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Abstract

Parallel tempering (PT), also known as replica exchange, is
the go-to workhorse for simulations of multi-modal distribu-
tions. The key to the success of PT is to adopt efficient swap
schemes. The popular deterministic even-odd (DEO) scheme
exploits the non-reversibility property and has successfully
reduced the communication cost from quadratic to linear given
the sufficiently many P chains. However, such an innovation
largely disappears in big data due to the limited chains and
few bias-corrected swaps. To handle this issue, we generalize
the DEO scheme to promote non-reversibility and propose
a few solutions to tackle the underlying bias caused by the
geometric stopping time. Notably, in big data scenarios, we ob-
tain a nearly linear communication cost based on the optimal
window size. In addition, we also adopt stochastic gradient
descent (SGD) with large and constant learning rates as ex-
ploration kernels. Such a user-friendly nature enables us to
conduct approximation tasks for complex posteriors without
much tuning costs.

Introduction
Langevin diffusion is a standard sampling algorithm that
follows a stochastic differential equation

dβt = −∇U(βt)dt+
√
2τdW t,

where βt ∈ Rd, U(·) is the energy function U(·), W t ∈ Rd

is a Brownian motion, and τ is the temperature. The diffusion
process converges to a stationary distribution π(β) ∝ e−

U(β)
τ

and setting τ = 1 yields a Bayesian posterior. A convex
U(·) leads to a rapid convergence (Dalalyan 2017); how-
ever, a non-convex U(·) inevitably slows down the mixing
rate (Raginsky, Rakhlin, and Telgarsky 2017; Deng et al.
2022; Deng, Lin, and Liang 2022). To accelerate simulations,
replica exchange Langevin diffusion (reLD) proposes to in-
clude a high-temperature particle β(P )

t , where P ∈ N+ \{1},
for exploration. Meanwhile, a low-temperature particle β

(1)
t

is presented for exploitation:

dβ
(P )
t = −∇U(β

(P )
t )dt+

√
2τ (P )dW

(P )
t

dβ
(1)
t = −∇U(β

(1)
t )dt+

√
2τ (1)dW

(1)
t ,

(1)
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where τ (P ) > τ (1) and W
(P )
t is independent of W (1)

t . To
promote more explorations for the low-temperature particle,
the particles at the position (β(1), β(P )) ∈ R2d swap with a
probability aS(β(1), β(P )), where

S(β(1), β(P )) = 1 ∧ e

(
1

τ(1)
− 1

τ(P )

)(
U(β(1))−U(β(P ))

)
, (2)

and a ∈ (0,∞) is the swap intensity. To be specific, the
conditional swap rate at time t follows that

P(βt+dt = (β(P ), β(1))|βt = (β(1), β(P )))

= aS(β(1), β(P ))dt.

In the longtime limit, the Markov jump process converges

to the joint distribution π(β(1),β(P )) ∝ e
−U(β(1))

τ(1)
−U(β(P ))

τ(P ) ,

where the marginals are denote by π(1)(β) ∝ e
−U(β)

τ(1) and

π(P )(β) ∝ e
−U(β)

τ(P ) .

Preliminaries
Sufficient explorations require a large τ (P ), which leads to
limited accelerations due to a small overlap between π(1) and
π(P ). To tackle this issue, one can bring in multiple particles
with temperatures (τ (2), · · · , τ (P−1)), where τ (1) < τ (2) <
· · · < τ (P ), to hollow out “tunnels”. To maintain feasibility,
numerous schemes are presented to select candidate pairs to
attempt the swaps.

APE The all-pairs exchange (APE) attempts to swap ar-
bitrary pair of chains (Brenner et al. 2007; Lingenheil et al.
2009), however, such a method requires a swap time (see
definition in section A.5 (appendix) ) of O(P 3) and may not
be user-friendly in practice.

ADJ In addition to swap arbitrary pairs, one can also swap
adjacent (ADJ) pairs iteratively from (1, 2), (2, 3), to (P −
1, P ) under the Metropolis rule. Despite the convenience, the
sequential nature requires to wait for exchange information
from previous exchanges, which only works well with a small
number of chains and has greatly limited its extension to a
distributed context.

SEO The stochastic even-odd (SEO) scheme first divides
the adjacent pairs {(p − 1, p)|p = 2, · · · , P} into E and
O, where E and O denote even and odd pairs of forms
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(a) Reversibility (b) Non-reversibility (c) Non-reversible chains

Figure 1: (Non-)Reversibility. (a): a reversible index that takes O(P 2) time to communicate; (b): a linear non-reversible index
moves along a periodic orbit.

(2p− 1, 2p) and (2p, 2p+ 1), respectively. Then, SEO ran-
domly picks E or O pairs with an equal chance in each
iteration to attempt the swaps. Notably, it can be conducted si-
multaneously without waiting from other chains. The scheme
yields a reversible process (see Figure 1(a)), however, the
gains in overcoming the sequential obstacle don’t offset the
O(P 2) round trip time and SEO is still not effective enough.

DEO The deterministic even-odd (DEO) scheme instead
attempts to swap even (E) pairs at even (E) iterations and
odd (O) pairs at odd (O) iterations alternatingly† (Okabe
et al. 2001). The asymmetric manner was later interpreted
as a non-reversible PT (Syed et al. 2021) and an ideal index
process follows a periodic orbit, as shown in Figure 1(b).
With a large swap rate, Figure 1(c) shows how the scheme
yields an almost straight path and a linear round trip time can
be expected.

Equi-acceptance The power of PT hinges on maximizing
the number of round trips, which is equivalent to minimiz-
ing

∑P−1
p=1

1
1−rp

(Nadler and Hansmann 2007a), where rp
denotes the rejection rate for the chain pair (p, p+ 1). More-
over,

∑P−1
p=1 rp converges to a fixed barrier Λ as P → ∞

(Predescu, Predescu, and Ciobanu 2004; Syed et al. 2021).
Applying Lagrange multiplies to the constrained optimization
problem leads to r1 = r2 = · · · = rP−1 := r, where r is the
equi-rejection rate. In general, a quadratic round trip time is
required for ADJ and SEO due to the reversible indexes. By
contrast, DEO only yields a linear round trip time in terms
of P as P → ∞ (Syed et al. 2021).

Optimal Non-reversible Scheme for PT
The linear round trip time is appealing for maximizing the
algorithmic potential, however, such an advance only occurs
given sufficiently many chains. In non-asymptotic settings
with limited chains, a pearl of wisdom is to avoid frequent
swaps (Dupuis et al. 2012) and to keep the average acceptance
rate from 20% to 40% (Kone and Kofke 2005; Lingenheil
et al. 2009; Atchadé, Roberts, and Rosenthal 2011). Most
importantly, the acceptance rates are severely reduced in

†E (O) shown in iterations means even (odd) iterations and
denotes even (odd) pairs for chain indexes.

big data due to the bias-corrected swaps associated with
stochastic energies (Deng et al. 2020), see details in section
A.1 (appendix) . As such, maintaining low rejection rates in
big data becomes quite challenging and the issue of quadratic
costs still exists.

Generalized DEO Scheme
Continuing the equi-acceptance settings, we see in Figure
2(a) that the probability for the blue particle to move up-
ward 2 steps to maintain the same momentum after a pair
of even and odd iterations is (1− r)2. As such, with a large
equi-rejection rate r, the blue particle often makes little
progress (Figure 2(b-d)). To handle this issue, the key is
to propose small enough rejection rates to track the periodic
orbit in Figure 1(b). Instead of pursuing excessive amount
of chains, we resort to a different solution by introducing
the generalized even and odd iterations EW and OW , where
W ∈ N+, EW = {⌊ k

W ⌋ mod 2 = 0|k = 1, 2, · · · ,∞}
and OW = {⌊ k

W ⌋ mod 2 = 1|k = 1, 2, · · · ,∞}. Now, we
present the generalized DEO scheme with a window size W
as follows and refer to it as DEOW : §

◦ Attempt to swap E (or O) pairs at EW (or OW ) iterations.

◦ Allow at most one swap at EW (or OW ) iterations.

As shown in Figure 2(e), the blue particle has a larger chance
of (1 − r2)2 to move upward 2 steps given W = 2 instead
of (1 − r)2 when W = 1, although the window number is
also halved. Such a trade-off inspires to analyze the round
trip based on a window of size W .

How to alleviate the bias Although allowing at most one
swap introduces the geometric stopping of swaps and affects
the target distribution (see section 2 of (Gerber, Shiu, and
Yang 2015)), the bias can be much alleviated empirically
by introducing a window-wise correction term. Moreover, it
becomes rather mild when the energy estimators have a large
variance. Check section C.2 (appendix) for the details. For
tasks without high-accuracy demands, we propose to ignore
the correction term in practice following Li et al. (2016) to

§The generalized DEO with the optimal window size is denoted
by DEO⋆.

7333



(a) DEO (b) Bad case 1 (c) Bad case 2 (d) Bad case 3 (e) DEO2

Figure 2: Illustration of DEO and DEO2. (a): an ideal DEO scheme; (b-d): failed DEO swaps given a large r; (e): how DEO2

tackles the issue. The x-axis and y-axis denote (generalized) E (or O) iterations and E (or O) pairs, respectively. The dashed line
denotes no swap; the gray areas are frozen to refuse swapping odd pairs at even iterations (or vice versa); the blue area freezes
swap attempts.

facilitate the round trip analysis and promote more tractable
explorations.

Analysis of Round Trip Time
To bring sufficient interactions between the reference dis-
tribution π(P ) and the target distribution π(1), we expect to
minimize the expected round trip time T (defined in section
A.5 (appendix) ) to ensure both efficient exploitation and
explorations. The non-Markovian nature of the index process
makes the analysis challenging. To facilitate the analysis, we
treat swap indicators as independent Bernoulli variables fol-
lowing Syed et al. (2021). Combining the Markov property,
we estimate the expected round trip time E[T ] as follows:
Lemma 1. Under the stationary and weak independence
assumptions B1 and B2 in section B (appendix) , for P (P ≥
2) chains with window size W (W ≥ 1) and rejection rates
{rp}P−1

p=1 , we have

E[T ] = 2WP + 2WP
P−1∑
p=1

rWp
1− rWp︸ ︷︷ ︸

Quadratic term in P

. (3)

The proof in section B.1 shows that E[T ] increases as we
adopt larger number of chains P and rejection rates {rp}P−1

p=1 .
In such a case, the round trip rate P

E[T ] is also maximized
by the key renewal theorem. In particular, applying W = 1
recovers the vanilla DEO scheme.

Analysis of Optimal Window Size
By Lemma 1, we observe a potential to remove the quadratic
term given an appropriate W . Such a fact motivates us to
study the optimal W to achieve the best efficiency. Under
the equi-acceptance settings, by treating W as a continuous
variable and taking the derivative with respect to W , we have

∂

∂W
E[T ] =

2P

(1− rW )2

{
(1− rW )2

+ (P − 1)rW (1− rW +W log r)

}
,

(4)

where r is the equi-rejection rate for adjacent chains. De-
fine x := rW ∈ (0, 1), where W = logr(x) = log x

log r . The
following analysis hinges on the study of the solution of
g(x) = (1 − x)2 + (P − 1)x(1 − x + log(x)) = 0. By

analyzing the growth of derivatives and boundary values, we
can identify the uniqueness of the solution. Then, we pro-
ceed to verify that 1

P logP yields an approximation such that

g( 1
P logP ) = − log(logP )

logP + O
(

1
logP

)
→ 0 as P → ∞. In

the end, we have
Theorem 1. Under Assumptions B1 (Stationarity) and B2
(Weak independence) based on equi-acceptance settings, if
P = 2, 3, the minimal round trip time is achieved when
W = 1. If P ≥ 4, with the optimal window size W⋆ ≈⌈
logP+log logP

− log r

⌉
, where ⌈·⌉ is the ceiling function. The round

trip time follows O(P logP
− log r ).

The result yields a remarkable round trip time of
O(P logP ) by setting the optimal W⋆. By contrast, the
vanilla DEO only leads to a longer time of O(P 2) §. Denot-
ing by DEO⋆ the generalized DEO with the optimal window
size W⋆, we summarize the popular swap schemes in Table
1, where DEO⋆ performs the best among all the three criteria.
We acknowledge that the assumptions are inevitably strong to
simplify the analysis (Syed et al. 2021) due to the intractable
index process. Empirically, assumption B1 approximately
holds after a sufficient burn-in period; more in-depth discus-
sions on the robustness of assumption B2 have also been
evaluated in section 7.2 of Syed et al. (2021).

Discussions on the Optimal Number of Chains
Note that in practice given P parallel chains, a large P leads
to a smaller equi-rejection rate r. As such, we can further
obtain a crude estimate of the optimal P to minimize the
round trip time.
Corollary 1. Under Assumptions B1-B4 and C1 with equi-
acceptance and the optimal window, the optimal chains fol-
low that P⋆ > minp

σp

3τ (p) log(
τ (P )

τ (1) ), where σp is defined in
Eq.(14) (appendix) .

The assumptions and proof are postponed in section B.3
(appendix) . In mini-batch settings, insufficient chains may
lead to few effective swaps for accelerations; by contrast,
introducing too many chains may be too costly in terms of the
round trip time. This is different from the conclusion in full-
batch settings, where Syed et al. (2021) suggested running
the vanilla DEO scheme with as many chains as possible to

§By Taylor expansion, given a large rejection rate r, − log(r) =
1− r, which means 1

− log(r)
= O( r

1−r
).
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ROUND TRIP TIME (NON-ASYMPTOTIC) ROUND TRIP TIME (ASYMPTOTIC) SWAP TIME
ADJ O(P 2) (NADLER AND HANSMANN 2007B) O(P 2) (NADLER AND HANSMANN 2007B) O(P )
SEO O(P 2) (SYED ET AL. 2021) O(P 2) (SYED ET AL. 2021) O(1)
DEO O(P 2) (SYED ET AL. 2021) O(P ) (SYED ET AL. 2021) O(1)
DEO⋆ O(P logP ) O(P ) O(1)

Table 1: Round trip time and swap time for different schemes. Notably, non-asymptotic refers to cases with large rejection rates
due to a limited number of chains; asymptotic occurs given sufficiently many chains such that rejection rates are close to 0. The
APE scheme requires an expensive swap time of O(P 3) and is not compared.

Algorithm 1: Non-reversible parallel tempering with SGD-
based exploration kernels (DEO⋆-SGD).

Input Number of chains P ≥ 3, boundary learning rates η(1)

and η(P ), target swap rate S.
Input Optimal window size W :=

⌈
logP+log logP

− log(1−S)

⌉
.

for k = 0 to K do
βk+1 ∼ Tη(βk) following Eq.(6) ▷ Sampling phase
P =

{
∀p ∈ {1, 2, · · · , P} : p mod 2 = ⌊ k

W
⌋ mod 2

}
.

for p = 1, 2 to P − 1 do
A(p) := 1

Ũ(β
(p+1)
k+1

)+Ck<Ũ(β
(p)
k+1

)

if k mod W=0 then
Open: G(p) = 1. ▷ Open the gate to allow swaps

end if
if p ∈ P and G(p) and A(p) then

Swap: β
(p)
k+1 and β

(p+1)
k+1 . ▷ Communication phase

Freeze: G(p) = 0. ▷ Close the gate to refuse swaps
end if
if p > 1 then

Update learning rate following Eq.(11)
end if

end for
Correction: Ck+1 = Ck + γk

(
1

P−1

∑P−1
p=1 A(p) − S

)
.

end for
Output Target models {β(1)

k }Kk=1.

yield a small enough equi-rejection rate r to maintain the
non-reversibility.

Cutoff phenomenon On the one hand, when we only af-
ford at most P chains, where P < P⋆, a large equi-rejection
rate r is inevitable and DEO⋆ is preferred over DEO; on the
other hand, the rejection rate r goes to 0 when P ≫ P⋆ and
DEO⋆ recovers the DEO scheme.

In section B.4 (appendix) , we show P⋆ is in the order
of thousands for the CIFAR100 example, which is hard to
achieve due to the limited budget and further motivates us
to adopt finite chains with a target swap rate S to balance
between acceleration and accuracy.

User-friendly Approximate Explorations
Despite the asymptotic correctness, stochastic gradient
Langevin dynamics (Welling and Teh 2011) (SGLD) only
works well given small enough learning rates and fails in
explorative purposes (Ahn, Korattikara, and Welling 2012).
A large learning rate, however, leads to excessive stochastic

gradient noise and ends up with a crude approximation. As
such, similarly to Izmailov et al. (2018); Zhang et al. (2020),
we only adopt SGLD for exploitations.

Efficient explorations not only require a high temperature
but also prefer a large learning rate. Such a demand inspires
us to consider SGD with a constant learning rate η as the
exploration component

βk+1 = βk − η∇Ũ(βk)

= βk − η∇U(βk)−
√
2η

(η
2

)
ε(βk),

(5)

where Ũ(·) is the unbiased energy estimate of U(·) and
ε(βk) ∈ Rd is the stochastic gradient noise with mean 0. Un-
der mild normality assumptions on ε (Mandt, Hoffman, and
Blei 2017; Chen et al. 2020), βk converges approximately to
an invariant distribution, where the underlying temperature
linearly depends on the learning rate η. Motivated by this
fact, we propose an approximate transition kernel Tη with P
parallel SGD runs based on different learning rates

Exploration:


β

(P )
k+1 = β

(P )
k − η(P )∇Ũ(β

(P )
k ),

· · ·
β

(2)
k+1 = β

(2)
k − η(2)∇Ũ(β

(2)
k ),

Exploitation: β
(1)
k+1 = β

(1)
k − η(1)∇Ũ(β

(1)
k ) +

optional︷︸︸︷
Ξk ,

(6)

where η(1) < η(2) < · · · < η(P ), Ξk ∼ N (0, 2η(1)τ (1)),
and τ (1) is the target temperature.

Since there exists an optimal learning rate for SGD to esti-
mate the desired distribution through Laplace approximation
(Mandt, Hoffman, and Blei 2017), the exploitation kernel can
be also replaced with SGD based on constant learning rates
if the accuracy demand is not high. Regarding the validity of
adopting different learning rates for parallel tempering, we
leave discussions to section A.2 (appendix) .

Approximation Analysis
Moreover, the stochastic gradient noise exploits the Fisher
information (Ahn, Korattikara, and Welling 2012) and yields
convergence potential to wide optima with good generaliza-
tions (Berthier, Bach, and Gaillard 2020). Despite the imple-
mentation convenience, the inclusion of SGDs has made the
temperature variable inaccessible, rendering a difficulty in
implementing the Metropolis rule Eq.(2). To tackle this issue,
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we utilize the randomness in stochastic energies and propose
a deterministic swap condition for the approximate kernel Tη
in Eq.(6)

Deterministic swap condition:

If Ũ(β(p+1)) + C < Ũ(β(p))

(β(p),β(p+1)) → (β(p+1),β(p)),
(7)

where p ∈ {1, 2, · · · , P − 1}, C > 0 is a correction buffer to
approximate the Metropolis rule Eq.(2).
Lemma 2. Assume the energy normality assumption (C1),
then for any fixed ∂Up := U(β(p)) − U(β(p+1)), there ex-
ists an optimal C⋆ ∈ (0, ( 1

τ (p) − 1
τ (p+1) )σ

2
p] that perfectly

approximates the random event S̃(β(p),β(p+1)) > u, where
σp defined in Eq.(14) (appendix) and u ∼ Unif [0, 1].

The proof is postponed in section C.1 (appendix) , which
paves the way for the guarantee that a deterministic swap
condition may replace the Metropolis rule Eq.(2) for ap-
proximations. In addition, the normality assumption can be
naturally extended to the asymptotic normality assumption
(Quiroz et al. 2019; Deng et al. 2021) given large enough
batch sizes. Admittedly, the approximation error still exists
for different ∂Up. By the mean-value theorem, there exists
a tunable C to optimize the overall approximation. Further
invoking the central limit theorem such that ε(·) in Eq.(5)
approximates a Gaussian distribution, we can expect a reason-
able approximation for the SGD-based exploration kernels
(Mandt, Hoffman, and Blei 2017).
Theorem 2. Consider the exact transition kernel T and
the proposed approximate kernel Tη , which yield stationary
distributions π and πη , respectively. Under smoothness (C2)
and dissipativity assumptions (C3), T satisfies the geometric
ergodicity such that there is a contraction constant ρ ∈ [0, 1)
for any distribution µ:

∥µT − π∥TV ≤ ρ∥µ− π∥TV,

where ∥ · ∥TV is the total variation (TV) distance. Moreover,
assume that ε(·) ∼ N (0,M) for some positive definite ma-
trix M (C4) (Mandt, Hoffman, and Blei 2017), then there is
a uniform upper bound of the one step error between T and
Tη such that

∥µT − µTη∥TV ≤ ∆max, ∀µ,
where ∆max ≥ 0 is a constant. Eventually, the TV distance
between π and πη is bounded by

∥π − πη∥TV ≤ ∆max

1− ρ
.

The proof is postponed to section C.2 (appendix) . The
SGD-based exploration kernels no longer require to fine-tune
the temperatures directly and naturally inherits the empirical
successes of SGD in large-scale deep learning tasks. The
inaccessible Metropolis rule Eq.(2) is approximated via the
deterministic swap condition Eq.(7) and leads to robust ap-
proximations by tuning η = (η(1), · · · , η(P )) and C.

In addition, our proposed algorithm for posterior approxi-
mation also relates to non-convex optimization. For detailed
discussions, we refer interested readers to section A.4 (ap-
pendix) .

Equi-acceptance Parallel Tempering
Stochastic approximation (SA) is a standard method to
achieve equi-acceptance (Atchadé, Roberts, and Rosenthal
2011), however, implementing this idea with fixed η(1) and
η(P ) is rather non-trivial. Motivated by the linear relation
between learning rate and temperature, we propose to adap-
tively optimize the learning rates to achieve equi-acceptance
in a user-friendly manner. Further by the geometric temper-
ature spacing commonly adopted by practitioners (Kofke
2002; Earl and Deem 2005; Syed et al. 2021), we adopt the
following scheme

∂ log(υ
(p)
t ) = h(p)(υ

(p)
t ), (8)

where p ∈ {1, 2, · · · , P − 1}, υ
(p)
t = η

(p+1)
t − η

(p)
t ,

h(p)(υ
(p)
t ) :=

∫
H(p)(υ

(p)
k ,β)π(p,p+1)(dβ) is the mean-

field function, π(p,p+1) is the joint invariant distribution for
the p-th and p+1-th processes. In particular, H(p)(υ

(p)
k ,β) =

1Ũ(β(p+1))+C<Ũ(β(p)) − S is the random-field function to ap-

proximate h(p)(υ
(p)
k ) with limited perturbations, υ(p)

k
† im-

plicitly affects the distribution of the indicator function, and
S is the target swap rate. Now consider stochastic approxima-
tion of Eq.(8), we have

log(υ
(p)
k+1) = log(υ

(p)
k ) + γkH

(p)(υ
(p)
k ,βk), (9)

where γk is the step size. Reformulating Eq.(9), we have

υ
(p)
k+1 = max(0, υ

(p)
k )eγkH(υ

(p)
k ),

where the max operator is conducted explicitly to ensure
the sequence of learning rates is non-decreasing. This means
given fixed boundary learning rates (temperatures) η(p−1)

k

and η
(p+1)
k , applying η(p) = η(p−1) + υ(p) and η(p) =

η(p+1) − υ(p+1) for p ∈ {2, 3, · · · , P − 1} lead to

η
(p)
k+1 = η

(p−1)
k +max(0, υ

(p)
k )eγkH(υ

(p)
k )︸ ︷︷ ︸

forward sequence

= η
(p+1)
k −max(0, υ

(p+1)
k )eγkH(υ

(p+1)
k )︸ ︷︷ ︸

backward sequence

.
(10)

Adaptive learning rates (temperatures) Now given a
fixed η(1), the sequence η(2), η(3), · · · , η(P ) can be approxi-
mated iteratively via the forward sequence of (10); conversely,
given a fixed η(P ), the backward sequence η(P−1), η(P−2),
· · · , η(1) can be decided reversely as well. Combining the
forward and backward sequences, η(p)k+1 can be approximated
via

η
(p)
k+1 :=

η
(p−1)
k + η

(p+1)
k

2
+

max(0, υ
(p)
k )eγkH(υ

(p)
k

) −max(0, υ
(p+1)
k )eγkH(υ

(p+1)
k

)

2
,

(11)

†υ
(p)
t denotes a continuous-time diffusion at time t and υ

(p)
k is a

discrete approximation at iteration k.
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which resembles the binary search in the SA framework. In
particular, the first term is the middle point given boundary
learning rates and the second term continues to penalize
learning rates that violates the equi-acceptance between pairs
(p−1, p) and (p, p+1) until an equilibrium is achieved. This
is the first attempt to achieve equi-acceptance given two fixed
boundary values to our best knowledge. By contrast, Syed
et al. (2021) proposed to estimate the barrier Λ to determine
the temperatures and it easily fails in big data given a finite
number of chains and bias-corrected swaps.

Adaptive correction buffers In addition, equi-acceptance
does not guarantee a convergence to the desired acceptance
rate S. To avoid this issue, we propose to adaptively optimize
C as follows

Ck+1 = Ck+γk

(
1

P − 1

P−1∑
p=1

1
Ũ(β

(p+1)
k+1

)+Ck−Ũ(β
(p)
k+1

)<0
− S

)
.

(12)
As k → ∞, the threshold and the adaptive learning rates

converge to the desired fixed points. Note that setting a uni-
form C greatly simplifies the algorithm.Now we refer to
the approximate non-reversible parallel tempering algorithm
with the DEO⋆ scheme and SGD-based exploration kernels
as DEO⋆-SGD and formally formulate our algorithm in Al-
gorithm 1. Extensions of SGD with a preconditioner (Li
et al. 2016) or momentum (Chen, Fox, and Guestrin 2014)
to further improve the approximation and efficiency are both
straightforward (Mandt, Hoffman, and Blei 2017) and are
denoted as DEO⋆-pSGD and DEO⋆-mSGD, respectively.

Experiments
Simulations of Multi-Modal Distributions
We first simulate the proposed algorithm on a distribution
π(β) ∝ exp(−U(β)), where β = (β1, β2), U(β) =
0.2(β2

1 + β2
2) − 2(cos(2πβ1) + cos(2πβ2)). The heat map

is shown in Figure 3(a) with 25 modes of different volumes.
To mimic big data scenarios, we can only access stochastic
gradient ∇Ũ(β) = ∇U(β) + 2N (0, I2×2) and stochastic
energy Ũ(β) = U(β) + 2N (0, I).

(a) Truth (b) S = 0.2 (c) S = 0.4 (d) S = 0.6

Figure 3: Study of different target swap rate S via DEO⋆-SGD,
where SGLD is the exploitation kernel.

We first run DEO⋆-SGD×P16 based on 16 chains and
20,000 iterations. We fix the lowest learning rate 0.003 and
the highest learning 0.6 and propose to tune the target swap
rate S for the acceleration-accuracy trade-off. Figure 3 shows
that fixing S = 0.2 is too conservative and underestimates
the uncertainty on the corners; S = 0.6 results in too many
radical swaps and eventually leads to crude estimations; by

contrast, S = 0.4 yields the best posterior approximation
among the five choices.

(a) Round trips (b) Accept rates

Figure 4: Study of window sizes and acceptance rates.

Next, we select S = 0.4 and study the round trips. We
observe in Figure 4(a) that the vanilla DEO only yields 18
round trips every 1,000 iterations; by contrast, slightly in-
creasing W tends to improve the efficiency significantly and
the optimal 45 round trips are achieved at W = 8, which
matches our theory. In Figure 4(b), the geometrically initial-
ized learning rates lead to unbalanced acceptance rates in
the early phase and some adjacent chains have few swaps,
but as the optimization proceeds, the learning rates gradually
converge.

(a) Truth (b) SGLD (c) cycSGLD (d) DEO-SGD (e) DEO⋆-SGD

Figure 5: Simulations of the multi-modal distribution through
different sampling algorithms. All the algorithms are run
based on 16 chains ×P16

We compare the proposed algorithm with parallel SGLD
based on 20,000 iterations and 16 chains (SGLD×P16); we
fix the learning rate 0.003 and a temperature 1. We also
run cycSGLD×T16, which denotes a single chain based on
16 times of budget and cosine learning rates (Zhang et al.
2020) of 100 cycles. We see in Figure 5(b) that SGLD×P16
has good explorations but fails to approximate the poste-
rior. Figure 5(c) shows that cycSGLD×T16 explores most
of the modes but overestimates some areas occasionally.
Figure 5(d) demonstrates the DEO-SGD with 16 chains
(DEO-SGD×P16) estimates the uncertainty of the center-
ing 9 modes well but fails to deal with the rest of the modes.
As to DEO⋆-SGD×P16, the approximation is rather accurate,
as shown in Figure 5(e). We also present the index process
for both schemes in Figure 6. The vanilla DEO scheme re-
sults in volatile paths and a particle takes quite a long time
to complete a round trip; by contrast, DEO⋆ only conducts
at most one cheap swap in a window and yields much more
deterministic paths.
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MODEL
ResNet20 ResNet32 ResNet56

NLL ACC (%) NLL ACC (%) NLL ACC (%)
cycSGHMC×T10 8198±59 76.26±0.18 7401±28 78.54±0.15 6460±21 81.78±0.08
cycSWAG×T10 8164±38 76.13±0.21 7389±32 78.62±0.13 6486±29 81.60±0.14

mSGD×P10 7902±64 76.59±0.11 7204±29 79.02±0.09 6553±15 81.49±0.09
DEO-mSGD×P10 7964±23 76.84±0.12 7152±41 79.34±0.15 6534±26 81.72±0.12
DEO⋆-mSGD×P10 7741±67 77.37±0.16 7019±35 79.54±0.12 6439±32 82.02±0.15

Table 2: Posterior approximation and optimization on CIFAR100 via 10× budget.

(a) DEO-SGD×P16

(b) DEO⋆-SGD×P16

Figure 6: Dynamics of the index process. The red path de-
notes the round trip path for a particle.

Posterior Approximation for Image Data
Next, we conduct experiments on computer vision tasks. We
choose ResNet20, ResNet32, and ResNet56 and train the
models on CIFAR100. We report negative log likelihood
(NLL) and test accuracy (ACC). For each model, we first
pre-train 10 fixed models via 300 epochs and then run algo-
rithms based on momentum SGD (mSGD) for 500 epochs
with 10 parallel chains and denote it by DEO⋆-mSGD×P10.
We fix the lowest and highest learning rates as 0.005 and
0.02, respectively. For a fair comparison, we also include the
baseline DEO-mSGD×P10 with the same setup except that
the window size is 1; the standard ensemble mSGD×P10 is
also included with a learning rate of 0.005. In addition, we
include two baselines based on a single long chain, i.e. we run
stochastic gradient Hamiltonian Monte Carlo 5000 epochs
with cyclical learning rates and 50 cycles (Zhang et al. 2020)
and refer to it as cycSGHMC×T10; we run SWAG×T10
(Maddox et al. 2019) under similar setups.

In particular for DEO⋆-mSGD×P10, we tune the target
swap rate S and find an optimum at S = 0.005. We compare
our proposed algorithm with the four baselines and observe
in Table 2 that mSGD×P10 can easily obtain competitive
results simply through model ensemble, which outperforms
cycSGHMC×T10 and cycSWAG×T10 on ResNet20 and
ResNet32 models and perform the worst among the five
methods on ResNet56; DEO-mSGD×P10 itself is already
a pretty powerful algorithm, however, DEO⋆-mSGD×P10
consistently outperforms the vanilla alternative.

To analyze why the proposed scheme performs well, we

(a) Round trips (b) Accuracies

Figure 7: Study of window sizes and accuracies on ResNet20.

study the round trips in Figure 7(a) and find that the theoreti-
cal optimal window obtains around 11 round trips every 100
epochs, which is almost 2 times as much as DEO. In Figure
7(b), we observe that the smallest learning rate obtains the
highest accuracy (blue) for exploitations, while the largest
learning rate yields decent explorations (red).

Appendix We refer readers to the full version at https://
arxiv.org/abs/2211.10837.

Code The code is released to https://github.com/
WayneDW/Non-reversible-Parallel-Tempering-for-Deep-
Posterior-Approximation for reproduction.

Conclusion

In this paper, we show how to adapt the multiple-chain paral-
lel tempering algorithm to big data problems. Given a limited
budget of parallel chains in big data, we show the standard
non-reversible DEO scheme leads to an expensive quadratic
communication cost with respect to the number of chains. To
tackle that issue, we propose a generalized DEO scheme to
achieve larger swap rates (window-wise) with mild costs. By
sacrificing a mild accuracy in big data, we prove the existence
of an optimal window size to encourage deterministic paths
and obtain in a significant acceleration of O( P

logP ) times. For
a user-friendly purpose, we also propose a deterministic swap
condition to interact with SGD-based exploration kernels. A
crude bias analysis is provided to facilitate the understanding
of the extensions.
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