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Abstract

Positive-unlabeled learning is an essential problem in many
real-world applications with only labeled positive and unla-
beled data, especially when the negative samples are difficult
to identify. Most existing positive-unlabeled learning meth-
ods will overfit the positive class to some extent due to the
existence of unidentified positive samples. This paper first
analyzes the overfitting problem and proposes to bound the
generalization errors via Wasserstein distances. Based on that,
we develop a simple yet effective positive-unlabeled learning
method, GradPU, which consists of two key ingredients: A
gradient-based regularizer that penalizes the gradient norms in
the interpolated data region, which improves the generalization
of positive class; An unnormalized upweighting mechanism
that assigns larger weights to those positive samples that are
hard, not-well-fitted and less frequently labeled. It enforces
the training error of each positive sample to be small and in-
creases the robustness to the labeling bias. We evaluate our
proposed GradPU on three datasets: MNIST, FashionMNIST,
and CIFAR10. The results demonstrate that GradPU achieves
state-of-the-art performance on both unbiased and biased posi-
tive labeling scenarios.

Introduction
Positive-Unlabeled Learning (PUL) aims to learn a binary
classifier with only labeled positive (P) and unlabeled (U)
data, where the U data consist of both unidentified P and
unidentified negative (N) data. It naturally arises in many
real-world applications where a certain class of data is costly
to be annotated or difficult to be identified (Bekker and
Davis 2020). Such applications include disease gene iden-
tification (Yang et al. 2012), remote sensing data (Li, Guo,
and Elkan 2010), recommender systems (Ren, Ji, and Zhang
2014), and semi-supervised anomaly detection (Zhang et al.
2018b). In recent years, it has also been used to improve
the performance of object detection (Yang, Liang, and Carin
2020; Guo et al. 2021), contrastive learning (Chuang et al.
2020), and reward learning (Xu and Denil 2021).
Most previous PUL works can be classified into two cate-
gories: sample-selection method (Zhang and Zuo 2009; Luo
et al. 2021) and cost-sensitive method (Kiryo et al. 2017;
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Du Plessis, Niu, and Sugiyama 2015). The sample-selection
methods heavily rely on the heuristic algorithm for filtering
out or downweighting the positive data in U data (denoted as
P′ data) while keeping the negative data in U data (denoted
as N′ data). The cost-sensitive methods view the classifica-
tion risk using all U data as the negative class as a biased
estimation of the ideal PN risk, and they correct the bias by
canceling out the extra risk caused by P′ data using labeled P
data.
Despite these successes, we find the overfitting of P class
caused by the conflicting fitting targets of the P and P′ data is
not fully solved so far. To address it, we derive more useful
generalization error bounds via Wasserstein distances. Based
on the theoretical analysis about the generalization error, we
propose a gradient-based regularization and an unnormalized
positive upweighting mechanism. The gradient-based regular-
ization penalizes the gradient norms in the regions between
P and U samples, which leads to a better generalization of
the P class. The positive upweighting mechanism assigns
larger weights to those positive samples that are hard, not-
well-fitted, and less frequently labeled. It forces each labeled
P sample to have a small training error although the nearby
P′ samples could hinder this. It is often assumed the labeled
positive are Selected Completely At Random (SCAR) for
most PUL methods (Kiryo et al. 2017; Chen et al. 2020;
Bekker and Davis 2018; Hou et al. 2018). However, in many
practical situations, the distribution of labeled P data may
differ from the P′ due to a selection bias (Kato, Teshima, and
Honda 2018; Na et al. 2020; Hammoudeh and Lowd 2020).
See Figure 1 for a depiction of these two scenarios. The pro-
posed positive upweighting mechanism can compensate for
the selection bias and make our method also work on biased
positive labeling scenarios. The proposed method is easy to
implement and proved effective by experimental results.

Related Work
Let X ∈ Rd and Y ∈ {+1,−1} be the input and output
random variables. Let p(x, y) be the underlying joint density
of (X,Y ). Let pp(x) denote the positive marginal density
p(x|Y = +1) and pn(x) denote negative marginal density
p(x|Y = −1). Let πp= p(Y =+1) and πn= p(Y =−1)=
1− πp be the class-prior probabilities. In PUL, the training
dataset X consists of a positive set Xp and an unlabeled
set Xu, where each unlabeled example x has the probability

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7296



(a) w/ SCAR assumption (b) w/o SCAR assumption

Labeled Positive (P)

Unlabeled Positive (P’)

Unlabeled Negative (N’)

Unlabeled data (U)

(c) Data notations

,

Figure 1: An illustration of the labeling mechanism assumptions in PUL. We use the sizes of markers to reflect the selection
bias for labeling, where the larger marker indicates a higher selection probability. (a) PU dataset with SCAR assumption. Each
positive sample is selected with equal probability for labeling. (b) PU dataset without SCAR assumption. The positive samples
are selected with a labeling bias. (c) The data notations that we use throughout the paper. In this paper, we use a gradient-based
regularization to address the overfitting problem of P class caused by conflicting fitting targets of the P and P′ data, and use a
positive upweighting mechanism to enforce the training error of P data to be small. As a byproduct, the latter mechanism makes
our method robust to the labeling bias.

p(x). For PU datasets with SCAR assumption, each labeled
positive example has the probability pp(x). In this paper, we
will further decompose the Xu into an unlabeled positive set
Xp′ and an unlabeled negative set Xn′ .
Let g : Rd → R denote an arbitrary decision function belong
to the hypothesis space G and ℓ : R × ±1 → R denote the
loss function measuring the error of g(x) to the label. Let
Ry

D(g) :=Ex∼PD
ℓ(g(x), y) denote a risk that the data from

PD are regarded as class y, it can be approximated by the
empirical risk R̂y

D(g) = 1
|XD|

∑
x∈XD

ℓ(g(x), y) computed
on a dataset XD sampled from PD.

Naive Classifier A simple and naive method to learn a
PUL classifier (Neelakantan, Roth, and McCallum 2015)
is treating all unlabeled data as negative class samples and
training it in a standard binary classification way. We name
this method the naive classifier. The empirical risk used for
training can be written as:

R̂naive(g)=
1

|Xp|
∑
x∈Xp

ℓ(g(x),+1)+
1

|Xu|
∑
x∈Xu

ℓ(g(x),−1).

Negative Selection Based To remove the unreliable nega-
tive and train a better PUL classifier in the standard binary
classification way. Many methods (Zhang and Zuo 2009;
Zhang et al. 2019; Luo et al. 2021) propose to identify the
possible negative data in the U data or downweight the un-
reliable one. We view these approaches as instance-wise
reweighted binary classification and summarize them into:

R̂NS(g) =
1

|Xp|
∑
x∈Xp

ℓ(g(x),+1)+

1

|Xu|
∑
x∈Xu

wu(x)ℓ(g(x),−1),

where the wu(x) denotes the selection or reweighting func-
tion for U data. Most of the early negative selection-based

works heavily rely on the heuristics to identify the nega-
tive (Zhang and Zuo 2009). Recently, some modern tech-
niques such as Generative Adversarial Networks (GAN) (Hu
et al. 2021) and reinforcement learning (Luo et al. 2021) are
used to generate or select the possible negative data. However,
they are often costly and unstable for training.

Loss Correction Based In contrast, the cost-sensitive
methods (Kiryo et al. 2017; Du Plessis, Niu, and Sugiyama
2014) treat the risk of the naive classifier as a biased one
(relative to the ideal PN classifier) and propose to correct the
estimation bias. The ideal PN risk πpR

+
p (g)+(1−πp)R

−
n (g)

defined on the P and N distributions can be calculated using
the unbiased risk RuPU(g)=πpR

+
p (g)+R

−
u (g)−πpR

−
p (g) de-

fined on the P and U distribution, since R−
u (g)=πpR

−
p (g)+

(1−πp)R
−
n (g) under SCAR assumption. The unbiased risk

RuPU(g) can be approximated using the training data Xp and
Xu:

R̂uPU(g) = πpR̂
+
p (g) + R̂−

u (g)− πpR̂
−
p (g). (1)

nnPU (Kiryo et al. 2017) found that R̂−
u (g)− πpR̂

−
p (g) can

often be negative, which is a signal for overfitting. So they
proposed to optimize the following non-negative unbiased
empirical risk:

R̂nnPU(g) = πpR̂
+
p (g) + max{0, R̂−

u (g)− πpR̂
−
p (g)}. (2)

Method
In this section, we first analyze the problem of existing meth-
ods. Then we propose a new way to bound the generalization
error. Based on that, we propose to combine a gradient-based
regularization and a positive upweighting strategy to solve
the PUL problem.

The Problem of Existing PUL Methods
The common issue of most existing works is that the fitting
targets of P and P′ samples can often be conflicted, which
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Figure 2: The training statistics of a naive classifier on MNIST dataset. Left: The test error rate of N class decreases with a very
similar curve as the training error rate of N′ data. By contrast, the test error rate of the P class starts to grow after the ∼3th epoch
despite the training error rate of the P data continuing to decrease. Right: Correspondingly, the mean gradient norms (the output
with respect to input, Ex[∥∇xg(x)∥12]) of the training P data (and P′ data) grows much faster than those of training N′ data.

will lead to the overfitting of P class.
In the naive classifier, the P′ samples are directly assigned

with contradictory labels to the P samples.
In the unbiased PU classifier, R̂−

u (g) in Equation 1 can be
decomposed into πpR̂

−
p′(g) + (1− πp)R̂

−
n′(g). Then we can

find the πpR̂
−
p′(g) is a conflicting term with the −πpR̂

−
p (g).

In the non-negative PU classifier, the empirical risk
R̂nnPU(g) in Equation 2 can be rewritten into πpR̂

+
p (g)+

max{0, (1−πp)R̂
−
n′(g)+πpR̂

−
p′(g)−πpR̂

−
p (g)}. The opti-

mizing of the term πpR̂
−
p′(g) − πpR̂

−
p (g) with conflicting

fitting target will be turned off when R̂−
u (g)− πpR̂

−
p (g) < 0.

However, when N′ is not well-fitted (e.g. in the early training
stage or with some hard negatives), R̂−

n′ can become large,
and the conflicting terms will continue to be optimized until
it is smaller than −(1− πp)R̂

−
n′ .

For negative selection-based method, a perfect selection
or reweighting function may require itself to be already a
perfect PUL classifier. Otherwise, removing or downweight-
ing an excessive number of U samples is often required to
ensure that the remaining samples provide reliable supervi-
sion. However, this may result in a portion of N′ samples
(especially the hard negatives) also being removed. If we try
to keep more U data, the potential residual P′ data will again
contribute a conflicting target with P data.

The Overfitting of P Class. Theoretical analysis in previ-
ous works often relies on the generalization bounds derived
from the Rademacher complexity defined on the hypothe-
sis space G and training set X . It is often assumed that the
Rademacher complexity will be bounded and decrease as
the dataset increases. However, (Arpit et al. 2017) pointed
out that DNN can always fit random labels even with vari-
ous traditional regularizers. This indicates that when fitting
conflicting targets of P and P’, the flexible DNN using the
traditional regularizers can still reach into a very complex
function space, resulting in the overfitting of P class. We
verify this by training a naive classifier and show the error

rates during training in Figure 2 (Left), where we can find the
overfitting problem occurs mainly in the P class rather than
the N class. The overfitting problems (P class only) can also
be found for nnPU and other methods, see Appendix Section
2.1.

Bounding the Generalization Error via Wasserstein
Distance
To better understand and solve the overfitting of P class and
further ensure both the generalization error of the P and N
class can be well-bounded, we derive more useful general-
ization error bounds via Wasserstein distance and provide
insights for improving the performance of the P class.

Definition 1 Let W1(PD,XD) denote the 1th-Wasserstein
distance between a distribution PD and the uniform distri-
bution over a set XD = {xi|xi ∼ PD}ND

i=1. The Kantorovich-
Rubinstein duality (Villani 2009) states that W1(PD,XD) =
supf :ρ(f)≤1{Ex∼PD

[f(x)]− Ex∼XD
[f(x)]}, where ρ(f) is

the minimal Lipschitz constant for f .

W1(PD,XD) can be viewed as a metric measuring how close
XD is to PD. By Wasserstein law of large numbers (Van Han-
del 2014), the expectation of W1 distance between a distribu-
tion and its sampled set will go to 0, as the sample size
increases. Since RD(g) = Ex∼PD

[(l ◦ g)(x)], R̂D(g) =
Ex∼XD

[(l ◦ g)(x)] and W1(PD,XD) can be written as
1
K supf :ρ(f)≤K{Ex∼PD

[f(x)]−Ex∼XD
[f(x)]}, we have the

following lemma:

Lemma 1 If the composition of a loss function ℓ and a deci-
sion function g is Lipschitz continuous, then we can bound the
gap between the risk RD(g) and the empirical risk R̂D(g).
(See (Lopez and Jog 2018; Rodríguez Gálvez et al. 2021) for
similar but expectation forms):

RD(g)− R̂D(g) ≤ ρ(ℓ ◦ g)W1(PD,XD). (3)

By applying Equation 3 in the scenarios where both P and N′

are correctly labeled while P′ are wrongly labeled, we can
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bound the generalization errors of the P and N classes by the
following theorem.
Theorem 1 (Generalization Error Bounds) For the absolute
value loss function ℓ(g, y) = |g(x) − y|, and any Lipschitz
continuous decision function g : Rd → [−1, 1], assuming the
labeled positive samples are selected completely at random,
the generalization errors of P class R+

p (g) and N class R−
n (g)

can be bounded:

2−R̂−
p′(g)−ρ(g)W1(Pp,Xp′) ≤R+

p (g)

≤R̂+
p (g)+ρ(g)W1(Pp,Xp)

and,
R−

n (g) ≤ R̂−
n′(g) + ρ(g)W1(Pn,Xn′) (4)

See Appendix Section 1 for the proof and analysis on more
general cases (other types of loss function).

Classfiers with smaller ρ(g) generalize better. The
Theorem 1 tells us, if the P and N′ samples can be well fitted
by training algorithm (thus R̂+

p (g) and R̂−
n′(g) can be small),

the generalization error upper bounds will be dominated
by ρ(g)W1(Pp,Xp) and ρ(g)W1(Pn,Xn′). Considering the
W1 distances are constants for a given PU dataset, a smaller
ρ(g) will lead to tighter generalization error upper bounds of
P and N classes, and thus the generalization performance of
P and N classes will tend to be better.

Explaining the overfitting of P class. We argue that
the P and P′ samples with conflicting fitting targets
will force g to output different values, e.g. ±1, for ev-
ery P sample xp and its closest P′ neighbors, making
ρ(g) ≥ 2/minxp′∈Xp′ ,xp′ ̸=xp

∥xp − xp′∥. Since the P
samples and P′ samples come from the same data manifold,
the denominator could be very small, which makes the
ρ(g) become very large and the generalization error is less
bounded. We can see in Figure 2 (Right), that large gradient
norms (an indicator for the local minimal Lipschitz constant)
will appear around the P class data, but not the N class
data. This may provide an explanation for the different
generalization gaps of the P and N classes in Figure 2 (Left).

Classfiers with smaller ρ(g) fit P samples harder. By
Theorem 1, the empirical risk of P data R̂+

p (g) has a lower
bound 2 − R̂−

p′(g) − ρ(g)W1(Pp,Xp′) − ρ(g)W1(Pp,Xp).
For a given PU dataset, the W1 distances are constants. A
small enough ρ(g) will make the lower bound dominated by
2 − R̂−

p′(g). That means the fitting of P′ samples as -1 will
hinder the fitting of P samples as +1. For example, when
the training error of P′ samples R̂−

p′(g) decreases to 0, the
training error of P samples R̂+

p (g) will have a large lower
bound close to 2 (the max possible value for the expectation
of ℓ(g, y)).

The previous analysis motivates us to improve the test
performance of the P class by penalizing the minimal Lips-
chitz constant of the decision function g and enforcing small
training errors for P data.

Figure 3: Illustration of the positive upweighting strategy.
Left: When ρ(g) is small enough, the fitting of P samples
(red) around the regions dominated by P′ samples (blue) is
hard, since the surrounding P′ samples have the opposite
labels. We increase the weights of the not-well-fitted P exam-
ples. Right: In detail, we add a weight wp ≥ 1 (Equation 6)
to the loss of each P sample based on its prediction. Setting
β > 0 will increases the weight of those positive samples
with small output values. The total weight of training P sam-
ples will thus not be normalized to 1 after scaling by 1

|Xp| .

Gradient-based Regularization
To penalize the ρ(g) of a decision function g parameterized
by deep neural networks, we will adopt a technique named
gradient penalty that is widely used to enforce Lipschitz con-
tinuity on the discriminator in training generative adversarial
networks (Gulrajani et al. 2017; Arjovsky and Bottou 2017;
Miyato et al. 2018; Kurach et al. 2018). In detail, we perform
a gradient penalty in the region between P and U data by

LGP (X ; g) = Ex∼int(Xp,Xu)[∥∇xg(x)∥2], (5)

where int(Xp,Xu) = {x̃|x̃ = λxp + (1 − λ)xu, λ ∈
[0, 1],xp ∈ Xp,xu ∈ Xu}. Assuming that almost all N
class data and P class data can be distinguished by a func-
tion with a small ρ(g) that doesn’t result in overfitting, we
can use a moderate gradient penalty strength to improve the
generalization of P class while maintaining the capability
to correctly classify the P and N class. As far as we know,
despite the popularity of gradient penalty in training GANs,
there are few explorations about it in the PUL domain (also
the related domains, e.g. noisy labeled learning, which also
contains conflicting fitting targets).

Unnormalized Positive Upweighting
To enforce that the training error of P samples is small, we
propose to upweight the P data affected by P′ data. We cal-
culate an unnormalized weight via the output of the decision
function on each P sample:

wp(x;β) = 1− β log(
1 + g(x)

2
), (6)

where β > 0 is a parameter controlling the upweighting
strength. The upweighting mechanism aims to increase the
weights of those positive samples that are less frequently la-
beled. Intuitively, it focuses more on hard and not-well-fitted
samples like Focal Loss (Lin et al. 2017). See Figure 3 for
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Algorithm 1: Training procedure of GradPU classifier.

Input: A training set X =Xp ∪Xu, upweighting parameter
βmax, gradient penalty parameter α

Output: Model parameter θ of the binary classifier g
1: for t = 1, 2, ..., N do
2: Shuffle and divide dataset into I mini-batches

{X i|X i = (X i
p,X i

u)}
3: for i = 1, 2, ..., I do
4: Sample a mini-batch of λ ∼ U(0, 1) with batch

size B = max(|X i
p|, |X i

u|)
5: Resample both X i

p and X i
u into the common batch

size B, denoted as X̃ i
p and X̃ i

u
6: Construct a mini-batch of interpolated data by

λX̃ i
p + (1− λ)X̃ i

u
7: Compute the current upweight parameter β =

t·I+i
N ·I βmax

8: Update θ with ∇θR̂GradPU(g) by Equation 7
9: end for

10: end for

an explanation. Unlike negative-selection based methods, we
do not remove or explicitly downweight the U data. There-
fore, all N′ samples can be more sufficiently fitted by enough
training iterations and model capacity. We highlight that the
larger weights for the less frequently labeled positive sam-
ples make the upweighting function wp(x;β) compensate a
non-uniform labeling frequency, thus enabling the proposed
method to be better applied to biased positive labeling sce-
narios.

Overall Training Objective
Putting the gradient-based regularization and the unnormal-
ized upweight mechanism together, the overall training ob-
jective of GradPU is to minimize:

R̂GradPU =
1

|Xp|
∑
x∈Xp

wp(x;β)ℓ(g(x),+1)+

1

|Xu|
∑
x∈Xu

ℓ(g(x),−1) + αLGP(X ; g),

(7)

where α > 0 is a parameter controlling the strength of
gradient penalty. The loss function is simply chosen as
ℓ(g(x), y) = |y − g(x)|, and the output of g is restricted
to [−1, 1] via a tanh activation function. In practice, we find
using the gradient before the tanh activation for penalizing is
better. Besides, an initial large value for β will make the train-
ing unstable (maybe caused by the imbalanced total weights
for positive and negative terms). So we gradually and linearly
increase the β from 0 to a predefined max value βmax. The
description of the overall training procedure can be found in
Algorithm 1.

Experiments
In this section, we first evaluate our proposed GradPU on
MNIST, FashionMNIST, and CIFAR-10. We then provide

ablation studies on the gradient-based regularizer and unnor-
malized upweighting. We also demonstrate the robustness of
GradPU with different sizes of the labeled set. Finally, we test
the performance of GradPU on experiments with selection
bias settings. Following previous PUL works, we construct
positive-unlabeled datasets by adapting the commonly used,
fully labeled, and multi-class datasets.
MNIST: The MNIST dataset contains 10 classes of gray-
scale handwritten digit images with 28 × 28 pixels. It con-
sists of 60,000 training images and 10,000 test images. As
in (Chen et al. 2020), we choose odd numbers 1, 3, 5, 7, and
9 as the positive class while other numbers as the negative
class.
FashionMNIST: The FashionMNIST dataset contains 10
classes of gray-scale fashion product images. Like MNIST,
it consists of 60,000 training images and 10,000 test images,
with the size of 28× 28 pixels. The classes with indexes 0,
2, 4, 6, and 8 are used as the positive class and others as the
negative class. In the following, we will also use FMNIST to
denote FashionMNIST.
CIFAR10: The CIFAR10 dataset consists of colored images
with sizes of 32 × 32 pixels. There are 50,000 training im-
ages and 10,000 test images. The vehicles classes ("airplane",
"automobile", "ship", "truck") are chosen as positive class,
and the animal classes ("bird", "cat", "deer", "dog", "frog",
"horse") are chosen as negative class (Kiryo et al. 2017; Chen
et al. 2020; Kato, Teshima, and Honda 2018).

Implementation Details
For fair comparisons, we follow the classifier architectures
in (Kiryo et al. 2017; Chen et al. 2020), an MLP with four
fully connected hidden layers of 300 neurons for MNIST
and FashionMNIST, and a 13-layers convolutional neural
network for CIFAR-10. We remove the batch normalization
layers since it is found to be incompatible with the gradient-
based regularizer (Kurach et al. 2018). We use the Adam
optimizer with β1 = 0.9 and β2 = 0.999. For all trials, we
use the batch size of 250 and gradually decrease the learning
rate to 0.1 times of its initial value. We report the mean
accuracies and deviations over three runs. For MNIST and
FashionMNIST, we train the models for 100 epochs, while
for CIFAR10, we train the models for 200 epochs. We tune
hyper-parameters such as weight decay, learning rate, the
gradient penalty strength α, and the upweighting strength
βmax using a validation set. More experimental details can be
found in Appendix Section 3.

Dataset
Evaluation under SCAR Setting
Most existing PUL methods are evaluated under the SCAR
assumption. We follow the protocol widely used by randomly
selecting a small portion of positive instances from the origi-
nal training data as labeled positive Xp, 500 instances as the
validation set Xval, and the remaining instances as unlabeled
data Xu. The test set Xtest is adapted from the original test set
by relabeling the data into binary classes. We first compute
the real class prior based on the dataset and use it for methods
requiring a class prior. We report the experimental results for
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Dataset Naive uPU nnPU VPU SelfPU GradPU Sup.
MNIST 1k 92.9± 0.5 92.5± 0.4 93.6± 0.2 93.9± 0.5 94.2± 0.5 96.4± 0.4 96.7± 0.2
MNIST 3k 95.1± 0.3 95.2± 0.3 95.8± 0.3 95.8± 0.4 96.0± 0.3 97.7± 0.2 97.8± 0.2
CIFAR10 1k 88.1± 0.7 88.0± 0.6 88.6± 0.4 88.6± 0.3 89.7± 0.2 90.1± 0.2 90.5± 0.5
CIFAR10 3k 91.0± 0.5 90.4± 0.6 90.9± 0.2 90.5± 0.1 90.8± 0.2 91.9± 0.1 92.9± 0.3
FMNIST 1k 94.6± 0.4 94.9± 0.2 95.7± 0.2 95.3± 0.7 - 96.3± 0.2 96.6± 0.2
FMNIST 3k 96.0± 0.3 96.1± 0.3 96.3± 0.4 96.5± 0.1 - 96.7± 0.1 97.2± 0.2

Table 1: Test accuracy on benchmark datasets. The "Sup." refers to the supervised binary classifier trained using Xp and Xn′ .
"1k" and "3k" denote the number of labeled P samples for training. Bold font indicates the highest performance among the
non-supervised methods.

Figure 4: Study of the gradient penalty strength α on MNIST (left) and CIFAR10 (right) with 1000 labeled positive samples.

both cases |Xp| = 1, 000 and |Xp| = 3, 000 in Table 1. We
can see that GradPU outperforms the baseline models in all
datasets and achieves performance very close to the super-
vised classifier trained using Xp and Xn′ in some cases. Other
evaluation protocols (about |Xp|, positive classes, classifier
architectures, and the validation set) and the corresponding
experimental results can be found in Appendix Section 2.

Ablation Study
Effects of Regularization Strength The penalty strength
on gradient norm is controlled by the parameter α. The larger
α is, the smoother decision function the model will learn. We
study the effect of α and report the test accuracies during the
training process of GradPU on MNIST and CIFAR10. As
shown in Figure 4, a moderate α (0.2 for MNIST and 0.1 for
CIFAR10) can avoid overfitting during the training process
and achieve the best performance. In contrast, a much smaller
or larger α leads to a reasonable overfitting or underfitting
phenomena.

Comparison with Other Regularizers To verify the supe-
riority of the gradient-based regularizer over the traditional
regularizers, we also compare our gradient-based regular-
ization with the following regularization methods: network
width, weight decay, dropout, and mixup (Zhang et al. 2018a).
Considering early stopping is also a well-known technique
to avoid memorization, we report both the last accuracy and
the best accuracy during training. For all training except the
weight decay regularizer itself, we use the default weight de-
cay 5e-4. Learning rates are searched in range of {4e-5, 1e-4,

4e-4, 1e-3}. The search ranges of regularization strengths are
as follows: model width, {300, 150, 75, 35}; weight decay,
{1e-6, 1e-4, 1e-3, 1e-2, 1e-1}; dropout, {0.2, 0.4, 0.6, 0.8};
input noise, {0.05, 0.1, 0.2, 0.4}; mixup, {0.1, 0.3, 1.0, 3.0,
10.0}. The results are reported in Table 2. The gradient-based
regularization always outperforms all other regularization
methods.

Unnormalized Positive Upweighting We show the accura-
cies under various strengths of upweighting βmax in Table 3.
As we can see, moderate (non-zero) upweighting strengths
are useful in all three datasets. Since the upweighting mech-
anism is designed to alleviate the resistance effect of the P′

data to the fitting of the P class, a PU dataset with a smaller
proportion of P′ data in U data is expected to require a smaller
upweighting strength. This can be verified by the observation
that the best upweighting strength in CIFAR10 is smaller
than those in MNSIT and FashionMNIST.

Robustness to the Number of Labeled Positives

We also investigate the performance of GradPU with various
numbers of labeled positives on MNIST and FashionMNIST,
specifically, |Xp| ranges in {1000, 2000, 4000, 8000, 16000}.
We calculate the mean accuracies and deviations on three
independent runs. The results are shown in Figure 5. We
can see that GradPU can surpass the baseline under various
positive labeling proportion cases. It performs comparably to
the supervised classifier trained using Xp and Xn′ when the
labeled positive number is bigger than 4000 on MNIST.
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MNIST 1k MNIST 3k FMNIST 1k
best last best last best last

Model width 92.3± 0.2 83.0± 0.7 96.1± 0.1 95.5± 0.3 95.7± 0.2 92.4± 0.6
Weight decay 93.9± 0.3 90.6± 0.8 95.8± 0.1 95.6± 0.2 95.6± 0.2 93.9± 0.6
Dropout 92.6± 0.7 84.7± 1.7 96.2± 0.2 95.3± 0.8 95.8± 0.2 92.9± 0.6
Input noise 93.4± 0.1 91.8± 0.5 96.2± 0.2 95.6± 0.8 95.9± 0.1 95.5± 0.4
Mixup 94.2± 0.3 90.2± 0.5 96.3± 0.1 93.3± 0.5 95.8± 0.4 93.9± 0.5
GP on int(X ) 96.4± 0.2 95.9± 0.5 97.7± 0.2 97.3± 0.2 96.4± 0.1 96.2± 0.2

Table 2: Comparision with various regularization methods. Results of both the last and best epoch are shown. We remark that all
the trials use the proposed upweighting strategy, the best searched learning rates, and the best regularization strengths.

Figure 5: Accuracies of GradPU with various labeled positive sizes on MNIST (left) and FashionMNIST (right).

βmax
MNIST 1k FMNIST 1k CIFAR10 1k
(πp ≈ 0.5) (πp ≈ 0.5) (πp ≈ 0.4)

0.0 94.8± 0.4 95.9±0.3 89.7±0.3
1.0 95.7±0.2 96.0±0.2 90.1±0.1
3.0 96.0±0.4 96.1±0.3 90.1±0.2
10.0 96.2±0.3 96.3±0.2 89.6±0.4
30.0 96.4±0.4 96.2±0.1 89.1±0.3

Table 3: Effectiveness of positive upweighting mechanism.

Evaluation under Selection Bias Setting

We evaluate the GradPU on the scenario without SCAR
assumption using MNIST, FashionMNIST, and CIFAR10
datasets. To simulate a labeling bias, we obtain the labeled
positive data by labeling some instances of the positive data
following a probability induced from a well-trained logis-
tic regression model as PUSB(Kato, Teshima, and Honda
2018), see Appendix Section 3 for more details. We compare
the GradPU with nnPU, nnPUSB, and ablated GradPUs. As
shown in Table 4, the GradPU outperforms the existing meth-
ods on all datasets. Both the gradient penalty and upweighting
mechanism are effective in such a scenario. Removing the
upweighting mechanism (βmax = 0) results in a significant
performance drop, which verifies that the upweighting mech-
anism is useful and essential for handling the selection bias.

MNIST 1k FMNIST 1k CIFAR10 1k

nnPU 89.7±0.9 94.2±0.2 87.1±0.7
nnPUSB 91.5±0.9 95.1±0.3 87.3± 0.6
GradPUβ=0 81.7±1.2 93.9±0.5 79.7±0.8
GradPUα=0 90.5±0.6 94.7±0.7 84.1±0.6
GradPU 94.1±0.3 96.0±0.3 88.6±0.5

Table 4: Accuracy of the proposed GradPU with a selection
bias on the positive labels, comparing with nnPU, nnPUSB,
and ablated GradPUs.

Conclusion
In this paper, we first presented theoretical analyses about the
naive classifier and the corresponding overfitting problem of
P class. Based on that, we then proposed a novel PUL method
named GradPU, which combines a gradient-based regularizer
and a positive upweighting strategy. The gradient-based regu-
larizer improves the generalization of P class, and the positive
upweighting mechanism ensures each training P sample is
well-fitted. The GradPU is easy to implement, can be used
to train flexible DNN models, and works on both unbiased
and biased positive labeling scenarios. Experimental results
show that GradPU outperforms the previous PUL methods
on MNIST, FashionMNIST, and CIFAR10. In the future, we
will explore the GradPU in the application domains and in-
vestigate the generality of the gradient-based regularizer on
other topics with conflicting targets.
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