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Abstract

Contrastive learning has emerged as one of the most promis-
ing self-supervised methods. It can efficiently learn the trans-
ferable representations of samples through the instance-level
discrimination task. In general, the performance of the con-
trastive learning method can be further improved by project-
ing the transferable high-dimensional representations into the
low-dimensional feature space. This is because the model
can learn more abstract discriminative information. However,
when low-dimensional features cannot provide sufficient dis-
criminative information to the model (e.g., the samples are
very similar to each other), the existing contrastive learn-
ing method will be limited to a great extent. Therefore, in
this paper, we propose a general module called the Fea-
ture Reconstruction Amplifier (FRA) for adding additional
high-dimensional feature information to the model. Specifi-
cally, FRA reconstructs the low-dimensional feature embed-
dings with Gaussian noise vectors and projects them to a
high-dimensional reconstruction space. In this reconstruction
space, we can add additional feature information through the
designed loss. We have verified the effectiveness of the mod-
ule itself through exhaustive ablation experiments. In addi-
tion, we perform linear evaluation and transfer learning on
five common visual datasets, the experimental results demon-
strate that our method is superior to recent advanced con-
trastive learning methods.

Introduction
Today, contrastive learning (CL) has achieved great success
as a kind of self-supervised learning in the fields of computer
vision (He et al. 2020; Chen et al. 2020a), natural language
processing (Gao, Yao, and Chen 2021; Yan et al. 2021),
graph neural network (You et al. 2020; Zhu et al. 2021), etc.
The core idea of contrastive learning is pulling positive fea-
ture embeddings close to the anchor but pushing negative
feature embeddings far away. Note that to make the model
learn more abstract feature information, contrastive learn-
ing methods usually use low-dimensional feature embed-
dings rather than high-dimensional representations. That is,
we tend to use a nonlinear multi-layer perceptron (i.e., a pro-
jection head) to project representations to a low-dimensional
space. By discriminating these abstract feature embeddings,
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Figure 1: Contrastive learning models learn discriminative
information of samples in a low-dimensional feature space.
This process is similar to identifying the original content
from a compressed image. When it is hard to discern, there
is no doubt that adding additional information is a good
method.

the performance of contrastive learning methods is greatly
improved. However, are that representation information, i.e.,
more essential feature information, really useless?

Here, we give an example as shown in Figure 1. Let’s
compress one photo and then identify its original content
in the compressed photo. If we can discern the original con-
tent, the information in this compressed photo is sufficient.
But what if the content in the compressed photo is simply il-
legible? We believe it is necessary to add some additional in-
formation at this point. Therefore, we design the Feature Re-
construction Amplifier (FRA) supplemented with additional
information. Specifically, the FRA module reconstructs low-
dimensional feature embeddings and projects them into a
high-dimensional space, called the reconstruction space. In
this reconstruction space, we train the entire framework by
an additional loss, using (high-dimensional) reconstruction
embeddings. In this way, the model can learn richer feature
information that satisfies more conditions through FRA. In
other words, we want these reconstruction embeddings to
contain more correct discriminative information. Then, low-
dimensional feature embeddings will be also more discrimi-
native, because the reconstruction embeddings are generated
through these feature embeddings. As in the previous exam-
ple, we continuously adjust the compressed photo until it is
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informative enough for us to identify its original content.
We call our overall framework a simple contrastive learn-

ing framework with the feature reconstruction amplifier
(SimFRA). It should be emphasized that the Feature Recon-
struction Amplifier is a general module. So, theoretically, the
loss in the reconstruction space can be any loss function that
obeys our assumptions. We experimentally verify the infor-
mation gain brought by different losses based on FRA and
the effectiveness of the SimFRA framework. In summary,
our contributions are threefold:

• We propose a general module, i.e., FRA, to add extra
feature information, forcing the original low-dimensional
abstract features to be more discriminative.

• We verify the effectiveness of the module itself and the
information gain brought by different losses through ex-
haustive ablation experiments.

• We verify the effectiveness of the proposed method by
comparing it with state-of-the-art contrastive learning
methods on several common vision datasets.

Related Work
In this section, we first review the development of con-
trastive learning. Then, we summarize some methods that
involve adding additional information to enhance con-
trastive learning. Additional information mainly includes
augmented image information, feature information, and text
information.

Contrastive learning. Contrastive learning falls in the
area of self-supervised learning (SSL). The key of a typical
SSL method is to set pretext tasks, such as context predic-
tion (Doersch, Gupta, and Efros 2015), colorization (Zhang,
Isola, and Efros 2016), inpainting (Pathak et al. 2016), ro-
tation (Komodakis and Gidaris 2018). Through these tasks,
the model can obtain useful feature information from a large
amount of unlabeled data. Among them, the pretext task
of contrastive learning is an instance discrimination task.
Specifically, InstDisc (Wu et al. 2018) treated each instance
as a separate class, proposed the non-parametric classifica-
tion problem at the instance level, and used the Noise Con-
trastive Estimation (NCE) loss (Gutmann and Hyvärinen
2010) to simplify the computation process and a memory
bank to store a large number of instance-level class feature
embeddings (Dosovitskiy et al. 2014). Due to the incon-
sistency of feature embeddings in the static memory bank,
MoCo (He et al. 2020) set up a queue to dynamically update
feature embeddings, and used the InfoNCE loss (Oord, Li,
and Vinyals 2018) and a momentum update method to train
the Siamese network. SimCLR (Chen et al. 2020a) built a
simple weight-sharing Siamese network framework, which
utilized sufficient data augmentations, large batch sizes, and
a new projection space to greatly improve the CL model’s
performance.

In addition, there are some contrastive learning meth-
ods that only use positives. These methods can effectively
learn visual representation information without the ”col-
lapse” problem. SwAV (Caron et al. 2020) obtained the clus-
ter centers (i.e., prototypes) of instance feature embeddings
in an online clustering manner and used the instance and its

prototype for contrastive learning. BYOL (Grill et al. 2020)
built an asymmetric Siamese network to predict the output of
one view from another view with the mean square error loss
(MSE), where one branch of the network is a momentum
encoder. Based on BYOL, SimSiam (Chen and He 2021) re-
moved the momentum encoder to further analyze the reason
why the CL method using only positives is effective without
the ”collapse” problem. W-MSE (Ermolov et al. 2021) re-
stricted feature embeddings to the spherical distribution by
using a whitening transform and demonstrated that multi-
ple positive pairs extracted from a single image can improve
performance.

Methods to add additional information. Researchers
have explored in several directions how to make feature em-
beddings more discriminative within the existing contrastive
learning framework, i.e., how to add more correct and useful
information. CLIP (Radford et al. 2021) used massive im-
ages and corresponding raw texts to construct (image, text)
pairs for contrastive learning, and achieved results that sur-
passed supervised learning methods in the zero-shot transfer
test way. InfoMin Aug (Poole et al. 2020) and Contrastive-
Crop (Peng et al. 2022) respectively proposed new data aug-
mentation methods. InfoMin Aug made the augmented view
retain task-relevant information while minimizing irrelevant
noise. ContrastiveCrop took semantic information into ac-
count when augmenting a sample. In the image-to-image
translation task, Cut (Park et al. 2020) and NEGCUT (Wang
et al. 2021) extracted feature embeddings in different lay-
ers of the encoder network to increase feature information
of different levels, that is, multi-layer contrastive methods.
As for negatives, MoCHi (Kalantidis et al. 2020) used two
methods to generate new hard negatives at the feature em-
bedding level. DCL (Chuang et al. 2020) proposed a biased
contrastive loss to correct the sampling bias, hoping to re-
duce the impact of false negatives as much as possible. HCL
(Robinson et al. 2021) proposed a new sampling method to
obtain harder negatives and avoid false negatives through the
defined ”hardness”.

Method
In this section, we first review the typical contrastive learn-
ing method. Then, we propose the Feature Reconstruction
Amplifier (FRA) to add additional information to further
force low-dimensional feature embeddings in the contrastive
space to be more discriminative.

Preliminary
We take SimCLR (Chen et al. 2020a) as our baseline. The
core idea of this method is to make the positive feature em-
bedding close to the anchor but keep negative feature em-
beddings far away in the contrastive space. Suppose there
are n instances in each mini-batch X = {x1, x2, ..., xn},
where xi means the i-th instance. We set up a family of
m augmentation methods Av = {av1, av2, ..., avm}, where
avi denotes the i-th augmentation method used in the v-th
view. Then, we generate two views X1, X2 of X by ran-
domly different augmentation methods A1 and A2. By us-
ing an encoder network f(·), we can obtain representations
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Hv = f(Xv) = {hv
i }ni=1, where hv

i denotes the i-th rep-
resentation in the v-th view. With a nonlinear projection
head gp(·), Hv is projected into the contrastive space to get
Zv = gp(H

v) = {zvi }ni=1. For convenience, we denote the
positive pair by (zi, zj), where i is the index of z1i in the
mini-batch and j is the index of z2i . At last, the InfoNCE
loss for the instance discrimination is defined as:

LInfoNCE = − 1
2n

2n∑
i=1

log
exp(zi·zj/τ)∑

i ̸=k exp(zi·zk/τ) , (1)

where τ is a temperature hyperparameter and z is distributed
on the hypersphere through ℓ2 normalization.

A Simple Contrastive Learning Framework with
the Feature Reconstruction Amplifier
In contrastive learning, hi is in fact a high-dimensional fea-
ture embedding, which contains more essential feature in-
formation of the instance. SimCLR empirically showed that
projecting H into a low-dimensional space, which we call
the contrastive space, can enable the model to obtain bet-
ter representations. We think this is due to the fact that
low-dimensional feature embeddings have higher-level ab-
stract information, which greatly increases the difficulty of
the instance discrimination task. However, we believe that
removing instance-specific feature information completely
will lead to a lack of discriminative information for the
model.

Based on the above considerations, we propose a gen-
eral module, called the Feature Reconstruction Amplifier
(FRA). FRA reconstructs the embeddings Zv to generate
reconstruction feature embeddings Rv and uses Rv to add
additional feature information. Specifically, we first recom-
bine z1i , z2i with a Gaussian noise vector ei, respectively. In
fact, we spliced the first half of z1i with the second half of ei
to get the contrastive reconstruction feature z̃1i . Similarly, we
spliced the first half of ei with the second half of z2i to get
z̃2i . Then, we design a nonlinear MLP network as our am-
plifier, denoted as the amplifier head ga(·). The linear layer
dimension setting in ga(·) is the exact opposite of gp(·). Be-
cause the goal of gp(·) is to obtain low-dimensional abstract
feature embeddings, while the goal of ga(·) is to obtain high-
dimensional concrete feature embeddings. We feed Z̃

v
into

the amplifier head ga(·) to get reconstruction feature em-
beddings Rv = ga(Z̃

v
) = {rvi }ni=1, where the embedding

dimension of R and H are the same.
The reason we didn’t directly feed the amplifier head with

Z1, Z2 is that Z1 and Z2 may be very similar. Despite us-
ing a nonlinear projection head, similar Z can easily lead to
similar R as shown in Figure 2 (a). In the example, we still
use images to vividly represent the feature vectors and the
images in the red circle represent positives. In this case, it
is difficult for the model to learn any additional discrimina-
tive feature information. We believe that complex tasks are
more effective in improving the performance of the model,
such as image augmentation before pre-training the model.
Therefore, we set the above reconstruction method. In this
way, FRA is trained to learn new information so that the

Figure 2: Differences in the initial states of R under the
direct projection method and the reconstruction projection
method.

positive samples in R can be close to each other, rather than
being initially close like Figure 2 (b).

For the loss used in FRA, we think it can be any loss func-
tion that obeys our assumptions because the FRA module is
a simple and general-purpose component. We set up three
common losses to verify the effectiveness of FRA, i.e., the
MSE loss (LMSE A), the InfoNCE loss (LInfoNCE A) and
the Student-t loss (LST A). Specifically, the MSE loss con-
siders only the positive pairs in R. LMSE A makes (r1i ,r2i )
consistent by simply reducing the distance between each
positive pair. In contrast, the InfoNCE loss and the Student-
t loss will take into account the positive and negative pairs
in R. The goal of LInfoNCE A and LST A is to make the
reconstructed representations between positive pairs close
but the reconstructed representations between negative pairs
far away. The difference between LInfoNCE A and LST A

lies in the different ways of measuring similarity. The above
losses are defined as:

LMSE A = 1
2n

2n∑
i=1

(ri − rj)
2
, (2)

LInfoNCE A = − 1
2n

2n∑
i=1

log
exp(ri·rj/τ)∑

i ̸=k exp(ri·rk/τ) , (3)

LST A = − 1
2n

2n∑
i=1

log
(1+∥ri−rj∥2)

−1∑
i ̸=k (1+∥ri−rk∥2)

−1 , (4)

where τ in Eq. (2) is a temperature hyperparameter and r
in Eq. (4) does not perform ℓ2 normalization. The overall
objective function can be expressed as:

LSimFRA = (1− w)LInfoNCE + wLA, (5)

where w is a coefficient that increases linearly to 1
2 in the

first 100 training epochs. After 100 epochs, w becomes a

7281



Figure 3: The SimFRA framework.

constant value (i.e., 1
2 ). This is because, in the early stages

of training, R contains task-unrelated or invalid information,
we need to constrain R through LInfoNCE so that they can
gradually generate the right concrete feature information we
need. LA is one of LMSE A, LInfoNCE A and LST A. We
study the information gain caused by the three losses.

Framework and Algorithm
As shown in Figure 3, the SimFRA framework is a symmet-
ric Siamese network following SimCLR (Chen et al. 2020a).
Assuming that the data in mini-batch is X , we augment X
to two related view X1 and X2 through A1 and A2, and
denoted as Xv . After obtaining representations Hv through
the encoder network f(·), we use the projection head gp(·)
to project Hv into the contrastive space to get Zv . Then we
calculate the LInfoNCE loss with Eq. (1). Next, we recon-
struct Zv with Gaussian noises E for the contrastive recon-
struction feature Z̃

v
. Then, Rv is obtained by the amplifier

head ga(·), and the LA loss is calculated with Eq. (2) to (4).
Finally, we calculate the overall SimFRA loss with Eq. (5).
The overall algorithm flow is shown in Algorithm 1.

Experiments
In this section, we first introduce implementation details in
our experiments. Then we conduct detailed ablation exper-
iments of the FRA module, including three different losses
and the network structure. Lastly, we compare the SimFRA
framework with several recent contrastive learning methods
(our reproduced version), including the linear evaluation and
transfer learning.

Implementation Details
We introduce the implementation details from four aspects:
datasets, the experimental setup, augmentation methods, and
the evaluation protocol. The specific content is as follows:

Datasets. We investigate contrastive learning using some
common image datasets, such as CIFAR-10, CIFAR-
100, STL-10, ImageNet-100, and Voc2007. Among them,

Algorithm 1: The SimFRA algorithm
Input: Instances X; augmentation methods Av; the encoder
network f(·); the projection head gp(·); the amplifier head
ga(·)
Parameter: Temperature hyperparameter τ ; number of
training epochs n
Output: The encoder network f(·)

1: for i = 1 to n do
2: Xv = Av(X)
3: Hv = f(Xv)
4: Zv = gp(H

v)

5: Generate random Gaussian noises E and get Z̃
v

by
reconstructing Zv with E

6: Rv = ga(Z̃
v
)

7: calculate the LInfoNCE loss by Eq. (1)
8: calculate the LA loss by Eq. (2) to (4)
9: optimize the SimFRA network by Eq. (5)

10: end for
11: return the encoder network f(·)

CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton 2009)
each contains 50,000 training images and 10,000 test im-
ages. The size of each color image is 32×32. The difference
is that CIFAR-10 contains ten classes while CIFAR-100 con-
tains one hundred classes. Both STL-10 (Coates, Ng, and
Lee 2011) and ImageNet-100, i.e., IN-100, are derived from
the ImageNet-1k dataset (Deng et al. 2009). STL-10 con-
tains 10 classes, each with 500 training images and 800 test
images. In addition, STL-10 has 100,000 unlabeled images
for training. The image size in STL-10 is set to 96 × 96.
IN-100 contains 100 random classes from IN-1k. Each class
contains 1,300 training images and 50 test images. Voc2007
is a standard small dataset with 9,963 images, specifically,
5,011 training images and 4,952 test images. It contains a
total of 20 classes, and the number of images in each class is
inconsistent. The size of each image is inconsistent, roughly
500× 375 (the horizontal image) or 375× 500 (the vertical
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image).
Experimental setup. We reproduce several contrastive

learning methods based on the code provided in previous
work. All the data in the experiments are the test results of
our reproduction methods. We generally set two batch sizes.
On the IN-100 dataset, we set the batch size to 64. On other
datasets, the batch size is 32. As for the backbone network,
we mainly use the standard ResNet-18 and ResNet-50 (He
et al. 2016). In ablation experiments, we use ResNet-18 as
the backbone network. In comparison with other methods,
we uniformly use the standard ResNet-50 as the backbone
network, except for DCL and HCL. In DCL and HCL, the
first convolutional layer in the ResNet-50 network is modi-
fied to be more suitable for images of small size according
to the paper. Although this will cause some differences be-
tween the backbone network and augmentation methods, it
is the only way to reproduce the results presented in the pa-
per.

As for the optimizer, most methods use the Adam op-
timizer (Kingma and Ba 2014), but MoCo and MoCo v2
(Chen et al. 2020b) use the SGD optimizer. In MoCo and
MoCo v2, the initial learning rate is set to 0.03, the SGD
weight decay is 10−4 and the SGD momentum is 0.9. In
DCL and HCL, the learning rate is 0.001 and the weight de-
cay is 10−6. In SimCLR and our SimFRA, the learning rate
is 3× 10−4. In BYOL, the learning rate is 2× 10−4. As for
the specific hyperparameters of each method, we set the
temperature τ = 0.07, the memory bank size k = 65536,
and the momentum m = 0.999 in MoCo and MoCo v2. In
SimCLR and our SimFRA, the temperature τ is set to 0.5. In
DCL, the temperature τ = 0.5, and the positive class prior
τ+ = 0.1. In HCL, the temperature τ is set to 0.5. The posi-
tive class prior τ+ and the concentration parameter β are set
following in the paper. In BYOL, the exponential moving
average parameter τ is set to 0.99. At last, we train models
on the Voc2007 dataset for 500 epochs. On other datasets,
we train the model for 400 epochs.

Augmentation methods. In most of the methods, we use
the same augmentation methods. We first extract crops with
a random size from 0.2 to 1.0 of the original image and then
scale these crops to the size of 224 × 224. Next, we apply
horizontal flip with probability 0.5, the color jittering with
configuration (0.8, 0.8, 0.8, 0.2) with probability 0.8 and
grayscaling with probability 0.2. When testing the model,
we only resize the image to 224×224. The difference is that,
in DCL and HCL, crops are scaled to the size of 32 × 32.
DCL, HCL and MoCo v2 also add the GaussianBlur aug-
mentation method.

Evaluation protocol. Following the widely adopted lin-
ear evaluation protocol, we use the well-trained frozen
ResNet network to extract fixed representations. Note that
we only use unlabeled data during training this ResNet
network, strictly following the self-supervised setting. And
throughout the testing process, the parameters of this ResNet
network are fixed. For testing the representation quality, we
train a supervised linear classifier for 500 epochs with these
fixed feature embeddings. At last, we test the classification
accuracy on the test set. For the optimizer used in the train-
ing of the classifier, most methods use the Adam optimizer.

However, MoCo and MoCo v2 use the SGD optimizer fol-
lowing the paper setting.

Ablation Studies
In the ablation experiments, we only change the FRA mod-
ule, i.e., the LA loss and the amplifier head ga(·). We set
up the backbone network and the projection head with ref-
erence to SimCLR (Chen et al. 2020a). To demonstrate the
effectiveness of the FRA module itself, we test three losses
with Eq. (2) to (4) on the CIFAR-10 dataset. On the basis
of FRA, they all effectively improve the quality of the final
learned representations, and the results are shown in Table
1. When LST A is used as the FRA loss, the linear evalua-
tion of the SimFRA model is the best. We then analyze the
structure of ga(·) and test the linear evaluation of SimFRA
at different training epochs.

Different losses have different preferences for the struc-
ture of the amplifier head ga(·). We tested the effect of dif-
ferent BN layers on FRA in our experiments. The results
are shown in Figure 4. The amplifier head ga(·) is similar
to the projection head gp(·), i.e., a nonlinear MLP. The dif-
ferences are the dimension settings and the BN layer set-
tings in the two headers. Specifically, the projection head
gp(·) projects representations to a low-dimensional space so
that the model can learn abstract image information from the
low-dimensional feature embeddings. In gp(·), we set the di-
mension to [2048, 2048, 128], add the BN layer after each
linear layer, and add a nonlinear activation (ReLU) layer af-
ter the first BN layer. Instead, the amplifier head ga(·) aims
to provide additional information to the model from more
specific feature embeddings in the higher dimension. We set
the dimension in ga(·) to [128, 2048, 2048] and add a ReLU
layer after the first linear layer. For the BN layer, differ-
ences in structural preferences between different losses are
evident. Therefore, according to Figure 4, the FRA module
with each loss takes the best performing amplifier structure.

Under the above settings, the linear evaluation of SimCLR
and SimFRA with different training epochs are shown in
Figure 5. It can be seen that by the time the SimFRA model
is trained for 100 epochs, performances of SimFRA MSE
and SimFRA ST are already better than or comparable to
the performance of SimCLR. With the process of training,
the weight of LA in the FRA module increases and SimFRA
performs better than SimCLR overall. This proves the effec-
tiveness of our proposed method itself.

At the same time, we found a puzzling but interesting
phenomenon during the experiment. When using MSE as
the loss of FRA, we observe that the LMSE A loss rapidly

LInfoNCE
LA ACCLMSE LInfoNCE LST

✓ 87.98
✓ ✓ 88.56
✓ ✓ 88.31
✓ ✓ 89.27

Table 1: Effectiveness of our framework based on the
ResNet-18 network on CIFAR-10.
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Figure 4: Linear evaluation of SimFRA with different am-
plifier heads ga(·) on CIFAR-10.

Figure 5: Comparison of linear evaluation between SimCLR
and SimFRA with different training epochs on CIFAR-10.

converges to zero and the feature embeddings of the FRA
module output also appear to the collapsed solution. This
is caused by the MSE loss simply bringing the positives
closer through the symmetric Siamese network. However, as
shown in Figure 4, different structures of the FRA module
with LMSE A are indeed affecting the performance of the
model. And except for ga(·), the backbone network and the
projection head in this experiment are all set up the same.
This indicates that even though LMSE A is a very small
value, it is still acting on the model.

Comparison with State-of-the-Art
We compare SimFRA with advanced contrastive learning
methods in linear evaluation and transfer learning. The ex-
perimental results show that SimFRA performs best in both
assessment methods.

Linear evaluation. In these experiments, we use LST A

as the loss of the FRA module, since this combination ob-
tained the highest linear classification accuracy. Table 2
shows the results of experiments on the small and medium-
sized datasets. SimFRA performs the best among all the four
datasets, especially on the CIFAR-100 and STL-10 datasets.
This is a good demonstration of the effectiveness of our

Method CIFAR-10 CIFAR-100 STL-10 Voc2007
Acc Acc Acc mAP

MoCo 77.02 52.01 80.97 -
MoCo v2 84.39 60.90 85.63 -
SimCLR 89.16 62.65 87.40 61.13
DCL 87.03 57.27 82.98 53.67
HCL 87.51 58.80 83.82 55.45
BYOL 88.70 64.23 87.36 56.89
SimFRA 90.72 66.72 91.07 62.61

Table 2: Classification accuracy (Acc) under linear evalua-
tion on CIFAR-10, CIFAR-100 and STL-10 datasets. Mean
average precision (mAP) on the Voc2007 dataset.

Method Top-1 Top-5
MoCo (He et al. 2020) 55.02 80.96

SimCLR (Chen et al. 2020a) 69.03 90.21
SimFRA (ours) 69.84 90.60

Table 3: Classification accuracy on the ImageNet-100
dataset. Top-1 and top-5 correspond to the accuracy of a lin-
ear classifier.

method. CIFAR-100 contains 100 classes, while each class
has only 500 samples, and the 100,000 unlabeled samples in
STL-10 contain a part of noisy samples (i.e., other types of
animals and vehicles in addition to the ones in the labeled
set). Due to the complex data, existing contrastive learning
methods cannot learn the true distribution of the data well.
However, SimFRA can effectively enhance the learning ca-
pability of the model by using additional feature informa-
tion.

Then, we compare the top-1 and top-5 classification accu-
racy with MoCo and SimCLR on the IN-100 dataset, and the
results are shown in Table 3. Compared to SimCLR, Sim-
FRA provides 0.81% top-1 accuracy gains. In addition, we
found that using the amplified head of a single BN layer
leads to an unstable training process when training SimFRA
on STL-10 and IN-100. It seems that the amplifier head is
sensitive to the distribution of the inputs to each layer, espe-
cially on large datasets.

Furthermore, to verify the effect of additional feature in-
formation on the learned distribution, we measure and visu-
alize the similarities of representations within each positive
pair and negative pair. In this experiment, we respectively
feed the images in CIFAR-10 and CIFAR-100 into the Sim-
CLR pre-trained and SimFRA pre-trained ResNet-50. Then
representations are extracted from each ResNet-50 network.
After calculating the similarity of each positive pair and neg-
ative pair, we convert the value of cosine similarity to [0, 1]
by (cos + 1)/2. As we set the batch size to 64, there will
be a total of 12,600,000 negative pairs (50, 000 × 2×126).
Considering that the similarity of (h1

i , h
2
i ) is the same as

that of (h2
i , h

1
i ), we only count the similarity of (h1

i , h
2
i ),

i.e., total of 50,000 positive pairs. Figure 6 shows each his-
togram of cosine similarities. The similarity of the positive
pairs in both SimCLR and SimFRA is mainly concentrated
in [0.8, 1.0]. However, the frequency of the similarity inter-
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Figure 6: Cosine similarity of representations within each
positive pair and negative pair on CIFAR-10 and CIFAR-
100.

val [0.8, 0.9] in SimFRA is significantly higher than that in
SimCLR. For the negative pairs, the similarity distribution
has a large difference. In SimFRA, the similarity scores be-
tween the anchor and its negatives are higher, concentrated
in [0.6, 0.9]. This is due to the loss used in the FRA module.
Theoretically, we can add any loss of reasonably assumed
data distribution to make the model perform better.

Transfer learning. One of the main goals of self-
supervised learning is to learn transferable features. To in-
vestigate the generalization ability of SimFRA on different
datasets, we evaluate the transfer learning performance on
CIFAR-10, CIFAR-100 and STL-10. Unlike linear evalua-
tion, the data distribution used in training the pre-trained
model is different from the data distribution used in the
downstream classification task. Specifically, we use one
dataset (the source dataset) to train the pre-trained ResNet-
50, and use another dataset (the target dataset) to train the
linear classifier during evaluation. Finally, the linear clas-
sifier is used to test the classification accuracy of the target
dataset. The results are shown in Table 4. In all six sets of ex-
perimental results, SimFRA outperformed SimCLR in terms
of transfer performance.

We can see that the improvement of SimFRA is most
obvious when the target dataset is CIFAR-100. The source
datasets are CIFAR-10 and STL-10, where the number of
classes is much smaller than that in CIFAR-100. The pre-
trained model trained with only low-dimensional features
is insufficient to handle finer-grained classification tasks.
SimFRA, which adds more feature information, effectively
solves the problem of insufficient information. Besides, in
experiments with CIFAR-100 as the source dataset, SimFRA
has the smallest improvement. This shows that the more
complex the data in the source dataset, the more discrimi-
native information can be generated by the low-dimensional

Source Target Method Acc

CIFAR-10
CIFAR-100 SimCLR 59.81

SimFRA (ours) 63.86

STL-10 SimCLR 72.59
SimFRA (ours) 75.14

CIFAR-100
CIFAR-10 SimCLR 83.16

SimFRA (ours) 84.99

STL-10 SimCLR 70.21
SimFRA (ours) 72.58

STL-10
CIFAR-10 SimCLR 84.15

SimFRA (ours) 86.78

CIFAR-100 SimCLR 57.24
SimFRA (ours) 61.68

Table 4: Results of transfer learning across CIFAR-10,
CIFAR-100 and STL-10 datasets with ResNet50. The source
dataset is used to train the model. The target dataset is used
to train the liner classifier and test the classification accuracy
(Acc).

features. In this case, the information gain from FRA will be
relatively less than in the first case.

Conclusions

In this paper, we propose a general module called the Fea-
ture Reconstruction Amplifier (FRA) that applies to the con-
trastive learning method. When low-dimensional features
cannot provide sufficient discriminative information to the
model, FRA can effectively improve the performance of the
model by supplementing with additional feature informa-
tion. Using the SimCLR method as a baseline, we perform
detailed ablation experiments on FRA and demonstrate the
effectiveness of the FRA module itself in combination with
different losses. In addition, we compare linear evaluation
and transfer learning on common visual datasets with recent
contrastive learning methods. The experimental results show
that SimFRA achieves the best results.

We think there are two directions for future investigation.
(a) We can design a loss function that is more suitable for
the FRA module, although the existing loss function can al-
ready significantly improve the performance of the model.
(b) In the transfer learning experiments, when the number
of classes in the source dataset is more than that in the tar-
get dataset, the improvement to the model is relatively small.
This means that FRA needs to add more discriminative fea-
ture information. In the future, we can further improve the
structure and loss function of FRA.
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