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Abstract

The generalization ability often determines the success of ma-
chine learning algorithms in practice. Therefore, it is of great
theoretical and practical importance to understand and bound
the generalization error of machine learning algorithms. In
this paper, we provide the first generalization results of the
popular stochastic gradient descent (SGD) algorithm in the
distributed asynchronous decentralized setting. Our analysis
is based on the uniform stability tool, where stable means that
the learned model does not change much in small variations
of the training set. Under some mild assumptions, we per-
form a comprehensive generalizability analysis of the asyn-
chronous decentralized SGD, including generalization error
and excess generalization error bounds for the strongly con-
vex, convex, and non-convex cases. Our theoretical results re-
veal the effects of the learning rate, training data size, train-
ing iterations, decentralized communication topology, and
asynchronous delay on the generalization performance of the
asynchronous decentralized SGD. We also study the opti-
mization error regarding the objective function values and
investigate how the initial point affects the excess general-
ization error. Finally, we conduct extensive experiments on
MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets
to validate the theoretical findings.

Introduction
Stochastic gradient descent (SGD) (Robbins and Monro
1951) has become the mainstay for training modern machine
learning (ML) models. In practice, the solution founded by
SGD has not only very small training error but also gener-
alizes surprisingly well to the test data (Zhang et al. 2021).
Recently, a series of theoretical researches have been ded-
icated to establishing the generalization error bounds for
SGD, i.e., the expected difference between empirical risk on
finite training data and population risk on unseen test ex-
amples. The seminal work (Hardt, Recht, and Singer 2016)
tackled this problem with the algorithmic stability of SGD,
which measures sensitivity to perturbations in the training
dataset. Stability-based generalization analysis is an impor-
tant learning theory topic that has been further improved and
extended in (Kuzborskij and Lampert 2018; Lei and Ying
2020; Bassily et al. 2020; Zhang et al. 2022).
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Currently, distributed training becomes ubiquitous as the
scale and complexity of ML models and datasets increase
significantly (Dean et al. 2012; Li et al. 2014). In distributed
SGD (Zinkevich et al. 2010; Li et al. 2014), multiple workers
process data in parallel and communicate with the parame-
ter server, which then updates the model accordingly. This
implement often suffers from 1) full synchronization over-
head from all workers and 2) communication bottleneck of
the central server. To deal with these issues, asynchronous
decentralized stochastic gradient descent (AD-SGD) was
proposed in (Lian et al. 2018) to improve the training ef-
ficiency of the distributed systems. In AD-SGD, workers do
not wait for all others and only communicate in a decentral-
ized manner, thus enabling wait-free computation and com-
munication. The asynchronous decentralized algorithm has
been widely studied due to its superior performance (Jiang
et al. 2021; Cui et al. 2021; Nadiradze et al. 2021; Lan and
Zhou 2021; Xu, Zhang, and Wang 2021).

From the theoretical perspective, although there exists
plenty of convergence analysis of AD-SGD (Lian et al.
2018; Nadiradze et al. 2021; Jiang et al. 2021; Xu, Zhang,
and Wang 2021), whether the converged solution generalizes
well on unseen testing data under the asynchronous decen-
tralized setting has not been explored. This study aims to
close the theoretical gap in the generalizability of the AD-
SGD algorithm with a stability-based analytical framework.

Our Contributions
This paper studies the generalization behavior of AD-SGD
for the first time, including the generalization error and ex-
cess generalization error. We give comprehensive theoretical
results covering strongly convex, convex, and non-convex
problems and further provide a detailed analysis of two com-
monly used learning rates. The main results are listed in Ta-
ble 1, and our contributions can be summarized as follows.

• We study the algorithmic stability of AD-SGD and derive
its generalization error bounds accordingly. Theoretical
results show that the impact of the learning rate, training
data size, and training iterations on AD-SGD is identical
to the SGD algorithm (Hardt, Recht, and Singer 2016).
More importantly, we reveal the joint effects of decen-
tralized communication topology and asynchronous de-
lay on the stability and generalizability of AD-SGD.
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Table 1: Summary of the generalization error εgen and optimization error εopt bounds. According to decomposition (1), the
excess generalization error εexc is upper bounded by the summation of these two terms. The results are obtained after T
iterations of AD-SGD with m distributed workers on n training samples, where τ is the maximum asynchronous delay, and λ
characterizes the properties of decentralized topology. β, γ, r and Cλ are constants used in the analysis.

• For excess generalization error, we investigate the op-
timization errors of AD-SGD in terms of the objective
function values. Compared to previous work (Sun, Li,
and Wang 2021), we analyze the more interesting non-
convex case under the Polyak-Łojasiewicz condition. In
addition, we give the uniform stability of the ergodic av-
erage model for consistency with the optimization error.

• We conduct extensive experiments to validate our the-
oretical findings. For the general convex case, we test a
linear model on the MNIST dataset. We then use the non-
convex ResNet-18 and VGG-16 models for experiments
on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets.
We explore the generalization performance of the AD-
SGD algorithm under different learning rates, communi-
cation topologies, and asynchronous delays.

Related Work
Decentralized and asynchronous SGD. Decentralized al-
gorithms can be traced back to (Tsitsiklis 1984), which do
not specify any central node for distributed training. Decen-
tralized SGD (D-SGD) was studied in (Nedic and Ozdaglar
2009; Tang et al. 2018; Assran et al. 2019; Sun and Li 2020;
Sun, Li, and Wang 2022), which is based on partial averag-
ing and has been shown to outperform its centralized coun-
terparts (Lian et al. 2017). Asynchronous training (Tsitsiklis,
Bertsekas, and Athans 1986; Recht et al. 2011) breaks the
limitation of synchronization by allowing all clients to work
independently and makes the distributed system well toler-
ant to the straggler problem. Asynchronous SGD (A-SGD)
(Agarwal and Duchi 2011; Lian et al. 2015; Zheng et al.
2017) ensures a wait-free update with delayed gradients, and
the convergence is guaranteed under bounded asynchrony.

Asynchronous decentralized SGD (AD-SGD) was studied
in (Sirb and Ye 2016; Lian et al. 2018). Sirb and Ye provided
a convergence analysis of AD-SGD with mild assumptions.
Lian et al. further demonstrated that AD-SGD is superior
to asynchronous or decentralized SGD and scales well with
large-scale distributed training systems. Luo et al. (2020)
proposed a new communication primitive as well as sim-
ple group generation and scheduling techniques to optimize
AD-SGD. Recently, various variants based on the AD-SGD
algorithm have been investigated. Nadiradze et al. (2021)
consider AD-SGD with quantization and local updates to

further reduce communication overhead. Xu, Zhang, and
Wang (2021) proposed a private version of AD-SGD to pre-
vent inference by malicious participants. AD-SGD has also
been applied to training acoustic models (Cui et al. 2021)
and online learning (Jiang et al. 2021).
Stability and generalization of SGD. Fundamental work
(Bousquet and Elisseeff 2002) defined notions of algo-
rithmic stability and revealed the connection between sta-
bility and generalization error. Subsequent work (Elisse-
eff et al. 2005) investigated stability bounds for random-
ized learning algorithms. Data-dependent stability was pro-
posed in (Shalev-Shwartz et al. 2010) and further studied in
(Kuzborskij and Lampert 2018; Lei and Ying 2020; Zhou,
Liang, and Zhang 2022). The seminal work (Hardt, Recht,
and Singer 2016) derived the uniform stability bounds of
SGD through the expansion properties of stochastic gradi-
ents. Stability-based generalization analysis was also devel-
oped for Langevin dynamics (Mou et al. 2018), pairwise
learning (Lei, Ledent, and Kloft 2020), and minimax prob-
lems (Lei et al. 2021; Xing, Song, and Cheng 2021).

While the above studies do not consider the distributed
settings, (Wu, Zhang, and Wang 2019) provided a stability-
based generalization analysis for divide-and-conquer dis-
tributed learning algorithms. Based on uniform stability,
(Regatti et al. 2019) investigated the generalization perfor-
mance of A-SGD, and (Sun, Li, and Wang 2021) provided
stability and generalization bounds for D-SGD. (Zhu et al.
2022) studied the impact of communication topology on the
generalizability of D-SGD with an on-average stability tool.
However, (Regatti et al. 2019) only explored generalization
errors under centralized parameter server architecture. (Sun,
Li, and Wang 2021) also does not consider the effect of asyn-
chrony on decentralized SGD and omits the excess general-
ization bound for the non-convex case. In this study, we pro-
vide comprehensive stability and generalizability results of
SGD in the composite asynchronous decentralized setting.

Preliminaries
This section contains a priori knowledge about stability and
generalization as well as a description of the AD-SGD algo-
rithm. Throughout the paper, we use the following notation.
Notation. For a vector x ∈ Rd, ‖x‖ represents its `2-norm.
E[·] denotes the expectation of · with respect to the underly-
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ing probability space. (·)> denotes the transpose of the cor-
responding matrix or vector. 1m and 0 are column vectors
in Rm and Rd; all elements are 1 and 0, respectively.

Stability and Generalization
Let S = {z1, · · · , zn} be a set of training examples drawn
independently and identically from an underlying distribu-
tionD. The aim is to learn a good model x from a parameter
space Ω ⊆ Rd based on the training dataset S . The loss
function f(x; z) measures the performance of a model x on
an example z. The corresponding population and empirical
risks are respectively defined as

F (x) = Ez∼D[f(x; z)] and FS(x) =
1

n

n∑
j=1

f(x; zj).

Directly measuring the population risk can be difficult as
the underlying distribution D is usually unknown. The ML
community then considers solving an approximate empiri-
cal risk minimization problem. For a specific stochastic al-
gorithm A, x = A(S) denotes the output model obtained
by minimizing empirical risk on the training dataset S . The
generalization error is defined as the expected difference be-
tween the population risk and the empirical risk

εgen = ES,A [F (A(S))− FS(A(S))] .

Here the expectation is over the randomness of algorithm A
and training samples S . A popular tool to bound generaliza-
tion error εgen is to consider the uniform stability (Bousquet
and Elisseeff 2002; Hardt, Recht, and Singer 2016).
Definition 1 (Uniform stability) A stochastic algorithm A
is εstab-uniformly stable if for any datasets S,S ′ which dif-
fer in at most one example, we have

sup
z

EA [f(A(S); z)− f(A(S ′); z)] ≤ εstab.

Uniform stability reflects the effect of changing one train-
ing example on the model performance, and its relation-
ship with generalization error is established in the following
lemma [Theorem 2.2, (Hardt, Recht, and Singer 2016)].
Lemma 1 (Generalization error via uniform stability)
Let the stochastic algorithm A be εstab-uniformly stable.
Then the generalization error satisfies

ES,A [F (A(S))− FS(A(S))] ≤ εstab.
Since the ultimate goal of ML algorithms is to minimize

the population risk F (A(S)), this study is also interested in
the excess generalization error

εexc = ES,A [F (A(S))− F (x∗)] ,

where x∗ is the minimizer of F . Let x∗S be the minimizer
of FS , and the optimization error εopt is defined as the dif-
ference between the empirical risk and minimum empirical
risk in expectation. Then, εexc can be decomposed as

ES,A [F (A(S))− F (x∗)] = ES,A [F (A(S))− FS(A(S))]︸ ︷︷ ︸
εgen

+ ES,A [FS(A(S))− FS(x∗S)]︸ ︷︷ ︸
εopt

+ES,A [FS(x∗S)− F (x∗)]︸ ︷︷ ︸
≤0

.

The last term is negative due to the unbiased expectation
ES,A[F (x∗)] = ES,A[FS(x∗)] and FS(x∗S) ≤ FS (x∗). We
then mainly focus on the first two parts and have

εexc ≤ εgen + εopt. (1)
Following Lemma 1, the generalization error εgen is con-

trolled by the algorithmic uniform stability. Therefore, it is
sufficient to study the stability for bounding εgen. The opti-
mization error εopt is induced by running the optimization
algorithm to minimize the empirical risk, which will be ad-
dressed with the optimization theory.

Asynchronous Decentralized SGD
Consider a distributed system with m computing workers to
train a ML model under data parallelism. There are two pop-
ular ways of dividing data samples. One is that each worker
has a uniform random sampling from the training dataset S
with replacement. The other is randomly dividing S into m
disjoint subsets with equal cardinality. Our analysis holds
for both variants. The empirical risk can be reformulated as

FS(x) =
1

nm

m∑
i=1

n∑
j=1

f(x; zj(i)), (2)

where {zj(i)}1≤j≤n is the training data stored in worker i.
Distributed SGD minimizes the empirical risk (2) as fol-

lows: each worker computes stochastic gradient with local
data and sends it to a centralized server; the server synchro-
nizes the gradients from all workers and then updates the
model in a gradient descent way. The communication com-
plexity of the central node isO(m), which severely hampers
the scalability of the distributed system (Lian et al. 2017). In
addition, there is a gradient-averaging synchronization bar-
rier at each iteration, which also reduces the training effi-
ciency and even fails the training (Assran et al. 2020).

AD-SGD was proposed in (Lian et al. 2018), which
uses m distributed workers to optimize problem (2) asyn-
chronously according to a decentralized communication
graph G. In AD-SGD, the communication complexity of the
busiest worker is only O(deg(G)), and the idle time due to
synchronization is also reduced. G = (V,W) is an undi-
rected connected graph, where V = {1, 2, · · · ,m} denotes
the set of m computational workers. W = [wij ] ∈ Rm×m
is a doubly stochastic matrix, which satisfies 1) if worker j
is connected to worker i, or i = j, then wij > 0; otherwise,
wij = 0. 2) W> = W, W1m = 1m, and 1>mW = 1>m.
We denote λi as the i-th largest eigenvalue of W and define
a crucial constant λ = max{|λ2|, |λm(W)|}. From the def-
inition of the doubly stochastic matrix, we have 0 ≤ λ < 1.
For a connected graph, λ = 0 implies that the communica-
tion topology is fully-connected, i.e., all elements of W are
1
m . In the decentralized setting, we only concern 0 < λ < 1.

Let x(i) ∈ Rd be the local model kept in worker i. The
AD-SGD algorithm can be described as follows. 1). Each
worker i computes the stochastic gradient ∇f(x̂(i); zj(i))
with its local data zj(i), where x̂(i) is the model read in local
memory; 2). All workers partially average their local models
according to the decentralized communication matrix W

X← XW where X = [x(1) x(2) · · · x(m)] ∈ Rd×m;
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3). Worker i updates the local model with the staled gradient

x(i)← x(i)− α∇f(x̂(i); zj(i)),

where α is the learning rate. Note that the entire training
process is performed asynchronously, then x(i) may differ
from x̂(i) in step 3) as it can be modified in the averaging
step. In AD-SGD, each worker runs the procedures above on
its own without any global synchronization. We then denote
each gradient update as one iteration, and the iterative format
of AD-SGD can be viewed as

Xt+1 = XtW − αtG(X̂t; zjt), (3)

where αt is the learning rate applied at the t-th iteration and

G(X̂t; zjt) = [0 · · · ∇f(x̂t(it); zjt(it)) · · · 0] ∈ Rd×m.
Here, it denotes the worker that performs gradient update in
the t-th iteration. jt(it) is the index of the training data se-
lected in the t-th iteration. τt records the asynchronous de-
lay after performing t iterations and x̂t(it) = xt−τt(it). We
have simplified the relevant notation without causing ambi-
guity, the details of which can be found in (Lian et al. 2018).
For any i, xt(i) is the local model on the i-th worker in the
t-th iteration, and we assume that all workers started from
the same model. The output of AD-SGD is the consensus
model x =

∑m
i=1 x(i), which is the focus of our analysis.

Stability and Generalization Errors
This section presents the generalization error bounds based
on the uniform stability of AD-SGD. Our analysis uses the
following standard assumptions.
Assumption 1 (Lipschitz) The loss function f(x; z) : Ω→
R is differentiable with respect to x and L-Lipschitz for ev-
ery z, i.e., ∀x,y ∈ Ω, |f(y; z)− f(x; z)| ≤ L‖y − x‖.
Assumption 2 (Smoothness) The loss function f(x; z) :
Ω → R is β-smooth for every z, i.e., ∀x,y ∈ Ω,
‖∇f(y; z)−∇f(x; z)‖ ≤ β‖y − x‖.
Assumption 3 (Bounded delay) The asynchronous delay
is bounded, i.e., there exists a constant τ such that τt ≤ τ
for all iteration t.
Assumption 4 (Bounded space) The parameter space Ω is
bounded by a closed ball in Rd.

The Lipschitz assumption indicates that the gradient of
the loss function is bounded, which is necessary for the anal-
ysis of uniform stability (Hardt, Recht, and Singer 2016; Re-
gatti et al. 2019; Sun, Li, and Wang 2021). Assumption 4 is
used for bounding the excess generalization error, which is
easy to hold with the projection operation (Hardt, Recht, and
Singer 2016; Lei and Ying 2020; Sun, Li, and Wang 2021).
Asynchronous and decentralized training makes the stability
analysis of AD-SGD more complicated than SGD, A-SGD,
and D-SGD. We first give two key lemmas to bound the er-
rors introduced by decentralization and asynchrony.
Lemma 2 Assume that the loss function is L-Lipschitz and
all workers started from the same model, i.e., x1(1) = · · · =
x1(m). Then the difference between the consensus model xt
and each local model xt(i) is bounded, i.e., ‖xt − xt(i)‖ ≤
L
∑t−1
s=1 αsλ

t−1−s.

Lemma 3 Assume that the loss function is L-Lipschitz.
Then the deviation from asynchronous delayed updates is
bounded, i.e., ‖xt − xt−τt‖ ≤ L

m

∑t−1
s=t−τt αs.

Subsequently, we study the uniform stability of AD-SGD
in the convex, strongly convex, and non-convex cases and
then derive the generalization error bound according to
Lemma 1. Due to space limitations, please refer to the sup-
plementary materials for detailed theoretical proofs.

Convex Case
Theorem 1 Assume that the loss function is convex, L-
Lipschitz, and β-smooth. If the learning rate αt ≤ 2m/β,
then the uniform stability εstab of AD-SGD after T iterations
is bounded by

T−1∑
t=1

[2L2αt
nm

+
2βL2αt
m

( t−τt−1∑
s=1

αsλ
t−τt−1−s+

t−1∑
s=t−τt

αs
m

)]
.

The first term comes from the different samples between
datasets S and S ′, which means that increasing the amount
of training data can make the algorithm more stable and is
identical to the result of synchronized and centralized SGD
[Theorem 3.8, (Hardt, Recht, and Singer 2016)]. The lat-
ter two terms arise from decentralized communication and
asynchronous updates. If we consider the case of synchro-
nization, the last term disappears and the result will be re-
duced to the stability of D-SGD and is slightly better than
the result in [Theorem 1, (Sun, Li, and Wang 2021)]. In prac-
tice, however, the constant λ and delay τ are always pos-
itive, so these two extra terms do not vanish, which means
that although AD-SGD can alleviate the communication and
synchronization overhead of a distributed training system, it
hurts algorithmic stability.

Notice that the learning rate αt is a vital parameter in The-
orem 1, where a small learning rate can mitigate the nega-
tive effects of decentralization and asynchronous delays on
stability. We further investigate the stability results for two
commonly used learning rates in the following corollary.

Corollary 1 Let the loss function be convex, and Assump-
tions 1-3 hold. For the constant learning rate αt = α, we
have

εstab ≤
2L2αT

nm
+

2βL2α2T

m

( 1

1− λ
+
τ

m

)
.

If we choose the decreasing learning rate αt = 1
t+1 ,

εstab ≤
2L2

nm
lnT +

2βL2

m

(Cλ
λτ

+
2τ

m

)
,

where Cλ = 8
λe2 ln2 1

λ

+ 2
λ ln 1

λ

is a constant determined by
λ, and τ is the delay bound.

Corollary 1 shows that AD-SGD also has the train faster,
generalize better property as (Hardt, Recht, and Singer
2016) in the convex case. Therefore, in practice, stopping
training early after reaching a low training error can be con-
sidered to achieve a better generalization performance.
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Strongly Convex Case
In the strongly convex case, the gradient update has a well-
contracted property, which gifts the following better stability
bound.
Theorem 2 Let the loss function be µ-strongly convex, and
Assumptions 1-3 hold. If we run AD-SGD with the constant
learning rate αt ≡ α ≤ m/β for T iterations, then the
uniform stability satisfies

εstab ≤
2L2

µn
+

2βL2α

µ

( 1

1− λ
+
τ

m

)
.

Furthermore, if we choose the decreasing learning rateαt =
m

µ(t+1) , AD-SGD has the uniform stability with

εstab ≤
2L2

µn
+

2βL2(mCλ + τ2λτ )

µ2λτ
lnT + 1

T
.

Compared with the convex case, the uniform stability
εstab is independent of the iterative number T with the con-
stant learning rate. Furthermore, the extra errors introduced
by asynchrony and decentralization in the decreasing learn-
ing rate strategy vanish as training proceeds.

Non-convex Case
This part focus on the non-convex optimization problem,
which is widespread in training deep neural networks.
Theorem 3 Assume that the loss function isL-Lipschitz and
β-smooth, then the uniform stability εstab of AD-SGD after
T iterations is bounded by
T−1∑
t=1

[ T−1∏
k=t+1

(1+
βαk
m

)
]2L2αt

m

( 1

n
+

t−τt−1∑
s=1

βαsλ
t−τt−1−s

)
.

Without the convexity property, this bound expands with
coefficient (1 + βα/m), indicating that the algorithmic sta-
bility deteriorates when optimizing non-convex problems.
The last term reflects the joint effect of decentralization,
asynchrony, and learning rate on the stability of AD-SGD,
which can be reduced by setting appropriate learning rate
and delays. However, decentralization always compromises
the stability since 0 < λ < 1. We then need to construct a
well-connected communication graph (means a smaller λ) in
practice for better generalizability, which is consistent with
the findings in (Zhu et al. 2022). Corollary 2 gives the sim-
plified results about two common learning rates.
Corollary 2 Let Assumptions 1-3 hold. If we run AD-SGD
with the constant learning rate αt ≡ α for T iterations, then

εstab ≤
2L2(1 + βnα− λ)

βn(1− λ)
(1 +

βα

m
)T−1.

If the learning rate is decreasing by αt = m
β(t+1) , we have

εstab ≤
2L2(1 + nm− λ)

βn(1− λ)
T.

Following [Lemma 3.11, (Hardt, Recht, and Singer
2016)], we can improve the upper bound on the stability of
AD-SGD by considering the timing of encountering differ-
ent samples in datasets S and S ′ during the training.

Theorem 4 Let the loss function f(·; z) ∈ [0, 1] and As-
sumptions 1-3 hold. If we set αt = mc

t+1 where constant c is
small enough. Then the uniform stability satisfies

εstab ≤
1 + 1/βc

n

[
2L2c(1 +

nmβc

1− λ
)

] 1
βc+1

T
βc
βc+1 .

Excess Generalization Error of AD-SGD
In this section, we concentrate on the excess generalization
error, which captures the performance of the output model
on unknown data (i.e., model’s generalization performance).
From decomposition (1), excess generalization error εexc is
upper bounded by the summation of generalization error
εgen and optimization error εopt, where εgen is controlled by
the uniform stability εstab in the previous section.

Although there have been many optimization analyses of
AD-SGD (Lian et al. 2018; Nadiradze et al. 2021; Jiang
et al. 2021; Xu, Zhang, and Wang 2021), they only give con-
vergence results for the gradient norm E‖∇FS(x)‖. In this
study, we need to investigate the optimization error of the
objective function value E[FS(x) − FS(x∗S)], which is still
absent for AD-SGD. We first give the optimization error in
terms of objective function value for the strongly convex,
convex, and non-convex cases. Then we derive the excess
generalization error εexc of AD-SGD. We only present the
results for the decreasing learning rate due to space restric-
tions. More theoretical analysis is included in the supple-
mentary material.

Strongly Convex Optimization
Theorem 5 Let the loss function be µ-strongly convex, and
Assumptions 1-4 hold. If the learning rate is chosen as αt =

m
2µ(t+1) , we have

εopt ≤
βL2 lnT

8µ2T
+
β2rL(mCλ + τ2λτ )

2µ2λτ
lnT + 1

T
+

2βr2

T
.

where r is the radius of the closed ball in Assumption 4.
Then, the excess generalization error satisfies

εexc ≤
2L2

µn
+
βL(4L+ βr)(mCλ + τ2λτ )

2µ2λτ
lnT + 1

T

+
βL2 lnT

8µ2T
+
β‖x1 − x∗S‖

2T
.

Theorem 5 shows that asynchrony and decentralization
also impair the optimization process of AD-SGD, but the op-
timization error vanishes as the training proceeds. Therefore,
we can make a trade-off between the optimization and gen-
eralization errors for the total training iterations T to min-
imize the excess generalization error εexc. Also, similar to
(Kuzborskij and Lampert 2018; Lei and Ying 2020), The-
orem 5 reveals the effect of the initial point on the general-
ization performance, i.e., the generalizability improves if we
start with a good model.

Convex Optimization
Without the strong convexity, the optimization analysis often
turns to the average model xT =

∑T
t=1 αtxt∑T
t=1 αt

(Sun, Li, and
Wang 2021; Lei and Ying 2020).
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Theorem 6 Let the loss function be convex and Assump-
tions 1-4 hold. With a decreasing learning rate αt = 1

t+1 ,
the optimization error satisfies

εopt ≤
[
4mr2 + 4βrL(

Cλ
λτ

+
2τ

m
) +

L2

m

] 1

ln(T + 1)
.

For consistency, we first need to give the uniform stability
of the average model xT , denoted as εave−stab, and then the
excess generalization error bound follows.

Theorem 7 Let the loss function be convex and Assump-
tions 1-4 hold. If the learning rate is chosen as αt = 1

t+1 ,
we have

εave−stab ≤
2L2

nm
ln(T + 1) +

4βL2

m

(
Cλ
λτ

+
2τ

m

)
.

Then, the excess generalization error is bounded by

εexc ≤
2L2

nm
ln(T + 1) +

4βL2

m

(
Cλ
λτ

+
2τ

m

)
+
[
m‖x1 − x∗S‖+ 4βrL(

Cλ
λτ

+
2τ

m
) +

L2

m

] 1

ln(T + 1)
.

Non-convex Optimization
The analysis in non-convex settings is more challenging but
also more important since optimization problems in the ML
community are usually non-convex. In this part, we provide
optimization error results for non-convex problems under
the following Polyak-Łojasiewicz (PŁ) condition (Polyak
1963; Lojasiewicz 1963).
Definition 2 (PŁ-condition) Let x∗ ∈ argminx f(x). We
say that a function f(x) : Ω → R satisfies the γ-PŁ condi-
tion, where γ > 0 is a constant, if for ∀x ∈ Ω, we have

2γ[f(x)− f(x∗)] ≤ ‖∇f(x)‖2.
This condition reveals the relationship between the loss
function value and its gradient norm. The PŁ-condition
(a.k.a., gradient-dominated condition) is widely adopted in
the convergence and generalization analysis for non-convex
optimization and was shown to hold true for deep (linear)
and shallow neural networks (Charles and Papailiopoulos
2018; Karimi, Nutini, and Schmidt 2016; Lei, Ledent, and
Kloft 2020; Zhou, Liang, and Zhang 2022).

Theorem 8 Suppose that the loss function satisfies the γ-PŁ
condition and Assumptions 1-4 hold. If we run AD-SGD with
αt = m

γ(t+1) for T iterations, the optimization error satisfies

εopt ≤
[
2Lr +

βmL2

γ2
(
Cλ
λτ

+
2τ

m
) +

βL2

2γ2

] 1

ln(T + 1)
.

The uniform stability of the average model and the excess
generalization error of AD-SGD in the non-convex case are
bounded in the following theorem.

Theorem 9 Let the loss function satisfies the γ-PŁ condi-
tion and Assumptions 1-4 hold. If the learning rate is chosen
as αt = mc

t+1 with a small constant c, we have

εave−stab ≤
4L2

βc

(
1

βn
+

mc

1− λ

)
(T + 1)βc

ln(T + 1)
.

Then, the excess generalization error satisfies

εexc ≤
4L2

βc

(
1

βn
+

mc

1− λ

)
(T + 1)βc

ln(T + 1)

+
[
2Lr + βmL2c2(

Cλ
λτ

+
2τ

m
) +

βL2c2

2

] 1

γc ln(T + 1)
.

Experiment
This section contains extensive experiments to measure the
generalization performance of the AD-SGD algorithm. We
first use the convex linear model classifying the MNIST
(LeCun et al. 1998) dataset to verify the theoretical results
in the general convex case. For the non-convex problem,
we conducted abundant experiments with the deep models
ResNet-18 (He et al. 2016) and VGG-16 (Simonyan and
Zisserman 2015) on three commonly used datasets, CIFAR-
10, CIFAR-100 (Krizhevsky, Hinton et al. 2009), and Tiny-
ImageNet (Le and Yang 2015). The local training batch size
is set to 256 for all experiments. We focus on exploring
the role played by learning rates, asynchronous delays, and
decentralized topologies. To make the results more inter-
pretable, we avoid other training techniques such as warm-
up or weight decay.

The experiments are conducted on four physical machines
with a total of 16 distributed computing workers. Each ma-
chine is equipped with four Nvidia RTX-3090 24 GB GPUs,
two Intel Xeon 4214R @2.40 GHz CPUs and 128 GB DDR4
RAMs, and the machines are connected via 100 Gbps Infini-
Band. All our experimental results are based on a PyTorch
(Paszke et al. 2019) implementation of the NCCL backend.

Figures 1 and 2 illustrate the experimental results of clas-
sifying MNIST with a convex linear model and CIFAR-100
with the non-convex ResNet-18. The results show that the
generalization error increases as training proceeds, which
is consistent with our theoretical findings. To explore the
effect of varying learning rates on the generalization per-
formance, we fixed the delay sequence and the decentral-
ized topology, and the results are presented in Figures 1(a)
and 2(a). According to our theoretical results, increasing the
learning rate will impair the stability of AD-SGD and thus
leads to a larger generalization error, which is verified by
the experimental observations. We then fixed the learning
rate and communication topology to perform AD-SGD with
different asynchronous delays. Figures 1(b) and 2(b) show
that a reasonable increase in asynchronous delay reduces the
generalization error, which is consistent with Theorem 3 but
also implies the theoretical results regarding asynchrony are
pessimistic in the convex case.

The four communication topologies used in the experi-
ments are shown in Figure 3, where the complete topology is
taken as the baseline because it is not a decentralized setup.
The values of λ characterize the sparsity of the four topolo-
gies and satisfy the following relationship

0 = λcomplete < λbipartite < λring ≈ λstar < 1.

Theoretical analysis shows that a well-connected communi-
cation topology (implying a smaller λ) can improve its gen-
eralization performance. Therefore, although decentraliza-
tion reduces the communication overhead of the AD-SGD

7345



0 1 2 3 4
Iteration 1e4

0.00

0.05

0.10

0.15
G

en
er

al
iz

at
io

n 
er

ro
r 0.5

0.3
0.2
0.1

(a) Learning rate

0 1 2 3 4
Iteration 1e4

0.00

0.01

0.02

0.03

0.04

G
en

er
al

iz
at

io
n 

er
ro

r 16
32
64
128

(b) Asynchronous delay

0 1 2 3 4
Iteration 1e4

0.00

0.01

0.02

0.03

0.04

G
en

er
al

iz
at

io
n 

er
ro

r

Star
Ring
Bipartite
Complete

(c) Decentralized topology

Figure 1: Generalization errors for varying learning rates, asynchronous delays, and decentralized topologies when optimizing
general convex models. Here generalization error is the absolute value of the difference between testing and training errors.
(a). Fixed maximum delay τ = 32, ring topology; (b). Fixed learning rate α = 0.1, ring topology; (c). Fixed α = 0.1, τ = 32.
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Figure 2: Generalization error for optimizing non-convex problems. (a). Fixed maximum delay τ = 32, ring topology. Decreas-
ing learning rate αt = α

1+0.01t with varying α; (b). Fixed αt = 0.1
1+0.01t , ring topology; (c). Fixed αt = 0.1

1+0.01t , τ = 32.
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Figure 3: Illustration of the communication topologies.

algorithm, it impairs the generalization performance, which
is also demonstrated in the results of Figures 1(c) and 2(c).

Figure 4 presents the training and testing errors of AD-
SGD, corresponding to its optimization error and excess
generalization error. The experimental configuration is the
same as in Figure 2(b). Figure 4(a) shows that the asyn-
chronous delay impairs the training process, which is con-
sistent with our optimization theory. On the other hand, ap-
propriately increasing the delay can alleviate the overfit-
ting phenomenon, as shown in Figure 4(b), which also ex-
plains why adding asynchronous delay can reduce the gen-
eralization error. More experimental results, including the
performance of convex models under decreasing learning
rate strategies; non-convex ResNet-18 and VGG-16 on the
CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets, are in-
cluded in the supplementary material.
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Figure 4: Training and testing errors for varying delays.

Conclusion
In this paper, we study the generalization performance of
the asynchronous decentralized stochastic gradient descent
algorithm for the first time. Building on the uniform sta-
bility framework, we present upper bounds for the gener-
alization error and excess generalization error of AD-SGD
in the strongly convex, convex and non-convex cases. Our
results reveal the effects of asynchronous delay, decentral-
ized topology, learning rate and training iterations on the
generalizability of AD-SGD, and extensive experiments are
conducted to verify the theoretical findings. Future research
directions include deriving sharper upper bounds of stability
and generalizability, and lower bounds on the generalization
error of SGD in the asynchronous decentralized setting.
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