
Augmented Proximal Policy Optimization for Safe Reinforcement Learning

Juntao Dai1,2*, Jiaming Ji1*, Long Yang3, Qian Zheng1,2†, Gang Pan1,2

1 The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China
2College of Computer Science and Technology, Zhejiang University, Hangzhou, China

3School of Artificial Intelligence, Peking University, Beijing, China
{juntaodai, jmji, qianzheng, gpan}@zju.edu.cn, yanglong001@pku.edu.cn

Abstract

Safe reinforcement learning considers practical scenarios that
maximize the return while satisfying safety constraints. Cur-
rent algorithms, which suffer from training oscillations or
approximation errors, still struggle to update the policy effi-
ciently with precise constraint satisfaction. In this article, we
propose Augmented Proximal Policy Optimization (APPO),
which augments the Lagrangian function of the primal con-
strained problem via attaching a quadratic deviation term.
The constructed multiplier-penalty function dampens cost os-
cillation for stable convergence while being equivalent to the
primal constrained problem to precisely control safety costs.
APPO alternately updates the policy and the Lagrangian mul-
tiplier via solving the constructed augmented primal-dual
problem, which can be easily implemented by any first-order
optimizer. We apply our APPO methods in diverse safety-
constrained tasks, setting a new state of the art compared with
a comprehensive list of safe RL baselines. Extensive experi-
ments verify the merits of our method in easy implementa-
tion, stable convergence, and precise cost control.

Introduction
Reinforcement Learning (RL) (Sutton and Barto 2018) has
achieved significant successes in many challenging high-
dimensional tasks such as sophisticated video games (Mnih
et al. 2013, 2016), robotic locomotion (Peters and Schaal
2008; Schulman et al. 2017; Haarnoja et al. 2018; Vuong,
Zhang, and Ross 2019), and Go (Silver et al. 2016, 2017).
However, standard RL algorithms merely consider maxi-
mizing performance in the policy space, which is insuffi-
cient in real-world applications. Some policies are infea-
sible since they lead to undesirable behaviors, especially
for safety violations. For instance, human-machine hybrid
scenarios (e.g., autonomous driving, service robots) require
machines to perform their tasks without harming humans.
Thus, it is essential to explore safe reinforcement learning,
which searches for maximizing return policy while satis-
fying safety constraints. The constrained Markov decision
process (CMDP) (Altman 1995) is a well-known sequential
framework to formalize safe RL. It attaches additional con-
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straints on the traditional Markov decision process (MDP)
to restrict feasible policy sets.

A common approach to solving a CMDP is approximating
the non-convex constrained objective function by a quadratic
optimization problem within some trust regions (Achiam
et al. 2017; Yang et al. 2020). However, these works require
expensive computation since their solution includes calcu-
lating the inverse Fisher information matrix. According to
benchmark evaluation (Ray, Achiam, and Amodei 2019),
simple Lagrangian-based algorithms perform as well or even
better than the above quadratic optimization methods. How-
ever, convergence analysis (Tessler, Mankowitz, and Man-
nor 2018; Paternain et al. 2019) shows that Lagrangian
dual parameters update more slowly than policy iteration.
Many constraint-violating iterations arise when the multipli-
ers are not fully effective, and the constraints are over-valued
when the multipliers are over-increased. Thus, Lagrangian-
based methods have inherent oscillation and cost overshoot
in the learning dynamics (Platt and Barr 1987; Wah et al.
2000) leading to poor convergence. The penalty function is
another technique used in safe RL, constructing different
penalty terms to control cost. Penalty function-based algo-
rithms generally require sufficiently large or infinite penalty
factors; otherwise, the constructed penalty function fails to
be equivalent to the primal problem and leading to probable
suboptimal solutions (Freund 2004). It faces a tough trade-
off since growing the penalty factor increases the approxi-
mation error (Zhang et al. 2022; Liu, Ding, and Liu 2020).

In this article, we propose the Augmented Proximal Pol-
icy Optimization (APPO) method to address the above three
issues. Firstly, APPO augments the Lagrangian function of
the primal constrained problem via attaching a quadratic de-
viation term. The additional term provides stable and con-
tinuous cost control to complement the lagged Lagrangian
multipliers, which improves the convergence of our method.
Secondly, we theoretically prove that this attached term, also
regarded as a quadratic penalty, is an exact penalty from
the primal problem in the constructed primal-dual problem.
Thus, the constructed multiplier-penalty function is equiv-
alent to the primal constrained problem to provide precise
cost control. Thirdly, we apply the clipped technique in-
spired by PPO (Schulman et al. 2017) to both reward and
cost objectives to update policy with data sampled by prox-
imal policies, which makes APPO eliminate the trust region
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constraint and avoid cumbersome Hessian matrix inversion.
Conclusively, the merits of the APPO algorithm are as

follows. (1) Stable convergence. APPO eliminates the de-
lay in the multiplier’s effect, leading to stable and tight con-
vergence to the constraint-satisfying optimal policies with-
out inherent oscillation. (2) Precise cost control. Since the
multiplier-penalty term is equivalent to the constraints, the
solution of APPO is exactly the same as the solution to pri-
mal problem. Thus, APPO avoids suboptimal policies re-
sulting from inequivalence and significant approximate er-
rors. (3) Easy implementation. APPO alternately updates
the Lagrangian multiplier and the policy via solving con-
structed augmented primal dual problem. It is easy to im-
plement and solve by any first-order optimizer using clipped
surrogate objectives for reward and cost.

We outline our contributions from the following aspects.

• We propose a novel method, Augmented Proximal Policy
Optimization (APPO), to solve CMDPs. It is shown that
APPO has advantages on implementation, convergence,
and precise cost control.

• We prove the equivalence between the primal-dual prob-
lem and the primal constrained problem (Theorem 1) and
illustrate the help of the quadratic deviation term for con-
vergence (Proposition 1).

• We provide the implementation of the proposed APPO
algorithm based on the deep Actor-Critic framework
while using an analogous clipped surrogate approxima-
tion for both reward and cost. We further demonstrate
that APPO outperforms the state-of-the-art methods.

Preliminaries
Constrained Markov Decision Process
A Markov Decision Process (Sutton and Barto 2018) is a
tupleM = (S,A, r, P, µ, γ) , where S is the state space and
A is the action space. The function r(s, a, s′) : S×A×S →
R denotes the reward observed upon a transition from from
s to s′ with action a. P (s′|s, a) : S × A× S → [0, 1] is the
transition probability from state s to s′ after playing action
a, and µ(s) : S → [0, 1] is the initial state distribution. γ ∈
[0, 1] is a discount factor. We define a stationary policy π as a
probability distribution on S ×A , with π(a|s) denoting the
probability of playing action a in state s. Then, Π denotes
the set of all stationary policies.

The goal of reinforcement learning is to maximize a per-
formance measure, J(π), which is typically defined as an
infinite horizon discounted total return,

J(π)
.
= E
τ∼π

[ ∞∑
t=0

γtrt

]
. (1)

Here τ = {st, at, rt}∞t=0 ∼ π denotes the distribution over
trajectories generated by π, where s0 ∼ µ, at ∼ π(·|st),
st+1 ∼ P (·|s, a) and rt = r(st, at, st+1).

We express the state value function of π as V π(s)
.
=

Eτ∼π [
∑∞
t=0 γ

trt|s0 = s] and the state-action value func-
tion as Qπ(s, a)

.
= Eτ∼π [

∑∞
t=0 γ

trt|s0 = s, a0 = a]. The
advantage function is Aπ(s, a) = Qπ(s, a)− V π(s).

A Constrained Markov Decision Process (CMDP) (Alt-
man 1995) is a standard MDP M augmented with an ad-
ditional set C of auxiliary cost functions {ci}mi=0 and cost
limits {bi}mi=0. Each ci(s, a, s

′) : S × A × S is a map from
transistion tuples to costs.

Define the expected disounted cost return of policy π
with respect to the cost function ci ∈ C as Jci(π)

.
=

Eτ∼π [
∑∞
t=0 γ

tci(st, at, st+1)]. The set of feasible policies
for a CMDP is then ΠC

.
= {π ∈ Π : Jci(π) ≤ bi, ∀i}. The

goal of safe reinforcement learning with respect to a CMDP
is to search the optimal feasible policy π∗ such that

π∗ = arg max
π∈ΠC

J(π). (2)

Replacing r with ci, we define the cost value function V π
ci ,

cost action-value function Qπ
ci , and cost advantage function

Aπci for the auxiliary costs in an analogy to V π , Qπ and Aπ .

Policy Optimization with Constraints
With the definition of normalized discounted state visitation
distribution as dπ(s) = (1 − γ)

∑∞
t=0 γ

tP (st = s|π), we
can express the difference in performance between policies
(Kakade and Langford 2002) as:

J(π′)− J(π) =
1

1− γ
E

s∼dπ
′

a∼π′

[Aπ(s, a)] . (3)

It allows us to rewrite the original goal of safe reinforcement
learning (2) into an iterative search for the optimal policy
(Achiam et al. 2017; Zhang, Vuong, and Ross 2020):

πk+1 = argmax
π

E
s∼dπ
a∼π

[Aπk(s, a)]

s.t. Jci(πk) +
1

1− γ
E

s∼dπ
a∼π

[
Aπk
ci (s, a)

]
≤ bi, ∀i.

(4)

Methodology
In this section, we give the theoretical foundation of APPO.
For simplicity, let Lπk

R (π) = Es∼dπ,a∼π [Aπk(s, a)], and
ϕπk
ci (π) = Jci(πk) +

1
1−γ Es∼dπ

a∼π

[
Aπk
ci (s, a)

]
− bi.

Consider the equivalent form of the primal problem (4):

πk+1 = argmin
π∈Π
−Lπk

R (π)

s.t. hk,i(π) = ϕπk
ci (π) + pi = 0, pi ≥ 0, ∀i,

(5)

where pi is the slack variable to construct the equivalent
equality constraint.

We use a quadratic deviation term to supplement the La-
grange function concerning Eq. (5),

Pk(π,λ,p, σ) = −Lπk

R (π)

+
m∑
i=1

λihk,i(π) +
σ

2

m∑
i=1

h2
k,i(π),

(6)

where σ is the penalty factor. Then we construct the aug-
mented Lagrangian primal-dual problem as

(πk+1,λk+1,pk+1) = max
λ≥0

min
π,p
Pk(π,λ,p, σ). (7)

7289



Like the Lagrangian method, we can alternately update π,
λ, and p to find the optimal triplet.

Since the closed-form solution of p of each iteration can
be calculated as pi = max

{
−λi

σ − ϕci(π), 0
}

, we simplify
the solution to the primal-dual problem in Eq. (6) as

(πk+1,λk+1) = max
λ≥0

min
π
L(π,λ, σ), (8)

where

L(π,λ, σ) = −Lπk

R (π)

+
σ

2

m∑
i=1

(
max

{
λi
σ

+ ϕπk
ci (π), 0

}2

− λ2
i

σ2

)
.

(9)

See Appendix A.1 for the detailed derivation.
The constructed function (9) contains a multiplier-penalty

term to achieve complementary constraint control from the
Lagrangian duality and the quadratic deviation penalty. It
is shown that the multiplier-penalty term takes effect when
the policy comes into a slack margin of constraint violations
(ϕci(π) ≥ −λi

σ ). This adaptive margin leaves a chance for
the penalty term to warm up before constraint-violating up-
dates, making constraint control more stable and effective
than the penalty after the agent violation.

We also prove that the multiplier-penalty term is an exact
penalty since the following Theorem 1 holds:
Theorem 1. There exists a σ <∞ such that for ∀σ > σ, the
primal problem (4) and the augmented primal-dual problem
(8) share the same feasible optimal solution set.

Proof. See Appendix A.2.

According to Theorem 1, we can search for the optimal
feasible policies of a CMDP by iteratively solving the max-
min problem (8). Notably, the finiteness of σ is vital since
traditional penalty methods require an infinite factor to guar-
antee the exactness (Freund 2004), which would lead to
practical numerical issues and significant approximate errors
(Zhang et al. 2022).

The gradient of L(π,λ, σ) takes the form

∇πL(π,λ, σ) = −∇πLπk

R (π)

+
∑

ϕ
πk
ci

(π)≥−λi
σ

(
λi + σϕπk

ci (π)
)
∇πϕπk

ci (π). (10)

Suppose (π∗,λ∗) are the optimal policy and its correspond-
ing dual parameters, and consider the KKT condition to
(π∗,λ∗),

∇πL(π∗,λ∗) = −∇πLπk

R (π) +
∑
i

λ∗
i∇πϕπk

ci (π
∗). (11)

Since Eq. (10) and Eq. (11) is consistent at the optimal point
(π∗,λ∗), we can obtain the following Proposition.
Proposition 1. The constraint violation nearby the optimal
point (π∗,λ∗) satisfies

max

{
ϕci(πk),−

λki
σk

}
≈ 1

σk
(λ∗
i − λki ). (12)

According to Proposition 1, We can reduce the constraint
violations of the policy iteration close to the optimal point by
reasonably increasing the factor σ. Intuitively, a sufficiently
large σ can effectively dampen the oscillations to achieve
better convergence.

Based on Eq. (12), we give a modified update way for
Lagrange multipliers.

λk+1
i = max

{
λki + σϕci(πk), 0

}
. (13)

So far, the Eq. (9) and Eq. (13) show the key idea of our
Augmented Proximal Policy Optimization method.

Algorithm
In this section, we implement our APPO algorithm in a
deep RL setting. Consider a set of parameterized poli-
cies (i.e., neural networks with a fixed architecture) Πθ =
{πθ : θ ∈ Θ} from which we can easily evaluate and sam-
ple. Our algorithm will iteratively update policies by draw-
ing samples from the environment.

It is intractable to solve the minimization of the objective
(9) for its inclusion of unknown future state segments and
poor sampling efficiency. Inspired by Proximal Policy Opti-
mization (Schulman et al. 2017), APPO uses an analogous
clipped surrogate objective for the cost as for the reward.
Thus, the practical optimization objective is derived from
Eq. (9) as:

LR(θ) = Et
[
min

(
rt(θ)A

R
t , clip (rt(θ), 1− ϵ, 1 + ϵ)ARt

)]
(14)

Lci(θ) = Et [max (rt(θ)A
ci
t , clip (rt(θ), 1− ϵ, 1 + ϵ)Acit )]

(15)

L(θ,λ, σ) = −LR(θ)

+
σ

2

m∑
i=1

(
max

{
λi
σ

+ Lci(θ)− b̂, 0

}2

− λ2
i

σ2

)
,

(16)

where we use the Generalized Advantage Estimator (GAE)
(Schulman et al. 2015) to estimate advantages ARt , Acit from
trajectories {st, at, rt, Vt, V ci

t }
∞
t=0 collected from some old

policies πθold . rt(θ) =
πθ(at|st)
πθold (at|st)

is the importance sampling

ratio and b̂ = Jci(πθold) − bi. The surrogate objectives LR
(14) and Lci (15), which are pessimistic bounds on the un-
clipped objectives, allow us to update policy based on the
samples collected from some proximal policies. Such local
approximations are proved to often lead to more stable be-
havior and better sample efficiency (Schulman et al. 2017;
Achiam et al. 2017; Metelli et al. 2021).

After each policy update by minimizing the L(θ,λ, σ) in
Eq. (16), we use Eq. (13) to update the Lagrangian multi-
plier. The remaining problem is to pre-select an appropriate
penalty factor involved in policy iteration and multiplier up-
date. We provide an adaptively growing way to adjust the
penalty factor, which significantly avoids the trouble of se-
lecting the penalty factor.

Referring to the estimated relationship between con-
straints ϕci , multipliers λi, and penalty factor σ in Propo-
sition 1, we define a new metric to measure the constraint
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violation degree:

ν(πθk) =

√√√√ m∑
i=0

max

{
Jci(πθk)− bi,−

λki
σk

}2

, (17)

and a threshold εk = 1
σk

. We adjust the penalty factor σk ac-
cording to the magnitude of the constraint violation degree
ν(πθk). When the constraint violation degree ν(πθk) ex-
ceeds the threshold ϵk, we appropriately increase the penalty
factor σk (i.e., σk+1 = ρσk) to obtain more stable and
constraint-satisfying iterations.

Notably, the loss function of APPO in Eq. (16) is differ-
entiable almost everywhere, so we could easily solve it via
a first-order optimizer (e.g., Adam optimizer (Kingma and
Ba 2014)) to update the parametric policy. We present the
pseudo-code of APPO in Algorithm 1.

Related Works
In this section, we review the existing safe RL algorithm that
relates to the proposed APPO. Please refer to the survey (Gu
et al. 2022) for more discussion.

Quadratic methods. Constrained Policy Optimization
(CPO) (Achiam et al. 2017) search policy with near-
constraint satisfaction guarantees in a trust region, based on
a new bound on the expected return and constraint of two
nearby policies. In practice, CPO takes a time-consuming
backtracking line search to obtain the next policy. Yang et al.
(2020) proposed Projection-based Constrained Policy Opti-
mization (PCPO) utilizing a two-step approach to searches
for the optimal policy and then projects the policy back into
the feasible set. These quadratic methods involve a local pol-
icy search based on conjugate gradient (Süli and Mayers
2003) whose solution requires an inverse Fisher information
matrix leading to expensive computation for each update.

Lagrangian-based methods. We find simple Lagrangian-
based algorithms perform as well or even better than above
higher-order algorithms in a recent empirical comparison
in Safety Gym (Ray, Achiam, and Amodei 2019). Primal-
Dual Optimization (PDO) (Chow et al. 2017) and its vari-
ants (Tessler, Mankowitz, and Mannor 2018; Paternain et al.
2019) leverage the Lagrangian Duality to learn constraint-
satisfying policies in safe RL scenarios. We also view FO-
COPS (Zhang, Vuong, and Ross 2020) as a primal-dual
method, since it uses a simple Lagrangian argument to find
its KKT points as the optimum of constrained local pol-
icy optimization. However, convergence analysis of the La-
grangian method proves that the multiplier update more
slowly than the policy iteration, probably resulting in unsafe
intermediate policies during training for no fully effective
penalty (Tessler, Mankowitz, and Mannor 2018; Paternain
et al. 2019). Thus, the Lagrangian methods are hard to con-
verge, mainly appearing to oscillate when close to the cost
threshold. CPPO-PID (Stooke, Achiam, and Abbeel 2020)
combine PID control with Lagrangian methods to dampen
cost oscillation but is hard to implement and apply in prac-
tice due to their sensitivity to three PID hyper-parameters.

Algorithm 1: Augmented Proximal Policy Optimization

Initialize Policy network πθ0 , Value networks Vψ and Cost
Value networks V ci

φi
for all cost function ci.

Initialize multiplier λ0, penalty factor σ0, and ρ.
for each episodic iteration k do

Generate trajectories τ ∼ πθk .
for each mini-batch do

Update critic networks Vψ and V ci
φi

.
Compute LR(θk) in Eq. (14)
Compute Lci(θk) in Eq. (15) for all ci ∈ C
Update Policy network using:

θk+1 ← θk − η∇θL(θk) in Eq. (16)
Update λ using:

λk+1
i = max

{
λki + σϕci(πk), 0

}
if ν(πθk) > εk then
σk+1 = ρσk

end if
end for

end for

Penalty functions-based methods. Another class of suc-
cessful first-order methods uses penalty functions to control
constraints. IPO (Liu, Ding, and Liu 2020) augments the
objective with logarithmic barrier functions to restrict poli-
cies into the feasible set. However, it is theoretically shown
to provide suboptimal solutions since the surrogate penalty
function with infinite penalty factors is not exactly the same
as the primal problem(Freund 2004). IPO assumes feasible
initialization and intermediate iterations, which cannot be
fulfilled in practice and require further recovery. Zhang et al.
(2022) propose P3O using exact ℓ1-penalty method to derive
an equivalent unconstrained objective. P3O requires suffi-
ciently large penalty factors, theoretically larger than the
optimal dual parameters of the primal problem, to guaran-
tee exactness. It faces a difficult penalty factor tuning since
larger factors will bring more significant estimation errors.

Compared with the prior work, the proposed APPO algo-
rithm has advantages in at least three aspects. Firstly, APPO
is easy to implement and solve by any first-order optimizer.
Secondly, APPO has better convergence since the attached
quadratic penalty term complement the lagged Lagrangian
multipliers. Thirdly, APPO solve an exact multiplier-penalty
function equivalent to the primal problem to have minor ap-
proximation errors and avoid converging into suboptimal so-
lutions.

Experiments
In this section, extensive experiments empirically demon-
strate the following properties of our APPO algorithm:

• APPO outperforms current state-of-the-art algorithms in
safe RL tasks on maximizing cumulative return and sat-
isfying constraints.

• APPO provides reliable safety satisfaction and stable
convergence to the optimal policy. It overcomes the in-
herent oscillation issues due to lagged Lagrange multi-
plier updates.
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(a) Run (b) Circle (c) Goal (d) Button

Figure 1: Four experimental task scenarios: Run, Circle, Goal, and Button.

Algorithm Ours PDO FOCOPS CPPO-PID IPO P3O CPO PCPO
Ant R 1062.9± 4.4 997.5± 8.8 1058.2± 7.2 1038.6± 6.2 1040.8± 5.2 1054.0± 7.6 1024.1± 51.0 1048.7± 30.7

(103.12) C 102.2± 6.6 80.9± 7.6 100.0± 7.4 100.8± 6.8 97.6± 14.0 102.7± 10.5 101.1± 73.2 99.1± 39.6
Humanoid R 4989.2± 2.3 4953.5± 4.9 4925.9± 1.2 4989.8± 2.1 931.5± 331.3 4864.0± 2.74 4963.8± 1.4 511.1± 118.2

(20.14) C 18.8± 2.7 13.7± 3.6 14.1± 1.8 16.6± 2.1 19.7± 8.3 18.5± 1.3 19.7± 1.4 20.1± 4.7
Ball Circle R 768.1± 32.0 727.6± 43.1 498.0± 57.1 761.1± 23.9 756.7± 33.7 610.6± 50.7 380.6± 33.2 51.5± 35.4

(3.0) C 2.3± 7.5 2.7± 2.1 2.5± 3.7 2.6± 4.1 3.0± 6.5 2.4± 3.3 2.4± 3.5 1.5± 3.1
Car Circle R 1262.9± 52.6 1239.5± 45.2 898.9± 136.0 1204.8± 39.4 1223.2± 66.2 1055.3± 49.5 791.8± 92.5 368.0± 54.9

(3.0) C 2.1± 2.3 1.8± 2.8 2.9± 5.8 2.1± 2.1 3.0± 9.3 1.6± 2.9 2.0± 4.0 48.2± 33.4
Point Goal R 23.6± 4.1 16.2± 2.9 22.8± 1.3 11.3± 5.6 19.9± 1.3 18.4± 3.6 26.6± 1.4 3.1± 2.5

(25.0) C 24.3± 19.7 22.2± 5.3 24.8± 3.5 24.8± 30.0 23.9± 21.0 21.8± 29.9 89.4± 65.4 24.4± 45.0
Car Goal R 28.1± 4.3 28.1± 6.9 24.8± 21.3 15.5± 5.3 25.4± 8.0 20.0± 16.3 36.4± 0.3 34.5± 2.3

(25.0) C 18.5± 25.0 20.2± 11.6 22.6± 29.2 24.2± 30.4 24.3± 28.6 15.3± 22.3 52.2± 6.0 60.2± 5.5
Point Button R 8.6± 7.3 6.6± 8.0 2.8± 0.7 2.3± 2.4 5.3± 4.9 7.0± 4.3 24.2± 1.4 29.4± 0.6

(25.0) C 20.4± 25.1 17.8± 35.8 22.5± 9.0 20.1± 28.9 24.3± 29.9 24.5± 26.6 56.6± 78.0 58.3± 69.7
Car Button R 2.2± 2.4 1.8± 2.6 1.6± 3.0 1.0± 2.0 1.9± 1.2 1.0± 2.7 15.2± 2.2 20.4± 3.1

(25.0) C 23.9± 52.3 23.9± 42.4 20.9± 34.1 20.7± 30.7 60.5± 15.3 17.9± 27.0 154.6± 37.1 277.3± 30.7

Table 1: Mean performance and normal 95% confidence interval on eight safe RL scenarios. Cost thresholds are in brackets
under the environment names. We bold the best return values with constraint satisfaction.

• APPO provides precise cost control with the exact
penalty. It effectively deals with different cost thresholds.

• APPO is robust to its hyper-parameters (the penalty fac-
tor and the learning rate of the Lagrangian multiplier).

Baselines. We organize baseline algorithms used for com-
parison in the following logic. We compare APPO with
first-order Lagrangian-based classic or state-of-the-art al-
gorithms (i.e., PDO (Chow et al. 2017; Ray, Achiam, and
Amodei 2019), FOCOPS (Zhang, Vuong, and Ross 2020),
and CPPO-PID (Stooke, Achiam, and Abbeel 2020)) and
penalty function-based methods with similar quality (i.e.,
IPO (Liu, Ding, and Liu 2020) and P3O (Zhang et al.
2022)). In addition, we consider the existing typical or
SOTA quadratic algorithms (i.e., CPO (Achiam et al. 2017),
TRPO-L (Ray, Achiam, and Amodei 2019), and PCPO
(Yang et al. 2020)).

Task scenarios. For a comprehensive evaluation, we se-
lect four representative tasks from three well-known safe
RL benchmark environments (Safe MuJoCo (Zhang, Vuong,
and Ross 2020), Safety Gym (Ray, Achiam, and Amodei
2019), and Bullet Safety Gym (Gronauer 2022)) as our ex-
perimental scenarios. In each task, we learn two different
types of intelligent agents. We present the four task scenar-
ios in rough order of difficulty:

• Run: We attempt to train robotic agents (i.e., Ant and
Humanoid) like Figure 1(a) to run on a flat surface and

meet a specific speed limit that cannot exceed 50% of the
speed achieved by an unconstrained PPO agent.

• Circle: The goal of agents (i.e., Ball and Car) in the Cir-
cle task is to move as fast and close to the blue circle’s
boundary in Figure 1(b) as possible. When agents leave
the safety zone sandwiched between two yellow bound-
aries, costs are received.

• Goal: Agents (i.e., Point and Car) move to a series of
random goal positions colored green in Figure 1(c). The
remaining layouts in the environment are traps and ob-
stacles that the agent is penalized for approaching.

• Button: Agents (i.e., Point and Car) should observe, nav-
igate to, and press the currently highlighted button (the
orange one in Figure 1(d)). The Button task and the Goal
task shared the same constraint settings.

Since the four tasks are from three different benchmark en-
vironments, the types of agents were not uniform. See Ap-
pendix B for more details.

Overall Performance
From the perspective of safe RL, we only compare the cu-
mulative return under satisfying constraints and consider all
constraint-violating results as poor performance.

Table 1 lists the numerical performance of all tested algo-
rithms in eight safe scenarios. We find that our APPO outper-
forms other baseline algorithms in finding the optimal policy
while satisfying the constraints, most significantly, with an
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Figure 2: Average episode return (the first plot of each task) and cost (the second plot of each task) for the tested algorithms
and tasks. The solid line is the mean, the shaded area is the standard deviation, the black dashed line in the constraint plot is the
cost threshold, and the red crosses mark all constraint-violating return curves. See Appendix C for all curves.

average +41% higher reward improvement over PDO, FO-
COPS, CPPO-PID and safety violations of IPO, CPO, PCPO
on the Car Button task.

Figure 2 shows the corresponding learning curves. The
dashed line in the constraint figures is the cost thresh-
old b. We observe that APPO converges to a constraint-
satisfying policy faster and smoother than other baseline
algorithms, with few constraint-violating behaviors during
training. In contrast, algorithms with Lagrangian duality (in-
cluding PDO, FOCOPS, and CPP-PID) show varying de-
grees of oscillation, which we further discuss in the next sec-
tion. We also observe that the penalty function-based meth-
ods (IPO and P3O) generally perform slightly worse than
the Lagrangian-based methods or lose control of the con-
straints, such as IPO in Goal and Button tasks. Moreover,
Ant Run is a toy task, so most algorithms find the optimal
safe policy. However, with the increase in problem complex-
ity and stochastic, some quadratic methods (CPO, TRPO-
L, and PCPO) can not satisfy the constraint. Such results
are also seen in the prior works (Ray, Achiam, and Amodei

2019).

Evaluation of Advantages
In this section, we empirically verify the merits of APPO.
More experimental results are presented in Appendix C.

Stable convergence. APPO has good convergence to the
optimal point while satisfying the constraints. It avoids the
inherent oscillation of Lagrangian methods. Figure 3 shows
the learning curve for one set of experiments with a fixed
learning rate of the Lagrangian multiplier for different al-
gorithms. Although all algorithms eventually find the opti-
mal constraint-satisfying policy, APPO converges to the cost
threshold most stable and tightly, while other baseline algo-
rithms oscillate around the threshold leading to significant
safety violations during training.

Moreover, we observe that the Lagrange multiplier of
PDO has a significant lag compared to the constraint curve.
It often loses or overdoes cost control due to too small or too
large lagged multipliers. FOCOPS limits the maximum of
the multipliers. Although this avoids the oscillation success-
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Figure 3: Oscillations in episodic returns (costs and La-
grange multipliers) from algorithms using Lagrange duality
to control costs in Ant Run task.

800

400

600

60
200

80

100

120

140

160
Constraint

Ours
PDO

Return

0 100 200 300 400 500 0 100 200 300 400 500

Figure 4: Episodic returns and costs from algorithms using
Lagrange dual to control costs at cost limits 60, 103.12, 140
(black dashed lines) in Ant Run task.

fully (as the learning curve after Epoch 200), it is not con-
ducive to satisfying the constraints. CPPO-PID shortens the
lag between multipliers update and constraints, which eases
the oscillation to some extent. However, the CPPO-PID al-
gorithm includes three sensitive hyper-parameters that need
plenty of time to tune.

Precise cost control. Figure 2 shows that APPO has pre-
cise safety satisfaction on all difficulty-level tasks. We fur-
ther verify that APPO works effectively for different cost
threshold levels. The experimental results in Figure 4 show
that APPO satisfies the constraints in all cases and pre-
cisely converges to the cost upper limit to enlarge the policy
searching space. Moreover, it illustrates that the oscillation
of the baseline Lagrangian-based algorithms is not a case of
a particular cost limit.

We design another set of experiments for precise cost
control that train different algorithms with fixed hyper-
parameters in different cost thresholds. Figure 5 shows that
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Figure 5: Learning curves from different algorithms in Point
Goal task with cost limit 25 and 50. The hyper-parameters
are tuned at cost limit 50.

APPO effectively adapts to different cost thresholds, leading
to exact cost control with fixed hyper-parameters. We also
observe that penalty function-based methods (IPO and P3O)
may require further tuning to accommodate different safety
settings. In Figure 5, APPO degenerates into the exterior-
point method (EPM) when the Lagrangian part is removed.
This ablation comparison illustrates the contribution of La-
grangian duality to safety satisfaction in APPO.

Robustness

Besides the learning rate of multipliers, another key hyper-
parameter in APPO is the penalty factor σ. We believe that
the penalty function term in APPO provides continuous con-
trol of the cost and complements each other with the lagged
multiplier part. Additionally, Theorem 1 guarantees the ex-
actness of the APPO algorithm under a finite penalty factor.
Instead of using fixed σ, we provide an adaptive method in
Algorithm 1 to achieve better robustness, namely, increas-
ing σ appropriately whenever the policy exceeds a certain
cost threshold. The experimental results are stable in a wide
range of hyper-parameter settings. We take the PDO algo-
rithm as a reference since APPO degenerates into PDO when
σ is zero. By comparison, the quadratic penalty term does
play a role in stabilizing the learning process and converg-
ing to a more optimal safe policy. See Appendix C for more
robustness experimental results.

Conclusion

In this article, we proposed a novel multiplier-penalty func-
tion for solving the constrained Markov decision process and
designed a new deep safe RL algorithm, Augmented Prox-
imal Policy Optimization (APPO), to outperform current
state-of-the-art safe RL baselines on a wide range of tasks.
Moreover, we theoretically and empirically verify the merits
of our algorithm in easy implementation, good convergence
without oscillation, and exact penalties to avoid suboptimal
policies. Since there is still a gap between CMDP and the
safety of human-machine cooperation required in reality, we
consider that our future work will focus on deep RL tasks
with more stringent safety criteria.
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