDL techniques (Slavković and Lee 2010).

The charge is to extend privacy protection to the sensi-
tive individual records while preserving the margins of the
contingency table for data publication. To do so, we apply Al-
gorithm 1 to instantiate the generalized Laplace mechanism
with both `1- and `2-norm targets and with ε = 0.25. Fig. 1
shows the evolution of the TV upper bound on the chain’s
marginal distributions to the `1-norm target, estimated with
200 independent coupled chains, which appear to converge
after about 104 iterations and are stable at various choices
of L. Table 1 shows one instance of the proposed additive
noise, obtained after the chain achieves empirical conver-
gence. They are integer-valued, with zero row and column
totals which would preserve the margins of the confidential
table. Convergence assessment for the `2-norm target and
discussions on the choice of proposal are in Appendix E.

2010 U.S. Census county-level population data. We con-
sider the publication of county-level population counts sub-
ject to the invariant of state population size, and compare with
the privacy-protected demonstration files produced by pre-
liminary versions of the 2020 Census DAS. The confidential
values are the 2010 Census Summary Files (CSF), curated
by IPUMS NHGIS and are publicly available (Van Riper,
Kugler, and Schroeder 2020). Employed for this example
are the November 2020 vintage demonstration data, pro-
tected by pure differential privacy with ε = 0.192 =
4 (total)× 0.16 (county level)× 0.3 (population query).

We demonstrate Algorithm 2 using the generalized Laplace
mechanism under `1 norm, with ε set to accord to the Census
Bureau’s specification and a = exp(−2.5). Fig. 2 showcases
the proposed county-level errors applied to the population
of Illinois. The x-axis is arranged in increasing true county
population sizes. Blue squares shows an instance of the pro-
posed noise vector. The boxplots summarize 1000 proposed

noise vectors (thinned at 0.01%), with whiskers indicating
1.5 times the interquartile range and cross-marks indicating
extreme realizations. The proposed errors are integer-valued
and centered around zero, confirming their marginal unbi-
asedness. Note that the published DAS privacy errors (red
dots) show a clear negative bias as a function of increas-
ing underlying county population size. The bias is likely
due to optimization-based post-processing during the estima-
tion phase which imposes non-negativity on the constituent
geographic areas with small population counts. Similar ob-
servations were made for other states (Appendix E).

6 Discussion and Future Work
This paper provides solutions for sanitizing private data that
are required to simultaneously observe pre-specified invari-
ants and integral characteristics. The proposed integer sub-
space differential privacy scheme allows for rigorous state-
ments of privacy guarantees while maintaining good statisti-
cal properties, including unbiasedness, accuracy, and prob-
abilistic transparency of the privatized output. An efficient
MCMC scheme is devised to instantiate the proposed mecha-
nism, alongside tools to assess empirical convergence.

One direction for future work is to design exact sampling
algorithms for the proposed generalized discrete Laplace and
Gaussian mechanisms. In the case that the normalizing con-
stant to the target distribution qε is known exactly, it may be
feasible to design, for example, efficient rejection sampling
based on intelligent choices of proposal distributions. It is
also conceivable that a perfect sampling scheme, such as
coupling from the past (Propp and Wilson 1996), may be de-
signed. The recent work of Seeman, Reimherr, and Slavković
(2021) proposes an exact sampling scheme for Exponential
mechanisms using artificial atoms. However, the technique
requires the state space be compact, which is not the case
for the constrained yet unbounded target distribution qε con-
sidered in this work. Another direction for future work is to
extend invariant-respecting privacy protection data products
that are required to be binary (i.e., exhibiting or not exhibiting
a private attribute), as well as to obey inequality constraints
(e.g. non-negativity of count data). The challenge there is
again on the design of efficient methods to generate noise
vectors in an extremely constrained discrete space.
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