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Abstract
In recent years, graph neural network (GNN) based approaches
have emerged as a powerful technique to encode complex
topological structure of crystal materials in an enriched repre-
sentation space. These models are often supervised in nature
and using the property-specific training data, learn relation-
ship between crystal structure and different properties like
formation energy, bandgap, bulk modulus, etc. Most of these
methods require a huge amount of property-tagged data to
train the system which may not be available for different prop-
erties. However, there is an availability of a huge amount
of crystal data with its chemical composition and structural
bonds. To leverage these untapped data, this paper presents
CrysGNN, a new pre-trained GNN framework for crystalline
materials, which captures both node and graph level struc-
tural information of crystal graphs using a huge amount of
unlabelled material data. Further, we extract distilled knowl-
edge from CrysGNN and inject into different state of the art
property predictors to enhance their property prediction ac-
curacy. We conduct extensive experiments to show that with
distilled knowledge from the pre-trained model, all the SOTA
algorithms are able to outperform their own vanilla version
with good margins. We also observe that the distillation pro-
cess provides a significant improvement over the conventional
approach of finetuning the pre-trained model. We have re-
leased the pre-trained model along with the large dataset of
800K crystal graph which we carefully curated; so that the pre-
trained model can be plugged into any existing and upcoming
models to enhance their prediction accuracy.

Introduction
Fast and accurate prediction of different material properties is
a challenging and important task in material science. In recent
times there has been an ample amount of data driven works
(Seko et al. 2015; Pilania, Gubernatis, and Lookman 2015;
Lee et al. 2016; De Jong et al. 2016; Seko et al. 2017; Isayev
et al. 2017; Ward et al. 2017; Lu et al. 2018; Im et al. 2019) for
predicting crystal properties which are as accurate as theoreti-
cal DFT [Density functional Theory] based approaches (Orio,
Pantazis, and Neese 2009), however, much faster than it.
The architectural innovations of these approaches towards
accurate property predictions come from incorporating spe-
cific domain knowledge into a deep encoding module. For
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example, in order to encode the neighbourhood structural
information around a node (atom), GNN based approaches
(Xie and Grossman 2018; Chen et al. 2019; Louis et al. 2020;
Park and Wolverton 2020; Schmidt et al. 2021) gained some
popularity in this domain. Understanding the importance of
many-body interactions, ALIGNN (Choudhary and DeCost
2021) incorporates bond angular information into their en-
coder module and became SOTA for a large range of property
predictions. However, as different properties expressed by a
crystalline material are a complex function of different in-
herent structural and chemical properties of the constituent
atoms, it is extremely difficult to explicitly incorporate them
into the encoder architecture. Moreover, data sparsity across
properties is a known issue (Das et al. 2022; Jha et al. 2019),
which makes these models difficult to train for all the prop-
erties. To circumvent this problem we adopt the concept of
self-supervised pre-training (Devlin et al. 2018; Trinh, Lu-
ong, and Le 2019; Chen et al. 2020a,b; He et al. 2020; Hu
et al. 2020a,b; Qiu et al. 2020; You et al. 2020) for crystalline
materials which enables us to leverage a large amount of
untagged material structures to learn the complex hidden fea-
tures which otherwise are difficult to identify.
In this paper, we introduce a graph pre-training method which
captures (a) connectivity of different atoms, (b) different
atomic properties and (c) graph similarity from a large set of
unlabeled data. To this effect, we curate a new large untagged
crystal dataset with 800K crystal graphs and undertake a
pre-training framework (named CrysGNN) with the dataset.
CrysGNN learns the representation of a crystal graph by ini-
tiating self-supervised loss at both node (atom) and graph
(crystal) level. At the node level, we pre-train the GNN model
to reconstruct the node features and connectivity between
nodes in a self-supervised way, whereas at the graph level,
we adopt supervised and contrastive learning to learn struc-
tural similarities between graph structures using the space
group and crystal system information of the crystal materials
respectively.
We subsequently distill important structural and chemical in-
formation of a crystal from the pre-trained CrysGNN model
and pass it to the property predictor. The distillation pro-
cess provides wider usage than the conventional pretrain-
finetuning framework as transferring pre-trained knowledge
to a property predictor and finetuning it requires a similar
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graph encoder architecture between the pre-trained model
and the property predictor, which limits the knowledge trans-
fer capability of the pre-trained model. On the other hand,
using knowledge distillation (Romero et al. 2014; Hinton
et al. 2015), we can retrofit the pre-trained CrysGNN model
into any existing state-of-the-art property predictor, irrespec-
tive of their architectural design, to improve their property
prediction performance. Also experimental results (presented
later) show that even in case of similar graph encoder, distil-
lation performs better than finetuning.
With rigorous experimentation across two popular benchmark
materials datasets, we show that distilling necessary informa-
tion from CrysGNN 1 to various property predictors results in
substantial performance gains for GNN based architectures
and complex ALIGNN model. The improvements range from
4.19% to 16.20% over several highly optimized SOTA mod-
els. We also perform ablation studies to investigate the influ-
ence of different pre-training losses in enhancing the SOTA
model performance and observe significant performance gain
employing the both node and graph-level pre-training, com-
pared to node-level or graph-level pre-training separately.
Also using both supervised and contrastive graph-level pre-
training, we are able to learn more robust and expressive
graph representation which enhances the property predictor
performance. This also helps to achieve even better improve-
ments when the dataset is sparse. Moreover, the property-
tagged dataset suffers from certain biases as it is theoretically
(DFT) derived, hence the property predictor also suffers from
such bias. We found that on being trained with small amount
of experimental data, the DFT bias decreases substantially.

Related Work
In recent times, data driven approaches (Seko et al. 2015; Pila-
nia, Gubernatis, and Lookman 2015; Lee et al. 2016; De Jong
et al. 2016; Seko et al. 2017; Isayev et al. 2017; Ward et al.
2017; Lu et al. 2018; Im et al. 2019) have become quite pop-
ular to establish relationship between the atomic structure
of crystalline materials and their properties with very high
precision. Especially, graph neural network (GNN) based ap-
proaches (Xie and Grossman 2018; Chen et al. 2019; Louis
et al. 2020; Park and Wolverton 2020; Schmidt et al. 2021;
Choudhary and DeCost 2021) have emerged as a powerful
machine learning model tool to encode material’s complex
topological structure along with node features in an enriched
representation space.
There are attempts to pre-train GNNs to extract graph and
node-level representations. (Hu et al. 2020a) develops an ef-
fective pre-training strategy for GNNs, where they perform
both node-level and graph-level pre-training on GNNs to cap-
ture domain specific knowledge about nodes and edges, in
addition to global graph-level knowledge. Followed by this
work, there has been several other works on self-supervised
graph pre-training (Hu et al. 2020b; Qiu et al. 2020; You et al.
2020), which propose different graph augmentation methods
and maximizes the agreement between two augmented views
of the same graph via a contrastive loss. In the field of crystal

1Source code, pre-trained model, and dataset of CrysGNN is
made available at https://github.com/kdmsit/crysgnn

graphs, CrysXPP (Das et al. 2022) is the only model which
comes close to a pre-trained model. In their work, an autoen-
coder is trained on a volume of un-tagged crystal graphs and
the learned knowledge is (transferred to) used to initialize
the encoder of CrysXPP, which is fine-tuned with property
specific tagged data.
Although conceptually similar to the work done by Hu et al.
(2020a), our work differs in the following three key aspects:
(1) pre-training strategy proposed by Hu et al. is very effec-
tive for molecular dataset, but it is difficult to extend directly
to crystalline material because structural semantics are dif-
ferent between molecules and materials (Xie et al. 2021).
Molecules have non-periodic and finite structures, solid ma-
terials’ structures are infinite and periodic in nature. (2) For
graph-level pre-training, Hu et al. adapted supervised graph-
level property prediction using a huge amount of labelled
dataset from chemistry and biology domain, which makes it
less effective in several other domains like material science
where property labeled data is extremely scarce. Also, a cru-
cial step in graph-level prediction is to find graph structural
similarity between two sets of graphs, which they do not
explore but mention as a future work. We do not make use
of supervised pre-training which requires a large amount of
property tagged material data. Instead, we leverage the idea
of structural similarity of materials belonging to the similar
space group, and via contrastive loss and space group classi-
fication loss, we try to capture this similarity. (3) Finally they
follow conventional pre-train finetuning framework, whereas
in CrysGNN we incorporate the idea of knowledge distil-
lation (Romero et al. 2014; Hinton et al. 2015) to distill
important information from the pre-trained model and in-
ject it into the property prediction process. By design, this
knowledge distillation based approach is more robust and
independent of the underlying architecture of the property
predictor, thus it can enhance the performance of a diverse
set of SOTA models.

Methodology

Formally, we first curate a huge amount of property un-tagged
crystal graphs Du = {Gi} from various materials datasets to
pre-train a deep GNN model fθ, that learns intrinsic structural
and chemical patterns of the crystal graphs. Further, we use a
training set of property tagged crystal graphs Dt = {Gi, yi}
for property prediction, which is smaller in volume and may
or may not be disjoint from the original untagged set Du.
We train any supervised property predictor Pψ using Dt to
predict the property value given the crystal graph structure.
While training the property predictor, we incorporate the
idea of knowledge distillation to distill important structural
and chemical information from the pre-trained model. This
knowledge may prove to be useful to a property predictor
which now need not learn from scratch, but be armed with
distilled knowledge from the pre-trained model. Hence in this
section, we first describe the CrysGNN pre-training strategy,
followed by the knowledge distillation and property predic-
tion process.
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Figure 1: Overview of both node and graph-level decoding methods for CrysGNN. (a) In node-level decoding, node feature
attributes and connectivity between nodes are reconstructed in a self-supervised way. (b) In graph-level decoding, G2 is the
pivot graph and G1 is from the same crystal system (Cubic), whereas G3, G4, G5 are from different crystal systems. First we
reconstruct space group information of G2, then through contrastive loss, CrysGNN will maximize similarities between positive
pair (G2, G1) and minimize similarities between negative pairs (G2, G3), (G2, G4) and (G2, G5) in embedding space.

CrysGNN Pre-training
We build a deep auto-encoder architecture CrysGNN, which
comprises a graph convolution based encoder followed by an
effective decoder. The autoencoder is (pre)trained end to end,
using a large amount of property un-tagged crystal graphs
Du = {Gi}, where via node and graph-level self-supervised
losses, the model can capture the structural and chemical
information of the crystal graph data. First, we formalize the
representation of a crystal 3D structure into a multi-graph
structure, which will be an input to the encoder module.

Crystal Graph Representation. We realize a crystal ma-
terial as a multi-graph structure Gi = (Vi, Ei,Xi,Fi) as
proposed in (Xie and Grossman 2018). Gi is an undirected
weighted multi-graph where Vi denotes the set of nodes
or atoms present in a unit cell of the crystal structure.
Ei = {(u, v, kuv)} denotes a multi-set of node pairs and
kuv denotes number of edges between a node pair (u, v).
Xi = {(xu|u ∈ Vi)} denotes the node feature set proposed
by CGCNN (Xie and Grossman 2018). It includes differ-
ent chemical properties like electronegativity, valance elec-
tron, covalent radius, etc. Finally, Fi = {{sk}(u,v)|(u, v) ∈
Ei, k ∈ {1..kuv}} denotes the multi-set of edge weights
where sk corresponds to the kth bond length between a node
pair (u, v), which signifies the inter-atomic bond distance
between two atoms. Next, we formally define CrysGNN pre-
training and knowledge distillation based property prediction
strategy.

Self Supervision. We first develop a graph convolution
(Xie and Grossman 2018) based encoding module, which
takes crystal multi-graph structure G = (V, E ,X ,F) as in-
put and encodes structural semantics of the crystal graph
into lower dimensional space. Each layer of convolution, fol-
lows an iterative neighbourhood aggregation (or message
passing) scheme to capture the structural information within
node’s (atom’s) neighbourhood. After L-layers of such aggre-
gation, the encoder returns the final set of node embeddings
Z = {z1, ..., z|V|}, where zu := zLu represents the final em-

bedding of node u. Details of the GNN architecture is in
Appendix. Next, we design an effective decoding module,
which takes node embeddings Z as input and learns local
chemical features and global structural information through
node and graph-level decoding, respectively. Decoding node-
level information will enable CrysGNN to learn local do-
main specific chemical features and connectivity information
around an atom, while decoding graph-level features will
help CrysGNN capture global structural knowledge.
Node-Level Decoding. For node-level decoding (Fig-1(a)),
we propose two self-supervised learning methods, where
we reconstruct two important features that induce the local
chemical environment of the crystal around a node (atom).
For a given node u, we first reconstruct its node features
xu, which represent different chemical properties of atom
u. Given a node embedding zu, which is encoded based on
neighbouring structure around atom u, we apply a linear
transformation on top of zu to reconstruct the node attributes.
In crystalline graphs, node features correspond to different
chemical properties associated with the constituent atoms
through reconstructing these features CrysGNN captures lo-
cal chemical semantics around that atom.
Further, we reconstruct local connectivity around an atom,
where given node embeddings of two nodes u and v, we ap-
ply a bi-linear transformation module to generate combined
transformed embedding of two nodes zuv, which we pass
through a feed forward network to predict the strength of
association between two atoms. Through reconstructing this
local connectivity around an atom, CrysGNN encodes the
periodicity of the node i.e. the number of neighbours around
it along with the relative position of its neighbours and their
bond length.
Graph-level Decoding. We aim to capture periodic structure
of a crystal material through graph-level decoding (Fig-1(b)).
We specifically leverage two concepts in doing so. (a). Space
group which is used to describe the symmetry of a unit cell
of the crystal material. In materials science literature there
are 230 unique space groups and each crystal (graph) has a
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Figure 2: Overview of Property Prediction using Knowledge Distillation from CrysGNN.

unique space group number. (b). Crystal system. The space
group level information can classify a crystal graph into 7
broad groups of crystal systems like Triclinic, Monoclinic,
Orthorhombic, Tetragonal, Trigonal, Hexagonal, and Cubic.
Several electronic and optical properties such as band gap,
dielectric constant depend on the space-group and the crys-
tal structure justifying its usage. More information about
different space groups and crystal systems is in Appendix

Given the set of node embeddings Z = {z1, ..., z|V|}, we
use a symmetric aggregation function to generate graph-level
representation ZG . First, we pass ZG through a feed-forward
neural network to predict the space group number of graph
G. Further, we develop a contrastive learning framework for
pre-training of CrysGNN, where pre-training is performed
by maximizing (minimizing) similarity between two crystal
graphs belonging to the same (different) crystal system via
contrastive loss in graph embedding space. A mini-batch of
N crystal graphs is randomly sampled and processed through
contrastive learning to align the positive pairs ZGi ,ZGj of
graph embeddings, which belong to the same crystal sys-
tem and contrast the negative pairs which are from different
crystal systems. Here we adopt the normalized temperature-
scaled cross-entropy loss (NT-Xent)(Sohn 2016; Van den
Oord, Li, and Vinyals 2018; Wu et al. 2018) and NT-Xent for
the ith graph is defined:

Li = −log
exp(sim(ZGi ,ZGj )/τ)∑K
k=1 exp(sim(ZGi

,ZGk
)/τ)

(1)

where τ denotes the temperature parameter and
sim(ZGi

,ZGj
) denotes cosine similarity function. The final

loss LNTXent is computed across all positive pairs in the
minibatch. Overall we pre-train this deep auto-encoder
architecture CrysGNN end to end to optimize the following
loss :

Lpretrain = αLFR + βLCR + γLSG + λLNTXent (2)

where LFR,LCR are the reconstruction losses for node fea-
ture, and local connectivity, ,LSG is the space group super-
vision loss, LNTXent is the contrastive loss and α, β, γ, λ
are the weighting coefficients of each loss. We denote the set
of parameters in CrysGNN model as θ and the pre-trained
CrysGNN as fθ.

Task Datasets Graph Structural Properties Data
Task Datasets Num. Info. Count Type

Pre-training OQMD 661K ✓ x DFT Calculated
MP 139K ✓ x DFT Calculated

Property
Prediction

MP 2018.6.1 69K ✓ 2 DFT Calculated
JARVIS-DFT 55K ✓ 19 DFT Calculated
OQMD-EXP 1.5K ✓ 1 Experimental

Table 1: Datasets Details

Distillation and Property Prediction
We aim to retrofit the pre-trained CrysGNN model into any
SOTA property predictor to enhance its learning process and
improve performance (Fig-2). Hence we incorporate the idea
of knowledge distillation to distill important structural and
chemical information from the pre-trained model, which is
useful for the downstream property prediction task, and feed
it into the property prediction process. Formally, given the
pre-trained CrysGNN model fθ, any SOTA property predictor
Pψ and set of property tagged training data Dt = {Gi, yi},
we aim to find optimal parameter values ψ∗ for P . We train
Pψ using dataset Dt to optimize the following multitask loss:

Lprop = δLMSE + (1− δ)LKD (3)

where LMSE = (ŷi − yi)
2 denotes the discrepancy between

predicted and true property values by Pψ (property prediction
loss). We define knowledge distillation loss LKD to match
intermediate node feature representation between the pre-
trained CrysGNN model and the SOTA property predictor
Pψ as LKD = ∥ZT

i −ZS
i ∥2 where ZT

i and ZS
i denote inter-

mediate node embeddings of the pre-trained CrysGNN and
the property predictor Pψ for crystal graph Gi, respectively.
Note, both ZT

i and ZS
i are projected on the same latent space.

Finally, δ signifies relative weightage between two losses,
which is a hyper-parameter to be tuned on validation data.
During property prediction the pre-trained network is frozen
and we backpropagate Lprop through the predictor Pψ end
to end.

Experimental Results
In this section, we evaluate how the distilled knowledge from
CrysGNN enhances the performance of different state of
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Property CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN ALIGNN ALIGNN
(Distilled) (Distilled) (Distilled) (Distilled)

Formation Energy 0.039 0.032 0.041 0.035 0.096 0.091 0.026 0.024
Bandgap (OPT) 0.388 0.293 0.347 0.287 0.427 0.403 0.271 0.253

Formation Energy 0.063 0.047 0.062 0.048 0.132 0.117 0.036 0.035
Bandgap (OPT) 0.200 0.160 0.190 0.176 0.275 0.235 0.148 0.131

Total Energy 0.078 0.053 0.072 0.055 0.194 0.137 0.039 0.038
Ehull 0.170 0.121 0.139 0.114 0.241 0.203 0.091 0.083

Bandgap (MBJ) 0.410 0.340 0.378 0.350 0.395 0.386 0.331 0.325
Spillage 0.386 0.374 0.363 0.357 0.350 0.348 0.358 0.356

SLME (%) 5.040 4.790 5.110 4.630 5.050 4.950 4.650 4.590
Bulk Modulus (Kv) 12.45 12.31 13.61 12.70 11.64 11.53 11.20 10.99
Shear Modulus (Gv) 11.24 10.87 11.20 10.56 10.41 10.35 9.860 9.800

Table 2: Summary of the prediction performance (MAE) of different properties in Materials project (Top) and JARVIS-DFT
(Bottom). Model M is the vanilla variant of a SOTA model and M (Distilled) is the distilled variant using the pretrained CrysGNN.
The best performance is highlighted in bold.

the art property predictors on a diverse set of crystal prop-
erties from two popular benchmark materials datasets. We
first briefly discuss the datasets used both in pre-training and
downstream property prediction tasks. Then we report the
results of different SOTA property predictors on the down-
stream property prediction tasks. Next, we illustrate the ef-
fectiveness of our knowledge distillation method compared
to the conventional fine-tuning approach. We further conduct
some ablation studies to show the influence of different pre-
training losses in predicting different crystal properties and
the performance of the system to sparse dataset. Finally, we
demonstrate how distilled knowledge from the pre-trained
model aids the SOTA models to remove DFT error bias, using
very little experimental data.

Datasets
We curated 800K untagged crystal graph data from two pop-
ular materials databases, Materials Project (MP) and OQMD,
to pre-train CrysGNN model. Further to evaluate the perfor-
mance of different SOTA models with distilled knowledge
from CrysGNN, we select MP 2018.6.1 version of Materials
Project and 2021.8.18 version of JARVIS-DFT, another pop-
ular materials database, for property prediction as suggested
by (Choudhary and DeCost 2021). Please note, MP 2018.6.1
dataset is a subset of the dataset used for pre-training, whereas
JARVIS-DFT is a separate dataset which is not seen during
the pre-training. MP 2018.6.1 consists of 69,239 materials
with two properties bandgap and formation energy, whereas
JARVIS-DFT consists of 55,722 materials with 19 proper-
ties which can be broadly classified into two categories : 1)
properties like formation energy, bandgap, total energy, bulk
modulus, etc. which depend greatly on crystal structures and
atom features, and 2) properties like ϵx, ϵy, ϵz , n-Seebeck,
n-PF, etc. which depend on the precise description of the
materials’ electronic structure. In the following section, we
will evaluate effectiveness of CrysGNN on the first class of
properties. The impact of structural information is marginal
on the second class of property hence all the SOTA perform
poorly, there is however some modest improvement using
CrysGNN; we have put the results and the discussion about
it in the Appendix.

Moreover, all these properties in both Materials Project and
JARVIS-DFT datasets are based on DFT calculations of
chemicals. Therefore, to investigate how pre-trained knowl-
edge helps to mitigate the DFT error, we also take a small
dataset OQMD-EXP (Kirklin et al. 2015), containing 1,500
available experimental data of formation energy. Details of
each of these datasets are given in Table 1.

Downstream Task Evaluation
To evaluate the effectiveness of CrysGNN, we choose four
diverse state of the art algorithms for crystal property predic-
tion, CGCNN (Xie and Grossman 2018), GATGNN (Louis
et al. 2020), CrysXPP (Das et al. 2022) and ALIGNN (Choud-
hary and DeCost 2021). To train these models for any spe-
cific property, we adopt the multi-task setting discussed in
equation 3 ,where we distill relevant knowledge from the
pre-trained CrysGNN to each of these algorithms to predict
different properties. We report mean absolute error (MAE)
of the predicted and actual value of a particular property to
compare the performance of different participating methods.
For each property, we trained on 80% data, validated on 10%
and evaluated on 10% of the data. We compare the results of
distilled version of each SOTA model with its vanilla version
(version reported in the respective papers), to show the effec-
tiveness of the proposed framework.
Results. In Table 2, we report MAE of different crystal prop-
erties of Materials project and JARVIS-DFT datasets. In the
distilled version of the SOTA models, while training the
model, we distill information from the pre-trained CrysGNN
model. We observe that the distilled version of any state-of-
the-art model outperforms the vanilla model across all the
properties. In specific, average improvement in CGCNN,
CrysXPP, GATGNN and ALIGNN are 16.20%, 12.21%,
8.02% and 4.19%, respectively. These improvements are
particularly significant as in most of the cases, the MAE is al-
ready low for SOTA models, still pretraining enables improve-
ment over that. In fact, lower the MAE, higher the improve-
ment. We calculate Spearman’s Rank Correlation between
MAE for each property across different SOTA models and
their improvement due to distilled knowledge and found it to
be very high (0.72), which supports the aforementioned ob-
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servations. The average relative improvement across all prop-
erties for ALIGNN (4.19%) and GATGNN (8.02%) is lesser
compared to CGCNN (16.20%) and CrysXPP (12.21%). A
possible reason could be that ALIGNN and GATGNN are
more complex models (more number of parameters) than the
pre-trained CrysGNN framework. Hence designing a deeper
pre-training model or additionally incorporating angle-based
information (ALIGNN) or attention mechanism (GATGNN)
as a part of pre-training framework may help to improve fur-
ther. This requires further investigation and we keep it as a
scope of future work.
Comparison with Existing Pre-trained Models. We fur-
ther demonstrate the effectiveness of the knowledge dis-
tillation method vis-a-vis the conventional fine-tuning ap-
proaches. Note that the encoding architecture is same for
CrysGNN, CGCNN, and CrysXPP. CrysXPP is very similar
to a pretrained-finetuned version of CGCNN. Thus we com-
pare distilled version of CGCNN with finetuned version of
CrysGNN and CrysXPP. Additionally, we consider Pretrain-
GNN (Hu et al. 2020a) which is a popular pre-training al-
gorithm for molecules. We pre-train all the baseline models
on our curated 800K untagged crystal data and fine-tune on
seven properties in JARVIS dataset and report the MAE in
Table 3. We feed multi-graph structure of the crystal ma-
terial (as discussed in “Crystal Graph Representation”) in
Pretrain-GNN and try different combinations of node-level
pre-training strategy along with the graph-level supervised
pre-training (as suggested in (Hu et al. 2020a)) and report
the minimum MAE for any specific property. For finetuned
CrysGNN, we take the pre-trained encoder of CrysGNN and
feed a multilayer perceptron to predict a specific property. We
observe that distilled CGCNN outperforms finetuned version
of CrysGNN and both the baselines with a significant margin
for all the properties. Pretrain-GNN performs the worst and
the potential reason is - it is designed considering simple
two-dimensional structure of molecules with a minimal set
of node and bond features, which is hard to generalize for
crystal materials which have very complex structure with a
rich set of node and edge features.
Effectiveness on sparse training dataset. Finally, to demon-
strate the effectiveness of the pre-training in limited data
settings, we conduct additional set of experiments under
different training data split. In specific, we vary available
training data from 20 to 60 %, train different SOTA models
and check their performance on test dataset. We observe that
the distilled version of any SOTA model consistently outper-
forms its vanilla version even more in the limited training data
setting, which illustrates the robustness of our pre-training
framework. We report the MAE values of different baselines
and their distilled version in Table 4.

Analysis of Different Pre-training Losses
We perform an ablation study to investigate the influence of
different pre-training losses in enhancing the SOTA model
performance. While pre-training CrysGNN (Eq. 2), we cap-
ture both local chemical and global structural information
via node and graph-level decoding, respectively. Further,
we are curious to know the influence of each of these de-
coding policies independently in the downstream property

Property CGCNN CrysGNN CrysXPP Pretrain
(Distilled) (Finetuned) -GNN

Formation Energy 0.047 0.056 0.062 0.764
Bandgap (OPT) 0.160 0.183 0.190 0.688

Total Energy 0.053 0.069 0.072 1.451
Ehull 0.121 0.130 0.139 1.112

Bandgap (MBJ) 0.340 0.371 0.378 1.493
Bulk Modulus (Kv) 12.31 13.42 13.61 20.34
Shear Modulus (Gv) 10.87 11.07 11.20 16.51

SLME (%) 4.791 5.452 5.110 9.853
Spillage 0.354 0.374 0.363 0.481

Table 3: Comparison of the prediction performance (MAE)
of seven properties in JARVIS-DFT between CrysGNN and
existing pretrain-finetune models, the best performance is
highlighted in bold.

Property Train CGCNN CrysXPP GATGNN ALIGNN
Test(%) (Distilled) (Distilled) (Distilled) (Distilled)

Bandgap
(MBJ)

20-70 0.453 (23.0) 0.450 (24.8) 0.521 (3.7) 0.485 (2.5)
40-50 0.419 (21.4) 0.405 (18.4) 0.448 (2.8) 0.395 (2.2)
60-30 0.364 (19.0) 0.360 (17.3) 0.439 (2.2) 0.380 (1.9)

Bulk Modulus
(Kv)

20-70 16.26 (3.8) 14.25 (7.5) 14.19 (4.1) 14.06 (4.3)
40-50 14.46 (2.3) 14.02 (7.3) 12.59 (3.0) 12.11 (2.8)
60-30 14.05 (1.2) 13.73 (6.9) 11.75 (2.1) 11.01 (1.9)

Shear Modulus
(Gv)

20-70 12.50 (10.0) 12.07 (9.8) 12.42 (3.2) 12.31 (3.1)
40-50 11.54 (4.1) 11.01 (9.4) 11.23 (1.7) 10.67 (2.8)
60-30 11.31 (3.7) 10.67 (9.3) 10.47 (1.6) 10.04 (1.9)

SLME (%)
20-70 6.62 (7.1) 5.90 (16.4) 6.02 (5.2) 6.27 (1.4)
40-50 5.78 (5.9) 5.81 (15.6) 5.63 (2.6) 5.57 (1.4)
60-30 5.24 (5.6) 4.84 (10.5) 5.34 (2.5) 4.82 (1.3)

Table 4: MAE values of distilled version of all the SOTA mod-
els for four different properties in JARVIS-DFT dataset with
the increase in training instances from 20 to 60%. Relative
improvement in the distilled model is mentioned in bracket.

prediction task. In specific, we conduct the ablation exper-
iments, where we pre-train CrysGNN with (a) only node-
level decoding (LFR, LCR), (b) only graph-level decoding
(LSG, LNTXent). Further, we perform ablations with indi-
vidual graph-level losses, and pretrain with (c) removing
LNTXent (node-level with LSG (space group)) and (d) re-
moving LSG (node-level with LNTXent(crystal system)).
We train two baseline models, CGCNN and ALIGNN, with
distilled knowledge from all the aforementioned variants of
the pre-trained model and evaluate the performance on four
crystal properties.
Experimental results are presented in Fig. 3. We can observe

clearly that all the variants offer significant performance gain
in all four properties using the combined node and graph-
level pre-training, compared to node-level or graph-level
pre-training separately. Only exception is formation energy,
where only node-level pre-training produces less error com-
pared to other variants, in both the baseline. Formation en-
ergy of a crystal is defined as the difference between the
energy of a unit cell comprised of N chemical species and
the sum of the chemical potentials of all the N chemical
species. Hence pre-training at the node-level (node features
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Experiment Settings CGCNN CGCNN CrysXPP CrysXPP GATGNN GATGNN ALIGNN ALIGNN
(Distilled) (Distilled) (Distilled) (Distilled)

Train on DFT
Test on Experimental

0.265 0.244 (7.60) 0.243 0.225 (7.40) 0.274 0.232 (15.3) 0.220 0.209 (5.05)

Train on DFT and 20 % Experimental
Test on 80 % Experimental

0.144 0.113 (21.7) 0.138 0.118 (14.2) 0.173 0.168 (2.70) 0.099 0.094 (5.60)

Train on DFT and 80 % Experimental
Test on 20 % Experimental

0.094 0.073 (22.7) 0.087 0.071 (18.4) 0.113 0.109 (3.40) 0.073 0.069 (5.90)

Table 5: MAE of predicting experimental values by different SOTA models and their distilled versions with full DFT data and
different percentages of experimental data for formation energy in OQMD-EXP dataset. Relative improvement in the distilled
model is mentioned in bracket.

(a) Formation Energy (b) Bandgap (MBJ)

(c) Total Energy (d) Bulk Modulus (Kv)

Figure 3: Summary of experiments of ablation study on
the importance of different pre-training loss components on
CrysGNN training and eventually its effect on CGCNN and
ALIGNN models on four different properties (MAE for prop-
erty prediction). (i) Vanilla [Orange]: SOTA based model
(without distillation) and all the other cases are SOTA models
(distilled) from different pre-trained version of CrysGNN. (ii)
Node [Red]: only node-level pre-training, (iii) Graph [Blue]:
only graph-level pre-training, (iv) Node + L(SG) [Magenta]:
node-level and LSG, (v) Node + L(NTXent) [Cyan]: node-
level and LNTXent and (vi) CrysGNN [Green]: both node
and graph-level pre-training.

and connection) is adequate for enhancing performance of
formation energy prediction and incorporating graph-level
information works as a noisy information, which degrades
the performance. We also observe improvement in perfor-
mance using both supervised and contrastive graph-level
losses (LSG and LNTXent), compared to using only one of
them, which proves the learned representation via supervised
and contrastive learning is more expressive that using any
one of them. Moreover, in ALIGNN, with either node or
graph-level pre-training separately, performance degrades
across different properties. ALIGNN explicitly captures the
three body interactions which drive its performance, to repli-
cate that inclusion of both node and graph information is
necessary.

Removal of DFT error bias using experimental data
One of the fundamental issues in material science is that ex-
perimental data for crystal properties are very rare. Hence
existing SOTA models rely on DFT calculated data to train
their parameters. However, mathematical approximations in
DFT calculation lead to erroneous predictions (error bias)
compared to the actual experimental values of a particular
property. Hence DFT error bias is prevalent in all SOTA mod-
els. (Das et al. 2022) has shown that pre-training helps to re-
move DFT error bias when fine-tuned with experimental data.
Hence, we investigate whether SOTA models can remove
the DFT error with distilled knowledge from pre-trained
model, using a small amount of available experimental data.
In specific, we consider OQMD-EXP dataset to conduct an
experiment, where we train SOTA models and their distilled
variants with available DFT data and different percentages of
experimental data for formation energy. We report the MAE
of different SOTA models and their distilled variant in Table
5. We observe, with more amount of experimental training
data, all the SOTA models are minimizing the error consis-
tently. Moreover, with distilled knowledge from pre-trained
CrysGNN, all SOTA models are reducing MAE further and
we observe consistently larger degree of improvement with
more amount of experimental training data in almost all the
models.

Conclusion
In this work, we present a novel but simple pre-trained GNN
framework, CrysGNN, for crystalline materials, which cap-
tures both local chemical and global structural semantics
of crystal graphs. To pre-train the model, we curate a huge
dataset of 800k unlabelled crystal graphs. Further, while
predicting different crystal properties, we distill important
knowledge from CrysGNN and inject it into different state of
the art property predictors and enhance their performance. Ex-
tensive experiments on multiple popular datasets and diverse
set of SOTA models show that with distilled knowledge from
the pre-trained model, all the SOTA models outperform their
vanilla versions. Extensive experiments show its superiority
over conventional fine-tune models and its inherent ability to
remove DFT-induced bias. The pretraining framework can
be extended beyond structural graph information in a multi-
modal setting to include other important (text and image)
information about a crystal which would be our immediate
future work.
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