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Abstract

Data heterogeneity across clients in federated learning (FL)
settings is a widely acknowledged challenge. In response,
personalized federated learning (PFL) emerged as a frame-
work to curate local models for clients’ tasks. In PFL, a com-
mon strategy is to develop local and global models jointly -
the global model (for generalization) informs the local mod-
els, and the local models (for personalization) are aggregated
to update the global model. A key observation is that if we
can improve the generalization ability of local models, then
we can improve the generalization of global models, which
in turn builds better personalized models. In this work, we
consider class imbalance, an overlooked type of data hetero-
geneity, in the classification setting. We propose FedNH, a
novel method that improves the local models’ performance
for both personalization and generalization by combining the
uniformity and semantics of class prototypes. FedNH initially
distributes class prototypes uniformly in the latent space and
smoothly infuses the class semantics into class prototypes.
We show that imposing uniformity helps to combat prototype
collapse while infusing class semantics improves local mod-
els. Extensive experiments were conducted on popular clas-
sification datasets under the cross-device setting. Our results
demonstrate the effectiveness and stability of our method over
recent works.

Introduction
Federated learning (FL) (McMahan et al. 2017) is an emerg-
ing area that attracts significant interest in the machine learn-
ing community due to its capability to allow collaborative
learning from decentralized data with privacy protection.
However, in FL, clients may have different data distribu-
tions, which violates the standard independent and identi-
cally distribution (i.i.d) assumption in centralized machine
learning. The non-i.i.d phenomenon is known as the data
heterogeneity issue and is an acknowledged cause of the per-
formance degradation of the global model (Tan et al. 2022a).
Moreover, from the client’s perspective, the global model
may not be the best for their tasks. Therefore, personalized
federated learning (PFL) emerged as a variant of FL, where
personalized models are learned from a combination of the
global model and local data to best suit client tasks.
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While PFL methods address data heterogeneity, class im-
balance combined with data heterogeneity remains over-
looked. Class imbalance occurs when clients’ data consists
of different class distributions and the client may not possess
samples of a particular class at all. Ideally, the personalized
model can perform equally well in all classes that appeared
in the local training dataset. For example, medical institu-
tions have different distributions of medical records across
diseases (Ng et al. 2021), and it is crucial that the person-
alized model can detect local diseases with equal precision.
Meanwhile, the currently adopted practice of evaluating the
effectiveness of PFL methods can also be biased. Specifi-
cally, when evaluating the accuracy, a single balanced testing
dataset is split into multiple local testing datasets that match
clients’ training data distributions. Then each personalized
model is tested on the local testing dataset, and the aver-
aged accuracy is reported. However, in the presence of class
imbalance, such an evaluation protocol will likely give a bi-
ased assessment due to the potential overfitting of the dom-
inant classes. It is tempting to borrow techniques developed
for centralized class imbalance learning, like re-sampling or
re-weighting the minority classes. However, due to the data
heterogeneity in the FL setting, different clients might have
different dominant classes and even have different missing
classes; hence the direct adoption may not be applicable.
Furthermore, re-sampling would require the knowledge of
all classes, potentially violating the privacy constraints.

Recent works in class imbalanced learning in non-FL set-
tings (Kang et al. 2019; Zhou et al. 2020) suggest decou-
pling the training procedure into the representation learning
and classification phases. The representation learning phase
aims to build high-quality representations for classification,
while the classification phase seeks to balance the decision
boundaries among dominant classes and minority classes.
Interestingly, FL works such as (Oh, Kim, and Yun 2021;
Chen and Chao 2021) find that the classifier is the cause of
performance drop and suggest that learning strong shared
representations can boost performance.

Consistent with the findings in prior works, as later shown
in Figure 1, we observe that representations for different
classes are uniformly distributed over the representation
space and cluster around the class prototype when learned
with class-balanced datasets. However, when the training set
is class-imbalanced, as is the case for different clients, rep-
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resentations of minority classes overlap with those of ma-
jority classes; hence, the representations are of low quality.
Motivated by these observations, we propose FedNH (non-
parametric head), a novel method that imposes uniformity
of the representation space and preserves class semantics
to address data heterogeneity with imbalanced classes. We
initially distribute class prototypes uniformly in the latent
space as an inductive bias to improve the quality of learned
representations and smoothly infuse the class semantics into
class prototypes to improve the performance of classifiers on
local tasks. Our contributions are summarized as follows.
• We propose FedNH, a novel method that tackles data het-

erogeneity with class imbalance by utilizing uniformity
and semantics of class prototypes.

• We design a new metric to evaluate personalized model
performance. This metric is less sensitive to class imbal-
ance and reflects personalized model generalization abil-
ity on minority classes.

• Numerical experiments on Cifar10, Cifar100, and Tiny-
ImageNet show that FedNH can effectively improve both
personalized and global model classification accuracy.
The results are on par or better than the state-of-the-art,
with significantly fewer computation costs (refer to the
appendix for discussions on computation costs).

We close this section by introducing the notation and ter-
minology used throughout the paper.
Notation and Terminology. Let Rn and Rm×n denote the
set of n dimensional real vectors and the set of m-by-n
dimensional real matrices, respectively. Unless stated ex-
plicitly, ∥·∥ denotes the ℓ2 norm and | · | denotes the set
cardinality operator. Let [N ] denote the set {1, 2, · · · , N}
for any positive integer N . For any matrix A ∈ Rm×n,
Ai denotes the ith row of A. Let Nd(µ, σ) denote the d-
dimensional normal distribution with mean µ and variance
σ2. X ∼ Nd(µ, σ) represents a random sample from the
distribution. E[·] is the expectation operator and ⌈·⌉ is the
round-up operator.

For a neural network, we decompose its parameters into
the body (θ ) and the head ( W ). The body is used to learn
the abstract representation of inputs, and the head is used
for classification. The output of a neural network can be
written as Wf(θ; ·), where the second argument is a place-
holder for an input. In this work, we solely consider the last
linear layer as the head. We use the terms head and pro-
totype interchangeably as they both refer to parameters of
the last linear classification layer of the neural network. The
term head is often used in discussing the neural network’s
architecture, while the term prototype appears more often
when discussing the classification task. Some works define
the prototype as the averaged representations of a class, and
such a distinction will be made clear in the context.

Related Work
Personalized Federated Learning
PFL methods can be roughly classified based on the strate-
gies to generate personalized models, e.g., parameter de-
coupling, regularization, and model interpolation. For a de-
tailed discussion, we refer readers to the survey (Tan et al.

2022a). Here, we mainly focus on methods that decouple
the body and head when clients perform local training. Fed-
Per (Arivazhagan et al. 2019) learns the body and head con-
currently as in FedAvg and only shares the body with the
server. Therefore, a personalized model consists of a shared
body and a personalized head. FedRep (Collins et al. 2021)
learns the head and body sequentially and only shares the
body. Specifically, each client first learns the head with a
fixed body received from the server and then learns the body
with the latest personalized head fixed. FedBABU (Oh, Kim,
and Yun 2021) learns only the body with the randomly ini-
tialized and fixed head during local updates and shares only
the body to the server. Personalized models are obtained by
fine-tuning the global model when training is finished. Fe-
dROD (Chen and Chao 2021) designs a two-head-one-body
architecture, where the two heads consist of a generalized
head trained with class-balanced loss while the personalized
head is trained with empirical loss. The body and general-
ized head are shared with the server for aggregation, and
the personalized head is kept privately. The methods men-
tioned above assume that the model architectures are the
same across clients. FedProto (Tan et al. 2022b) lifts such
a restriction. It only shares the class prototypes (calculated
as the averaged representations of each class) so that differ-
ent clients can have different model architectures as bodies.

Class Imbalanced Learning
In the non-FL setting, data-level and algorithm-level ap-
proaches are the most common ways to address the class im-
balance. Over-sampling minority classes or under-sampling
majority classes are simple yet effective ways to create
more balanced class distributions (Kubat and Matwin 1997;
Chawla et al. 2002; He and Garcia 2009). However, they
may be vulnerable to overfitting minority classes or informa-
tion loss on majority classes. On the algorithm level, various
class-balanced losses are proposed to assign different losses
either sample-wise or class-wise (Lin et al. 2017; Khan et al.
2017; Cao et al. 2019; Cui et al. 2019). Recent works (Kang
et al. 2019; Zhou et al. 2020) suggest decoupling the train-
ing procedure into the representation learning and classifica-
tion phases, where strong representations are learned during
the first phase while the classifier is re-balanced during the
second phase. Wang et al. (2020) proposes a multi-expert
framework, where each expert is only responsible for a sub-
set of classes to minimize the bias on minority classes.

In the FL setting, a few works address the class imbalance.
(Duan et al. 2020) selects clients with complimentary class
distributions to perform updates, which requires clients to
reveal the class distribution to the server. (Wang et al. 2021)
assumes an auxiliary dataset with balanced classes is avail-
able on the server to infer the composition of training data
and designs a ratio loss to mitigate the impact of imbalance.
CReFF (Shang et al. 2022) extends the idea from (Kang et al.
2019) to re-train a classifier based on federated features in a
privacy preserving manner. To our best knowledge, FedROD
and CReFF are the only works that address the data het-
erogeneity with the class imbalance in the FL setting with-
out potential privacy leakage and without requiring auxiliary
datasets on the server side.
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Figure 1: Visualization of the learned representations and class prototypes. One color represents one class. (a): Balanced training
dataset. (b): Representations (dots) and class prototypes (dashed lines) learned under the balanced dataset with the free head
(FH), i.e, the classification head is also learnable. (c): Representations and class prototypes learned under the balanced dataset
with the uniform head (UH). (d) and (e) are parallel to (c) and (e), respectively, with the imbalanced training dataset.

Methodology
A Motivating Example
In PFL, a crucial part of training is done locally in each
client. We motivate our method by considering the behav-
ior of learned representations of inputs and class prototypes
learned by a neural network with the cross-entropy loss un-
der both balanced and imbalanced training datasets. We first
generate a balanced two-dimensional synthetic spiral train-
ing dataset (Figure 1(a)) with six classes, each with 3000
points. For each class k ∈ {0, · · · , 5}, the data points are
generated as Ck = {(xk,i, yk,i) | xk,i = ri sinωk,i, yk,i =
ri cosωk,i, i ∈ [3000]}, where for all i ∈ [3000],

ri = 1+(i−1) 9

2999
and ωi =

k

3
π+(i−1) k

3× 2999
π+bi,

and bi ∼ N1(0, 1). A balanced testing dataset is cre-
ated similarly (shown in the appendix). We consider a 5-
layer fully connected neural network with ReLu activa-
tion (Agarap 2018) as the classifier. For visualization pur-
poses, the dimension of the latent representation is set to
two. We draw latent representations (points) and class proto-
types (dashed lines)1 over the testing dataset in Figure 1(b).
Two key observations include that 1) the norm of class pro-
totypes are of about the same magnitude and 2) class proto-
types distribute relatively uniformly over the latent space.
Next, we generate an imbalanced training dataset, where
the number of samples for each class is selected sequen-
tially from {3000, 1500, 750, 375, 187, 93}. Then as shown
in Figure 1(d), the learned class prototypes are not of the
same magnitude, the minority classes’ prototypes are pulled
towards the majority classes’ prototypes, and the represen-
tations of minority classes collapse into the space that the
majority ones occupy. This phenomenon matches with the
previous study (Kang et al. 2019) and motivates us to dis-
tribute class prototypes uniformly over a unit hypersphere
and fix prototypes throughout the training phase. As shown
in Figure 1(c), enforcing class prototypes’ uniformity will
not hurt the training when the training dataset is balanced.
And when the training set is imbalanced, from Figure 1(e),

1We recall that the weight matrix of the last linear layer repre-
sents the prototypes, and each row of the matrix is also a vector of
the same dimension as the latent representation.

one can see the uniformity of class prototypes is an effective
inductive bias to combat the negative impact of the dominat-
ing classes over the minority classes. We end this section by
making the following remarks.
• Enforcing uniformity over the class prototypes can be re-

garded as a method of reweighing the training samples.
For the samples that cannot be easily and correctly clas-
sified, they make more contributions to the cross-entropy
loss. This uniformity strategy differs from methods such
as Focal loss (Lin et al. 2017), which add explicit weights
per sample. Meanwhile, this strategy does not require
tuning any parameters. Moreover, it brings additional
benefits to the minority classes, whose representations
are no longer overlapped with the majority classes.

• Fixing class prototypes sets a consistent learning goal
for clients (Oh, Kim, and Yun 2021) and imposing uni-
formity over class prototypes helps to combat minority
representation collapse in the FL setting. We empirically
validate this claim by distributing the spiral training set to
100 clients and performing learning with FedAvg. More
details about the experiment can be found in the ap-
pendix. Figure 2(a) and Figure 2(b) visualize class proto-
types and latent feature representations for two different
clients learned with FedAvg. Since prototypes are free to
move, both prototypes and representations for the same
class occupy different places in different clients. Fixing
prototypes with a uniformity constraint addresses such
an issue as shown in Figure 2(c) and Figure 2(d).

• Independently, a related idea is also explored in non-FL
setting (Li et al. 2022). However, our method is differ-
ent from this work since our class prototypes take into
account the class semantic similarity while class proto-
types are fixed and never get updated in (Li et al. 2022).

Proposed Method
As we demonstrated in the motivating example, class pro-
totypes learned from balanced datasets are distributed uni-
formly in the latent space. Hence, encouraging class proto-
types learned from unbalanced data to also be distributed
uniformly may be a way to improve performance. We also
note that since the motivating example was produced with
synthetic data, class semantics were not discussed. In prac-
tice, some classes are more semantically similar to others.
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Figure 2: Learned representations are consistent for differ-
ent clients for FedAvg with the uniform classification head
compared with vanilla FedAvg.

For example, the (wolf, dog) pair is more similar than the
(wolf, plant) pair. Capturing semantics helps with perfor-
mance (Su and Jurie 2012). This leads to two questions:

• (1) Given imbalanced data, how can we generate class
prototypes such that pairs of prototypes are maximally
separated and equidistant?

• (2) How can we encourage class prototypes to learn class
semantics?

We address the first question by proposing a parameter
initialization scheme for the classification head during FL
training. We answer the second question by proposing an
approach to infuse class semantics throughout the training
process. Both answers are described in more detail in the
following sections.

Initialization. The server is responsible for initializing pa-
rameters for both the body and classification head. The pa-
rameters for the body are initialized using common tech-
niques, like Kaiming initialization (He et al. 2015) and
Xavier initialization (Glorot and Bengio 2010). However, we
initialize the parameter W for the head in a way to address
the first question. Specifically, assuming there are |C| classes
and the latent representation lives in a d-dimensional space,
then one can solve a constrained optimization problem (1).

max
{w1,··· ,w|C|,M}

M2 (1)

s.t. ∥wi − wj∥2 ≥M2, ∥wi∥2 = 1 for all i ∈ [|C|], i ̸= j.

The first constraint is imposed to satisfy the maximally sep-
arated and equidistant requirements, while the second con-
straint is added to ensure all class prototypes are of the same
magnitude. The problem can be solved by, for example, the
interior point method (Wright, Nocedal et al. 1999). We re-

mark that (Li et al. 2022) uses a different approach to gener-
ate class prototypes, which does not ensure that each proto-
type is of the same magnitude. When d and |C| are large, the
computation cost might be high. However, the computation
only needs to be performed once at the initialization stage
and saved for future uses. Lastly, we remark that the body of
the network internally adds a normalization layer to its out-
put such that ∥f(θ;x)∥ = 1 for any θ and valid input x. This
normalization technique adds no extra parameters and neg-
ligible computation cost. It is also used in face verification
tasks (Wang et al. 2017; Cheng et al. 2018).

Client Update. For the tth communication round, the kth
client receives the body parameter θt and the head parame-
ter W t. Together with its local training datasetDk, it aims to
achieve two goals. The first goal is to learn a strong body that
can extract representations used for classification. To this
goal, the kth client approximately solves the problem (2).

θt+1
k ≈ argmin

θ

[
F (θ;Dk,W

t, s)

:=
1

|Dk|
∑

(xi,yi)∈Dk

− log
exp(s ·W t

yif(θ;xi))∑|C|
j=1 exp(s ·W t

j f(θ;xi))

]
, (2)

where s is a fixed constant scalar. The s is added to com-
pensate for the fact that

∥∥W t
yi
f(θ;xi))

∥∥ ≤ 1 2. Specifically,
the loss F (θ;Dk,W

t, s) is lower bounded by a quantity in-
versely proportional to s·

∥∥W t
yi
f(θ;xi))

∥∥ (Wang et al. 2017,
Proposition 2). If s = 1, it hinders the optimization process
of learning a strong body. In practice, s can be set to some
constants like 30 as suggested in (Cheng et al. 2018). The
inverse of s is also called temperature in knowledge distilla-
tion (Hinton et al. 2015).

To approximately solve problem (2), we assume J steps
of stochastic gradient descent are performed, i.e.,

θt,jk = θt,j−1
k − ηtGk(θ

t,j−1
k ;W t) for j ∈ [J ],

where θt,jk is the body parameter at the kth client in
tth communication round after the jth local update and
Gk(θ

t,j−1
k ;W t) is the stochastic gradient estimator (See As-

sumption 2). It is clear that θt,Jk = θtk and θt,0k = θt−1. It is
worth mentioning that the classification head is fixed during
the local training so that all selected clients have a consistent
learning goal under the guidance of the same head W t.

Once the local training is done, the client completes its
second goal, i.e., computing the averaged representations
per class contained in Ck as (3)

µt+1
k,c =

{
1

|{i:yi=c}|
∑

{i:yi=c} r
t+1
k,i , if c ∈ Ck.

0, o.w. ,
(3)

where Ck is the set of classes that the kth client owns and
rt+1
k,i = f(θt+1

k ;xi, yi) for (xi, yi) ∈ Dk. These averaged
representations {µt+1

k,c }c∈Ck
provide a succinct local descrip-

tion of class prototypes for classes from Ck. Finally, both the
body parameters θt+1

k and local prototypes {µt+1
k,c }c∈Ck

are
sent back to the server for aggregation.

2Both the latent representation f(θ;xi) and the prototype W t
yi

are normalized.
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Algorithm 1: FedNH

Require: Total number of clients K; participation rate γ;
number of communication rounds R; the smoothing pa-
rameter ρ ∈ (0, 1); a set of full classes C; the set of
classes that the kth client owns as Ck.

Initialization: Set the class prototype W ∈ R|C|×d with
W 0 and the θ with θ0.

1: for t = 0, . . . , R − 1 communication rounds do
2: Sample a subset St of clients with |St| = ⌈γK⌉.
3: Broadcast {θt,W t} to clients k ∈ St.
4: for each client k ∈ St in parallel do
5:

(
θt+1
k , µt+1

k

)
← ClientUpdate(θt,W t).

6: end for
7: Perform the global class prototype update as (4).
8: Normalize Wc to have unit norm for all c ∈ C.
9: Perform aggregation as θt+1 = 1

|St|
∑

k∈St θtk.

10: end for
11: procedure CLIENTUPDATE(θt,W t)
12: Initialize the local representation network with θt

and class prototypes with W t.
13: Approximately solve the problem (2) to obtain θt+1

k .
14: Perform the local class prototypes update as (3).
15: Return

(
θt+1
k , µt+1

k

)
.

16: end procedure

Server Update. For the tth communication round, assume
that clients from a set St respond to the server. Then the
server aggregates the body by taking the average of the re-
ceived {θt+1

k }k∈St , which is the same as in FedAvg. How-
ever, for the global prototype update, we propose a new strat-
egy that infuses class semantics, addressing the second ques-
tion. Specifically, for c ∈ C,

W t+1
c ← ρW t

c + (1− ρ)
∑
k∈St

αt+1
k µt+1

k,c , (4)

where the aggregation weights {αt+1
k }k∈St are some pos-

itive scalars and with smoothing parameter ρ ∈ (0, 1). A
specific choice of these parameters is discussed in the ap-
pendix. We remark that ρ is suggested to set close to 1 for
two reasons. First, at the initial training stage, the body of
a network is not well trained; hence the learned represen-
tations and the clients’ proposed prototypes are less infor-
mative. In this stage, we utilize the uniformity prototypes
initialized at the server to guide the local training. Second,
due to the client sampling, it is ideal that prototypes on the
server side change gradually, hence using the 1 − ρ to dis-
count the contribution of local clients to the update of pro-
totypes on the server side. The importance of ρ will also be
justified by the convergence analysis in Section . It is worth
mentioning class prototypes are updated in a non-parametric
manner instead of by gradients. We end this section by for-
mally summarizing our method FedNH in Algorithm 1.

Convergence Analysis
To avoid cluttered notations, we denote the local loss
Fk(θ;W ) ≡ F (θ;Dk,W, s). We first present a set of as-
sumptions required to perform the convergence analysis.

Assumption 1. For all k ∈ [K], Fk(θ;W ) is bounded be-
low, and Fk(θ;W ) is Lg smooth with respect to its first ar-
gument, i.e., for any fixed W ∈ Rd2 and for all (θ1, θ2) ∈
Rd1 × Rd1 .

∥∇θFk(θ1;W )−∇θFk(θ2;W )∥ ≤ Lg ∥θ1 − θ2∥ .

Assumption 2. Denote Gk(θ;W ) as the stochastic gradient,
where only a random subset of Dk is used to estimate the
true partial gradient∇θFk(θ;W ). There is a constant σ > 0,
such that for all k ∈ [K] and (θ,W ) ∈ Rd1 × Rd2 ,

E[Gk(θ;W )] = ∇θFk(θ;W ), and

E[∥Gk(θ;W )−∇θFk(θ;W )∥2] ≤ σ2.

Assumption 3. Assume E [∥G(θ;W )∥]2 ≤ M2
G and

∥∇θf(θ;x, y)∥ ≤ Mf for all (θ,W ) ∈ B and (x, y) ∈⋃
k Dk, where B is a bounded set.
Assumption 1 is parallel to the common smoothness as-

sumption made in the literature(Li et al. 2020; Karimireddy
et al. 2020; Acar et al. 2020), where we slightly relax it by
only requiring Fk to be smooth with respect to its first ar-
gument. Assumption 2 is also a standard assumption on the
first- and second-order momentum of the stochastic gradi-
ent estimate Gk(θ;W ). Assumption 3 imposes a bound on
the gradient, which is reasonable as long as (θ,W ) remains
bounded and it is also assumed in (Stich 2019; Yu, Yang,
and Zhu 2019; Tan et al. 2022b).

We aim to establish the convergence results for each
client. The challenge in the analysis is that, for each round t,
the objective function Fk(θ;W

t) is different as W t changes.
Thus, the type of convergence result we can expect is that for
some (θt,jk ,W t), the

∥∥∇θFk(θ
t,j ;W t)

∥∥ is small. An infor-
mal statement of the convergence result is given below. The
formal statement and proofs can be found in the appendix.
Theorem 1 (Informal). Let the kth client uniformly at ran-
dom returns an element from {θt,jk } as the solution, de-
noted as θ∗k. Further, let W ∗ share the same round index
as θ∗k. Then for any ϵ > 0, set ρ ∈ (ν1(ϵ,MG,Mf ), 1) and
η ∈

(
0, ν2(ϵ, Lg, σ

2, ρ,MG,Mf )
)
, if R > O(ϵ−1), one gets

E
[
∥∇θFk(θ

∗
k;W

∗)∥2
]
≤ ϵ,

where ν1(ϵ,MG,Mf ), ν2(ϵ, Lg, σ
2, ρ,MG,Mf ), MG, and

Mf are some positive constants.

Experiments
Setups, Evaluation, and Baselines
Setups. Extensive experiments are conducted on Cifar10,
Cifar100 (Krizhevsky 2009), and TinyImageNet three pop-
ular benchmark datasets. We follow (Chen and Chao 2021)
to use a simple Convolutional neural network for both Ci-
far10 and Cifar100 datasets while we use Resnet18 (He
et al. 2016) for the TinyImageNet. To simulate the hetero-
geneity with class imbalance, we follow (Lin et al. 2020)
to distribute each class to clients using the Dirichlet(β) dis-
tribution with β ∈ {0.3, 1.0} , resulting in clients hav-
ing different class distributions and a different number of
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Dataset Method Dir(0.3) Dir(1.0)

GM PM(V) PM(L) GM PM(V) PM(L)

Cifar10

Local — 42.79 ± 2.45 71.57 ± 1.82 — 41.20 ± 1.27 58.34 ± 1.03
FedAvg 66.40 ± 3.13 63.10 ± 1.33 84.08 ± 2.31 73.07 ± 1.60 68.07 ± 1.23 79.12 ± 2.11
FedPer 61.58 ± 0.43 59.66 ± 2.34 82.38 ± 1.50 63.33 ± 0.53 60.66 ± 2.17 73.40 ± 1.36
Ditto 66.40 ± 3.13 53.69 ± 1.11 80.08 ± 2.17 73.07 ± 1.60 61.22 ± 1.77 74.78 ± 2.16
FedRep 40.13 ± 0.17 56.47 ± 2.31 80.22 ± 2.45 47.92 ± 0.38 55.06 ± 2.27 68.99 ± 1.27
FedProto — 41.48 ± 1.02 68.35 ± 1.75 — 39.65 ± 1.33 53.23 ± 1.78
CReFF 66.46 ± 1.40 63.10 ± 2.16 84.08 ± 2.31 71.63 ± 0.61 68.07 ± 1.44 79.12 ± 2.11
FedBABU 62.78 ± 3.09 60.58 ± 2.16 82.64 ± 1.03 70.34 ± 1.72 65.49 ± 1.44 77.35 ± 1.80
FedROD 72.31 ± 0.16 65.66 ± 1.27 83.44 ± 1.03 75.50 ± 0.15 69.18 ± 1.98 77.84 ± 1.76
FedNH 69.01 ± 2.51 65.02 ± 1.23 84.63 ± 2.11 75.34 ± 0.86 69.64 ± 1.15 79.53 ± 2.14

Cifar100

Local — 13.63 ± 2.45 30.89 ± 1.82 — 9.44 ± 1.27 16.71 ± 1.03
FedAvg 35.14 ± 0.48 31.85 ± 1.33 50.77 ± 2.31 36.07 ± 0.41 28.86 ± 1.23 38.35 ± 2.11
FedPer 15.04 ± 0.06 16.15 ± 2.34 33.10 ± 1.50 14.69 ± 0.03 11.61 ± 2.17 19.08 ± 1.36
Ditto 35.14 ± 0.48 26.19 ± 1.11 45.91 ± 2.17 36.07 ± 0.41 22.92 ± 1.77 32.81 ± 2.16
FedRep 5.42 ± 0.03 13.59 ± 2.31 29.45 ± 2.45 6.37 ± 0.04 9.47 ± 2.27 16.07 ± 1.27
FedProto — 10.64 ± 1.02 19.11 ± 1.75 — 9.24 ± 1.33 12.61 ± 1.78
CReFF 22.90 ± 0.30 31.85 ± 1.33 50.77 ± 2.31 22.21 ± 0.15 28.86 ± 1.23 38.35 ± 2.11
FedBABU 32.41 ± 0.40 28.96 ± 2.16 47.86 ± 1.03 32.34 ± 0.49 25.84 ± 1.44 34.85 ± 1.80
FedROD 33.83 ± 0.25 28.53 ± 1.27 42.93 ± 1.03 35.20 ± 0.19 27.58 ± 1.98 33.44 ± 1.76
FedNH 41.34 ± 0.25 38.25 ± 1.23 55.21 ± 2.11 43.19 ± 0.24 36.88 ± 1.15 45.46 ± 2.14

TinyImageNet

Local — 7.55 ± 2.45 19.94 ± 1.82 — 5.10 ± 1.27 9.93 ± 1.03
FedAvg 34.63 ± 0.26 27.35 ± 1.33 44.97 ± 2.31 37.65 ± 0.37 28.82 ± 1.23 37.15 ± 2.11
FedPer 15.28 ± 0.14 13.84 ± 2.34 30.72 ± 1.50 13.71 ± 0.07 9.82 ± 2.17 17.05 ± 1.36
Ditto 34.63 ± 0.26 23.85 ± 1.11 42.67 ± 2.17 37.65 ± 0.37 24.97 ± 1.77 34.70 ± 2.16
FedRep 3.27 ± 0.02 9.24 ± 2.31 22.86 ± 2.45 3.91 ± 0.03 5.76 ± 2.27 10.86 ± 1.27
FedProto — 5.17 ± 1.02 10.44 ± 1.75 — 4.21 ± 1.33 6.34 ± 1.78
CReFF 25.82 ± 0.41 27.35 ± 1.33 44.97 ± 2.31 27.87 ± 0.38 28.82 ± 1.23 37.15 ± 2.11
FedBABU 26.36 ± 0.32 20.85 ± 2.16 37.96 ± 1.03 30.25 ± 0.32 22.74 ± 1.44 31.01 ± 1.80
FedROD 36.46 ± 0.28 28.23 ± 1.27 45.26 ± 1.03 37.71 ± 0.31 29.65 ± 1.98 38.43 ± 1.76
FedNH 36.71 ± 0.36 30.99 ± 1.23 46.14 ± 2.11 38.68 ± 0.30 30.58 ± 1.15 38.25 ± 2.14

Table 1: Comparison of testing accuracy. The best results are in bold font while the second best results are underlined. The lines
“—” represent results are not available. The numbers (mean ± std) are the average of three independent runs.

samples. Note that when β ≤ 1.0, each client is likely to
have one or two dominating classes while owning a few
or even zero samples from the remaining classes. Conse-
quently, both classes and the number of samples are imbal-
anced among clients. To simulate the cross-device setting,
we consider 100 clients with a 10% participation ratio.
Evaluation Metrics. We evaluate the testing accuracy of
both global and personalized models. We take the latest lo-
cal models as the personalized model for methods that do
not explicitly produce personalized models. For PFL meth-
ods that do not upload the head to the server, we use the
head initialized at the starting point. We follow (Chen and
Chao 2021) to evaluate personalized models on a single test-
ing balanced dataset Dtest to reduce the randomness from
dataset partitioning. Specifically, the accuracy of the ith per-
sonalized model is computed as

acci =

∑
(xj ,yj)∼Dtest αi (yj)1 (yj = ŷj)∑

(xj ,yj)∼Dtest αi (yj)
,

where αi(·) is a positive-valued function and 1(·) is the in-

dicator function. yj and ŷj are the true label and predicted
label, respectively. We consider two choices of setting αi(·).
The first choice is to set αi(y) = Pi(y = c), where Pi(y =
c) stands for the probability that the sample y is from class c
in the ith client. The probability Pi(y = c) can be estimated
from the ith client’s training dataset. The second choice sets
αi(y) to 1 if the class y appears in ith client’s training dataset
and 0 otherwise. This metric measures the generalization
ability of personalized models because it treats all classes
presented in the local training dataset with equal importance.

Baselines. We choose several popular and state-of-the-art
FL/PFL algorithms, such as FedAvg (McMahan et al. 2017),
FedPer (Arivazhagan et al. 2019), Ditto (Li et al. 2021), Fe-
dRep (Collins et al. 2021), FedProto (Tan et al. 2022b), Fed-
BABU (Oh, Kim, and Yun 2021), FedROD (Chen and Chao
2021), and CReFF (Shang et al. 2022).

Experimental environments and implementation details
on all chosen methods are deferred to the appendix.
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Figure 3: Similarity of prototypes learned with FedNH (left)
and FedAvg (right). x and y axes represent class indices.

Results
We report three types of testing accuracy in Table 1. Num-
bers under the GM column are the averaged testing accuracy
for the global model (mean±standard deviation); PM(V) re-
ports the averaged testing accuracy of personalized models
by assigning equal weights to all appearing classes (the sec-
ond choice of setting the weight function αi(·)); PM(L) rep-
resents the averaged testing accuracy by assuming the train-
ing and testing dataset has the same distribution (the first
choice of setting the weight function αi(·)). Several obser-
vations are made:

• Personalized models from FedAvg serve as the strong
baseline (evaluated under both PM(L) and PM(v) met-
rics) and can outperform many specialized personalized
methods. Similar observations are also made in (Oh,
Kim, and Yun 2021; Chen and Chao 2021).

• In the cross-device setting, the performance gain of the
personalized models from FedNH is the most consis-
tent across all tested cases. Further, FedNH has the best
PM(V) testing accuracy in almost all cases. Moreover,
it adds minimum computation overhead compared with
state-of-the-art methods like FedROD.

• The PM(V) metric is less sensitive to class imbalance
than PM(L). Note that the accuracy of PM(L) changes
significantly from Dir(0.3) to Dir(1.0), while PM(L) is
relatively stable, as shown in Table 1.

• A strong global model often leads to strong personalized
models by comparing the GM and PM metrics.

Discussions on why some methods like Fedproto and CR-
eFF do not perform well are discussed in the appendix.

Analysis
Capture of Class Semantics. To further validate that pro-

totypes learned by FedNH can capture the class seman-
tics, we visualize the pairwise class prototypes’ similarity
from Cifar100 in Figure 3. 100 classes in Cifar100 form
20 super-classes. In Figure 3, we group classes from one
super-class into one red box along the main diagonal. Be-
cause the classes within one red box are semantically closer,
their prototypes should also be more similar. We can see
that our FedNH learns the semantics of classes by captur-
ing their fine-grained similarities while the FedAvg simply

treats all classes as different. Similar plots for other methods
are given in appendix with a more detailed analysis. We also
visualize learned representations (in the appendix) for differ-
ent classes on different clients and find that similar classes’
representations tend to be closer.

Sensitivity Analysis. We conduct the sensitivity anal-
ysis on the smoothing parameter ρ by choosing it from
{0.1, 0.3, 0.5, 0.7, 0.9} and plotting the relative performance
gain over the base case ρ = 0.1. As shown in Figure 4,
ρ = 0.1 gives the worst performance. This matches Theo-
rem 1 that suggests ρ cannot be too small.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0
0.5
1.0
1.5
2.0
2.5

R
e
la

ti
v
e
 I
m

p
ro

v
e
m

e
n
t(

%
)

Cifar10
Cifar100
TinyImageNet

Figure 4: Sensitivity analysis on the smoothing parameter ρ.

Fairness Analysis. We measure fairness by computing
the standard deviation of the accuracy of personalized mod-
els across all clients. A smaller standard deviation indicates
that all clients’ performance tends to be concentrated around
the mean accuracy. In Table 2, we present the result in the
form of mean accuracy ± standard deviation. One can see
that FedNH improves all clients more equally.

Cifar10 Cifar100 TinyImageNet

Local 71.57 ± 10.13 30.89 ± 4.60 19.94 ± 3.27
FedAvg 84.08 ± 6.80 50.77 ± 4.23 44.97 ± 2.99
FedPer 82.38 ± 6.38 33.10 ± 4.26 30.72 ± 3.21
Ditto 80.08 ± 7.83 45.91 ± 4.10 42.67 ± 3.05
FedRep 80.22 ± 7.06 29.45 ± 4.19 22.86 ± 3.20
FedProto 68.35 ± 11.03 19.11 ± 4.17 10.44 ± 2.80
FedBABU 82.64 ± 6.11 47.86 ± 3.89 37.96 ± 2.79
FedROD 83.44 ± 5.89 42.93 ± 4.10 45.26 ± 2.72
FedNH 84.63 ± 5.61 55.21 ± 3.91 46.14 ± 2.70

Table 2: Compare the fairness of baseline methods.

Conclusion
In this work, we proposed FedNH, a novel FL algorithm to
address the data heterogeneity with class imbalance. FedNH
combines the uniformity and semantics of class prototypes
to learn high-quality representations for classification. Ex-
tensive experiments were conducted to show the effective-
ness and robustness of our method over recent works.

Limitation and Future Work. Our idea currently only
applies to the classification task, and the inductive bias from
uniformity and semantics of class prototypes can only be im-
posed on the head of neural network architecture. Our future
work will explore the possibility of extending the inductive
bias to the intermediate layers of a neural network and dif-
ferent vision tasks.
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