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Abstract

In many real-world applications, predictive methods are used
to provide inputs for downstream optimization problems. It
has been shown that using the downstream task-based objec-
tive to learn the intermediate predictive model is often bet-
ter than using only intermediate task objectives, such as pre-
diction error. The learning task in the former approach is re-
ferred to as end-to-end learning. The difficulty in end-to-end
learning lies in differentiating through the optimization prob-
lem. Therefore, we propose a neural network architecture that
can learn to approximately solve these optimization prob-
lems, particularly ensuring its output satisfies the feasibility
constraints via alternate projections. We show these projec-
tions converge at a geometric rate to the exact projection.
Our approach is more computationally efficient than existing
methods as we do not need to solve the original optimization
problem at each iteration. Furthermore, our approach can be
applied to a wider range of optimization problems. We ap-
ply this to a shortest path problem for which the first stage
forecasting problem is a computer vision task of predicting
edge costs from terrain maps, a capacitated multi-product
newsvendor problem, and a maximum matching problem. We
show that this method out-performs existing approaches in
terms of final task-based loss and training time.

Introduction
In many practical problems, several input quantities are pre-
dicted from historical data prior to decision making. For in-
stance, travel times in a vehicle routing problem, the demand
distribution in a supply chain inventory optimization prob-
lem, etc. A popular approach is to estimate these quantities
using a machine learning model from historical data along
with observed contextual features such as seasonal trends,
location information and prices among others. This machine
learning model is used to create a forecast for a new ob-
servation which is subsequently used for decision making.
In these problems, the more important part is the quality of
the business objectives, such as the overall costs in the sup-
ply chain problem, compared to the accuracy of the machine
learning models, such as the mean square error of the de-
mand estimate. But in many organizations, the forecasting
and decision making teams are siloed with each focusing
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on their respective objectives. Indeed, independently solving
the forecasting and decision-making problems can give rise
to significantly suboptimal decisions (Cameron et al. 2021).

Recent work that has focused on combining the predic-
tion (learning) stage with the downstream optimization task
(the decision making) investigates ways to perform gradient
descent through the end-to-end optimization problem itself.
One challenge for a large class of decision making prob-
lems, linear programs, stems from the fact that the gradient
of the optimal solution with respect to the predicted quanti-
ties, e.g., the cost vector of the decision problem, is zero or
undefined. This is because a small change in the cost vector
either results in the same optimal solution, or a discontinu-
ous jump to a new vertex. Linear programming constitutes
a major class of problems of interest. (Dobkin, Lipton, and
Reiss 1979) among others have showed that linear program-
ming is P-complete from which it follows that every problem
in P has an LP-formulation of polynomial size. This includes
for instance the shortest path problem, maximum matching,
etc.

Thus, much existing literature has focused on this set-
ting. To deal with the differentiability issue, (Elmachtoub
and Grigas 2022) constructs a convex and differentiable ap-
proximation of the objective. In the case of unconstrained
quadratic objectives, (Kao, Roy, and Yan 2009) trains a
model to directly minimize task loss. Crucially this did not
take into account constraints in the optimization problem.
This work was finally extended in (Amos and Kolter 2017)
to constrained quadratic optimization by analyzing KKT op-
timality conditions. Donti, Amos, and Kolter (2017) further
apply this methodology to stochastic programming prob-
lems with probabilistic constraints. Additionally, (Wilder,
Dilkina, and Tambe 2019) applies the OptNet methodology
to linear optimization problems by adding a quadratic reg-
ularization term in order to obtain approximate solutions.
They also use this approach to a new setting of submodu-
lar maximization problems. Furthermore, the method of an-
alyzing the KKT conditions was extended to more general
convex optimization problems in (Agrawal et al. 2019). See
for instance (Mandi and Guns 2020), (Vlastelica et al. 2020),
(Berthet et al. 2020), (Niepert, Minervini, and Franceschi
2021) for various other methods to approximate the objec-
tive function and produce nonzero gradients. A major short-
coming of these approaches is that they are computationally
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expensive algorithms, as they solve the original decision-
making optimization problem at each gradient step.

Other approaches aim to satisfy feasibility directly, with-
out altering the objective. Modeling the decision as only a
linear function of the features, the corresponding empirical
risk minimization problem can be formulated as a linear pro-
gram as in (Ban and Rudin 2019). But this does not allow
for more complex mappings. Alternatively, (Frerix, Nießner,
and Cremers 2019) describes a solution, not by its coordi-
nates, but by a double-description method, as a convex com-
bination of the vertices and extremes rays describing the
feasibility region. The primary downside lies in the often
exponential size of the vertex set. Closer to our approach,
(Donti, Rolnick, and Kolter 2021) transforms the output of
the learning model into a feasible solution by projecting on
any equality constraints, and subsequently performing gra-
dient descent to satisfy the inequality constraints. Instead of
relying on gradient descent to ensure feasibility, the method
we propose in this paper will simply perform a sequence of
alternating projections onto simpler sets. Additionally, our
method trains a surrogate model which explicitly learns and
approximates solutions to the optimization problem, which
may be of independent interest. The work of (Shirobokov
et al. 2020) takes a similar approach within a different con-
text. Instead of having an optimization problem to solve af-
ter the initial forecast, they consider simulation problems
(a common task within fields of physics or engineering for
instance). These simulations are often highly expensive to
perform, and they propose a surrogate generative network
method to approximate the outcome. There has also been
interesting work in creating continuous relaxations of algo-
rithms to make them differentiable. For instance, (Petersen
et al. 2021) does this by introducing continuous relaxations
of simple algorithmic concepts such as conditional state-
ments, loops, and indexing, which can be pieced together
to describe any algorithm.

Another stream of work is “learning to learn” methods
and meta-learning: ways to learn algorithms that can solve
optimization problems. See for instance (Sergio and Col-
menarejo 2016), (Andrychowicz et al. 2016), (Chen et al.
2017). These focus purely on optimization, with no forecast-
ing or end-to-end component. In a similar vein, there has
been much work in training neural networks to learn opti-
mal solutions of optimization problems. Much of the work
has focused in another direction, specifically on more dif-
ficult mixed integer linear programs since their aim is to
provide solutions more efficiently than solving the original
MILP. For instance, one of the earliest proposals (Hopfield
and Tank 1985) to solving the Travelling Salesman Problem
is to transform the problem into a labelling problem (which
edge should be in the path) and use Lagrange multipliers
to penalize the solution’s violations of constraints. However,
this technique has been shown to be highly unstable and sen-
sitive to initialization (Wilson and Pawley 1988). More ef-
fective methods for combinatorial problems on graphs have
been developed by training recurrent neural networks using
reinforcement learning. See for instance (Vinyals, Fortunato,
and Jaitly 2015) and (Bello et al. 2016). These are particu-
larly useful for path-based problems in which the RNN de-

cides which next node to visit. However, these approaches
are not developed with the end-to-end framework in mind.

Specifically, we propose a novel neural network architec-
ture which can learn the optimization problem, allowing one
to quickly approximate the solution, without explicitly solv-
ing the optimization problem itself. The main issue in doing
so arises from ensuring the output of the network is a fea-
sible solution to the optimization problem. We propose to
solve this by projecting onto the feasible region after each
layer of the network. However, a projection operator also has
a zero gradient with respect to the input for similar reasons
as above. So, we design an approximate projection method
which produces more useful gradients.

Our paper presents the following contributions:

1) A neural network architecture that can learn to approxi-
mately solve linear optimization problems. This is done
by introducing the key notion of approximate projec-
tions. We refer to this approach as ProjectNet.

2) We incorporate this network into an end-to-end learning
framework. This is computationally efficient as it allows
one to quickly approximate the solution, without explic-
itly solving the optimization problem itself. This is in
contrast to many other existing approaches which do re-
quire solving the original optimization problem at each
gradient update step.

3) We show experimental results on two end-to-end prob-
lems for a shortest path problem and a capacitated multi-
product newsvendor problem. In particular, we show our
method produces better or competitive decisions in terms
of average cost, and is computationally faster to train
than other end-to-end methods.

4) We also compare the accuracy of our ProjectNet model
in solving optimization problems against projected gra-
dient descent (PGD). We do this since our approach is
essentially a generalization of PGD. This is in particu-
lar important since our method would be more efficient
within the end-to-end framework than PGD. We show
that it achieves up to 12.5% improvement over PGD us-
ing the same step size and number of iterations.

End-to-End Learning Framework
We first formally present the problem class requiring the in-
tegration of machine learning (in order to forecast uncertain
parameters) with optimization problems. We then illustrate
how our ProjectNet architecture can be used to solve each of
these problems. Consider a convex objective function gu(w)
where u is the uncertain parameter that must be predicted.
We assume g and its derivative is simple to evaluate. For in-
stance, for linear objectives gu(w) = cTw for cost vector
u = c or for quadratic objectives, gu(w) = qTw + wTQw
for u = (q,Q). We define the following optimization task
with linear constraints and feasible region denoted by P =
{w ≥ 0 : Aw = b}:

w∗(u) = argminw gu(w)
subject to Aw = b

w ≥ 0.
(1)
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Figure 1: Flow diagram for solving deterministic problems End-to-End using ProjectNet.

Suppose we are given N data points (x1, u1), . . . , (xN , uN )
with features xn ∈ Rp and realized costs un ∈ Rd. Given a
model fθ parameterized by some θ (e.g., neural network),
for some out-of-sample data x, we make cost prediction
fθ(x) and a corresponding decision w∗(fθ(x)) ∈ P . After-
wards, for a realized cost vector realized u, we incur over-
all cost gu(w∗(fθ(x))). A traditional method of solving this
is a two-stage approach in which the forecast is learned in-
dependently of the downstream optimization problem. This
may be done simply by minimizing mean squared error be-
tween the forecast and the true in-sample cost: f2-stage =

argminθ
1
N

∑N
n=1 ∥fθ(xn)− un∥22. However, we are only

interested in the cost of the final corresponding decisions.
This gives rise to the following end-to-end cost minimiza-
tion problem to learn the parameters θ:

min
θ

N∑
n=1

gun(w∗(fθ(x
n)) (2)

Note that in order to solve this optimization problem using a
gradient descent method, we need to compute the gradients
∂w∗(u)/∂u at points u = fθ(x

n). A very common class of
problems are linear programs, however as noted earlier, the
values of these gradients for commonly occurring linear de-
cision problems are typically zero. However, if the gradient
is zero this would result in no update of the weights of the
neural network, making it impossible to learn. Therefore, we
need to approximate w∗. We replace the optimal w∗ with an
approximation ŵ which we accomplish by using a neural
network. In particular, we separately train a neural network
ŵ so that ŵ(u) ≈ w∗(u) and ∂ŵ(u)/∂u is nonzero. Note
that in this case ŵ is already differentiable by construction.
This allows us to solve the risk minimization problem stated
above using ŵ as an approximation instead of the true opti-
mal solution w∗. See the diagram in Fig.1 for an illustration
of our proposed end-to-end method. The exact structure of
ŵ and how it is learned can be found in section . An advan-
tage of our approach is that the computationally expensive
optimization problem w∗(u) is never explicitly solved, but
rather we replace it with the forward pass of a simple neural
network ŵ.

ProjectNet
In each of the different examples in the previous section, the
end-to-end learning framework requires some way to take

the gradient of the output of an optimization problem with
respect to its uncertain parameters. The ProjectNet architec-
ture allows us to do this by providing approximate solutions
to the optimization problem using only differentiable opera-
tions. We summarize this section as follows:

(1) We present a differentiable method of ensuring the out-
put of any network satisfies any given set of constraints.

(2) We describe the ProjectNet architecture which is de-
signed to approximately solve optimization problems.

(3) Finally, we integrate the ProjectNet into the end-to-end
framework.

Ensuring Feasibility

One difficulty of learning w∗ lies in ensuring that the output
of a neural network satisfies the constraints Aŵ(u) = b and
ŵ(u) ≥ 0. The simplest solution method for satisfying these
constraints is to project after each iteration onto the feasible
region, similar to a projected gradient descent method. Pro-
jection of a point onto the feasible region can be solve by a
quadratic program:

π(w) = argmin
y∈P
∥w − y∥2 (3)

Hence one possibility is to use the OptNet method (Amos
and Kolter 2017) to calculate the gradient ∂π(w)/∂w.

However, we face a similar issue as before. That is, the
gradient of the projection onto a polytope is often zero. In-
deed, the set of points which projects onto any given ver-
tex is a fully-dimensional cone and so the gradient for these
would be zero.

As a result, we propose using Dykstra’s projection algo-
rithm (Dykstra 1983) that provides a sequence of differen-
tiable steps to approximate the projection. Let P1,P2 be
any two intersecting convex sets. We alternatively project
onto P1 followed by P2 until we reach some desired accu-
racy (distance from satisfying both constraints). We define
π1, π2 as the projection operators onto sets P1,P2 respec-
tively. After k steps of the iterative projection, we reach an
approximation π̃k defined in Algorithm 1. For linear opti-
mization as described in the previous sections, we may let
P1 = {w : Aw = b},P2 = {w : w ≥ 0}, so that
P = P1 ∩ P2. The projections π1, π2 can be easily eval-
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Figure 2: Iterative projection method. The sequence of pro-
jections converges to a feasible solution (depicted as the blue
point).

Algorithm 1 Dykstra’s Projection Method

1: function π̃k(w)
2: Initialize w0 = w, and p0 = q0 = 0.
3: for t = 0, . . . , k − 1 do
4: yt+1 = π1(wt + pt)
5: pt+1 = wt + pt − yt
6: wt+1 = π2(yt + qt)
7: qt+1 = yt + qt − wt+1

8: return wk

uated as follows:

π1(w) = arg min
y:Ay=b

∥w − y∥22 (4)

= w −AT (AAT )−1(Aw − b) (5)

π2(w) = argmin
y≥0
∥w − y∥22 = ReLu(w). (6)

In the case of linear subspaces, the method simplifies to
π̃k(w) = π2(π1(. . . (π2(π1((w)) . . . )). This is depicted in
Fig. 2. The sequence of points wk is guaranteed to converge
to a point in P = P1 ∩ P2 at a geometric rate. In par-
ticular, (Deutsch and Hundal 1994) shows that there exists
ρ < 1, a > 0 so that for any integer k:∥∥π̃k(w)− π(w)

∥∥
2
≤ a · ρk (7)

where π(w) is the exact projection of w onto the feasible re-
gion P . However, as the sequence of projections converges
closer to a vertex, the corresponding gradients ∂π̃k(w)/∂w
will also approach zero. Indeed, in the limit, if we have per-
fect projections onto vertices of the feasible polytope, then
the gradient is zero. So, one must be careful to choose the
number of iterations k to be large enough to provide good
approximations, but to also keep the corresponding gradi-
ents from becoming too small.

Model Architecture
Let us now describe the proposed architecture of the model
ŵ. This will be similar in form to a recurrent neural net-
work. The input to the network is the prediction vector u,
and the output is some approximate feasible solution. Alter-
natively, we may think of an RNN as learning an algorithm:

u wk + γj · L
[
u
wj

] π̃k

loss gu(wT )

Figure 3: ProjectNet architecture

7-step sequence 15-step sequence

Figure 4: Progression of the learned algorithm over T0 = 7
(left) and extrapolated to T1 = 15 iterations (right).

we begin at some w0 and update to a new point by a some
function wj+1 = ϕ(wj). In addition, we must enforce that
each point wj is (approximately) feasible. Instead we may
want wj+1 = π̃k(ϕ(wj)). Taking inspiration from projected
gradient descent, one possible ϕ is simply ϕ(w) = w− η · c
where c is the cost vector and η is some step size. That is, at
each iteration we move the current point in the direction of
the cost, and then project onto the feasible region. Project-
Net is a generalization of this approach, in which we learn
the direction to move in, taking into account the current so-
lution wj , the underlying uncertainty u, and implicitly the
constraints as well. Consider the following update step:

wj+1 = π̃k

(
wj + η · L

[
u
wj

])
(8)

First, we use a small neural network unit L to compute the
direction to move in (for instance, this could be as simple as
a linear function or a two-layer network). Finally, we (ap-
proximately) project back onto the feasible region using π̃k.
The final decision after T rounds is ŵ(u) = wT and the loss
after T rounds is the cost of wT . For example, in the deter-
ministic optimization problem, this would be gu(wT ). We
can now simply learn L via traditional gradient-based meth-
ods. We will refer to this model as ProjectNet. We mentioned
the ProjectNet architecture is in a way a generalization of
projected gradient descent. A major advantage of this ap-
proach over only projected gradient descent is that the Pro-
jectNet learns an update rule L which depends on the op-
timization problem itself. In particular, for gradient descent
the update step is always in the direction of the gradient.
The ProjectNet method allows for this to change depending
on the position of the current point.

Generalizing past T iterations Recall we may view this
learning problem as a task to learn an algorithm that solves
optimization problems. At each iteration, we apply a map-
ping defined by L and project back onto the feasible region.
During training, we only perform T0 iterations of this map-
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Figure 5: ProjectNet output for many input vectors.

ping. But, given learned weights we can then apply the map-
ping even further, hopefully converging closer to the opti-
mal solution. For tractability purposes, it may difficult to
train with a high value of T0, but it is simple to apply the
learned mapping for more iterations after training is com-
plete. In particular, once ProjectNet has been trained using
T0 steps, we may then use some T1 > T0 steps when using
it to learn forecasts. Again using the earlier toy example, the
model was trained using T0 = 7 iterations. See Fig. 4. The
sequence of outputs at each of the iterations is given in the
left figure for a given cost vector whose true corresponding
optimal solution is the top left vertex. And we subsequently
continue to apply the same learned mapping for a total of
T1 = 15 iterations. We can see indeed the final solution im-
proves towards the true optimal solution.

Approximation Quality
By construction, our model is differentiable — a key prop-
erty needed for an end-to-end learning approach. However, it
should be close to the original problem in which the optimal
solutions are discrete vertices. Indeed, we see that the output
of a trained ProjectNet is concentrated around vertices while
continuously and quickly transitioning from one vertex to an
adjacent vertex as the cost vector changes. We illustrate this
desired property of our learned models on a simple toy ex-
ample which consists of two constraints w1 + 2w2 ≥ 1 and
2w1 + w2 ≥ 1. The cost vector was varied uniformly and
the final output of the learned model is given for each. See
Fig. 5.

Now we aim to show the improvement of this approach
over using a traditional projected gradient method. We
present computational results comparing the two on a max-
imum matching problem. We consider a fully-connected bi-
partite graph with n nodes in each part, and values uij as-
signed to the edge connecting nodes i and j from opposite
parts. For the experiment, we use n = 50, inducing an opti-
mization problem with n2 = 2500 edges/variables.

We define the projected gradient descent sequence of
points wt+1 = π(wt + η · u) for edge weights u. We also
train a ProjectNet model with T0 = 5 iterations, and com-
pare the objective value of its solution for iterations up to
T1 = 35 on testing data. See figure 6. We report the relative
regret (gu(ŵ)−gu(w

∗(u)))/gu(w
∗(u)). We see that indeed

the ProjectNet method improves consistently in accuracy as
the number of iterations T1 is extended from the T0 steps
that were used during training.

Figure 6: Regret of ProjectNet compared to gradient descent
as iterations T increase.

Figure 7: Percent improvement in regret of the ProjectNet
T1 = 5 model compared to gradient descent.

When compared to traditional gradient descent, the Pro-
jectNet performs better after fewer iterations. It maintains
this edge even for steps T1 > T0 which it has not trained
upon. However for larger T1 traditional gradient descent is
better able to converge to the optimal solution and it over-
takes the ProjectNet method. For the end-to-end framework
it is beneficial to use a smaller number of iterations T1 since
this is computationally more efficient, and keeps the gradi-
ent∇w∗(u) from approaching zero. In the regime of smaller
T1, the ProjectNet method also has the edge in terms of ob-
jective value, with up to 12.5% improvement. See Figure 7.

End-to-End Learning via ProjectNet
First, a ProjectNet is trained to learn solutions to the op-
timization problem w∗(u). In particular, given some cost
vectors u1, . . . , um, we aim to learn some ŵ = ŵL

parametrized by the update layer L which minimizes the
cost:

argmin
L

m∑
i=1

gui(ŵL(u
i)) (9)

This is done by gradient descent and is described explic-
itly in Algorithm 2. Note that we never need to solve the
nominal optimization problem w∗(ui) during this process.
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Algorithm 2 Training ProjectNet

function TRAINPROJECTNET(u1, . . . , uN )
Initialize matrix L
for each epoch do

for i = 1, . . . , N do
Initialize w0 = 0
for j = 1, . . . , T do

zj+1 = wj − ηL ·
[
ui

wj

]
wj+1 = π̃k(zj+1)

loss = gui(wT )
Update L by any gradient method.

return L

Algorithm 3 End-to-End Learning via ProjectNet

function PROJECTNET-END-TO-END((x1, u1), . . . ,
(xn, uN ))

ŵ(·)← TRAINPROJECTNET(u1, . . . , uN )
Initialize θ at random.
for each epoch do

for i = 1, . . . , N do
Compute∇θgui(ŵ(fθ(xN ))).
Update θ by any gradient method.

return θ

In addition, we may use any data u1, . . . , un that we wish,
not necessarily only the vectors from the original training
data of (xj , uj). We can train using, say, T0 iterations of the
recurrent network.

The entire end-to-end method to learn forecasts fθ(·) is
now described in Algorithm 3 which follows the steps in di-
agram 1 shown earlier. In short, we make a forecast fθ(xi)
and differentiate through the approximate corresponding so-
lution ŵ(fθ(x

i)) to update θ. During the training step of Pro-
jectNet, we may use T0 iterations, while when subsequently
evaluating ŵ(fθ(x

i)), we may use any T1 ≥ T0 iterations
to improve the accuracy of the ProjectNet’s approximation.
We now illustrate the application of our model.

Computational Results
In this section we present computational results that our Pro-
jectNet method is effective in end-to-end learning. We show
this on two tasks: (1) a single-stage multi-product newsven-
dor problem, (2) a shortest path problem in which the fore-
casting step is a computer vision task of predicting edge
costs from terrain maps. Additional computational experi-
ments can be found in the appendices.

Multi-Product Newsvendor
Let us consider a multi-product newsvendor problem. Each
of K products has a local demand realization that is random.
There is a holding cost hj for each product j (the cost paid
for each unit of stock that remains unsold) and a lost sale
cost bj (the cost for each unit of unmet demand) specific to
each product. The objective of this problem is to decide how

# Products Two-stage ProjectNet OptNet

50 1.1s / 19.5 16s / 18.5 73s / 18.7
100 1.3s / 6.3 52s / 5.6 504s / 5.9

# Products SAA (KNN) SAA

50 19.6 <1s / 20.1
100 6.2 <1s / 6.6

Table 1: Running Time and Task-Based Cost Comparison.
Left entry of each cell is the running time, while the right
entry is the average cost of the decision.

much inventory of product to allocate. The cost of decision
w and realization u is given by

gu(w) =
K∑
j=1

hj(wj − uj)
+ + bj(uj − wj)

+ (10)

We additionally impose a constraint on the total amount
of stock C that can be stored across all products. Given a
known demand u, the nominal optimization problem is then
given by the following:

w∗(u) = argminw≥0 gu(w)

subject to
∑k

j=1 wj ≤ C
(11)

We compare against four other methods. (1) A traditional
two-stage approach which only predicts the uncertain pa-
rameters, independent of the optimization problem. (2) The
OptNet framework of (Amos and Kolter 2017) also used for
end-to-end learning. This approach requires quadratic objec-
tives, hence we add quadratic regularization terms to the ob-
jective as described in (Wilder, Dilkina, and Tambe 2019).
(3) The traditional sample average approximation (SAA)
method which does not incorporate features. And (4) an
extension of SAA to use feature information as proposed
in (Bertsimas and Kallus 2020). In particular, we use a K-
nearnest neighbor (KNN) method to determine the weights.
Results of the experiment can be found in table 1. We see
that the end-to-end method takes better advantage of the
problem structure to provide lower-cost decisions. More-
over, it is more computationally efficient than the OptNet
framework which needs to solve the original optimization
problem at each iteration.

Optimality in the no-feature case Here we consider a
simplified case with no feature information in which we
make the same single decision for any datapoint. In this par-
ticular case, we can find the exact optimal solution and com-
pare against our proposed method using approximate projec-
tions. The experiment is as follows. Suppose we are given
historical data u1, . . . , uN of observed demand. Then, we
wish to find the single optimal decision through sample aver-
age approximation (SAA). Furthermore, SAA is guaranteed
to converge to an optimal solution given enough samples
from the underlying distribution. This problem is generally
solved by traditional optimization methods. In this newsven-
dor case, this can be rewritten as a linear program. However,
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Capacity SAA Gradient Descent with
Approximate Projection

10 32.528 32.53
20 9.661 9.669
30 4.173 4.181

Table 2: Comparison of SAA and gradient descent with ap-
proximate projections.

Method Matches Runtime

ResNet-18 Baseline 40.2% 9.2
(Vlastelica et al. 2020) 86.6% 81.3

ProjectNet 83.0% 68.3

Table 3: Percentage of testing data for which optimal path
was found on the warcraft shortest path problem. Runtime
reports average running time in seconds per epoch.

we may also solve this by gradient descent, ensuring feasi-
bility by approximate projection on the constraint. Our prob-
lem becomes

min
w

N∑
n=1

gun(π̃(w)) (12)

where π̃ is the approximate projection operator onto the con-
straints {w ≥ 0,

∑K
j=1 wj ≤ C}. Experimentally, we find

that there is an optimality gap of at most 0.1% of the pro-
posed approach over SAA showing that using approximate
projections comes at minimal cost. See Table 2.

Warcraft Shortest Path

We use the Warcraft II tile dataset (Guyomarch 2017) which
was first introduced in (Vlastelica et al. 2020) to test their
end-to-end approach for combinatorial problems. We com-
pare against this as well as with a traditional two step pre-
dict then optimize method. The task consists of predicting
costs of travelling over a terrain map and subsequently de-
termining the shortest path between two points. In particular,
each datapoint consists of a terrain map defined by a 12×12
grid where each vertex represents the terrain with a fixed un-
known cost. The forecasting aspect is to determine the vertex
weights given such an image, and the optimization aspect is
to determine the shortest path from the top left to bottom
right vertices. See figure 8 (top left) in the appendix for a
sample of terrain tiles.

The nominal shortest path problem can be formulated as
follows, where wi,j is a variable deciding if edge from node
i to node j should be chosen, ui,j is the cost of choosing
edge from node i to j, and for simplicity O(i) is the set of
edges leaving node i and I(i) is the set of incoming edges

Figure 8: Sample terrain (top left), weight matrix (top right),
path proposed by ProjectNet (bottom left), and optimal path
(bottom right).

into node i. The path begins at node a and ends at node b:

w∗(u) = argminw
∑

i,j ui,jwi,j

subject to
∑

j∈I(i) wj,i −
∑

j∈O(i) wi,j = 0, ∀i ̸= a, b∑
j∈O(a) wa,j = 1,

∑
i∈I(b) wi,b = 1

Figure 8 (bottom left) illustrates an example of the path
learned by the ProjectNet method, with the bottom right fig-
ure illustrating the true shortest path given perfect knowl-
edge of vertex weights. In addition, as in (Vlastelica et al.
2020) we report the percentage of test instances for which
various methods found an optimal path in Table 3. We can
see the ProjectNet method is competitive with the rest of the
field. More crucially, the running time of our approach is
19% faster than the end-to-end method of (Vlastelica et al.
2020).

Conclusions
In this paper we studied a fundamental problem of decision-
making under uncertainty by using the end-to-end learning
framework. We introduced a novel approach that solves the
end-to-end learning problem to learn the optimal solution.
Our proposed approach avoids the classical end-to-end opti-
mization problem approach difficulty that relies on differen-
tiating the objective function (e.g., the overall supply chain
cost). We instead proposed and analyzed a novel neural net-
work approach that learns to approximately solve an under-
lying optimization problem, ensuring its output satisfies the
feasibility constraints.

We applied this end-to-end learning approach to three
problems: a shortest path problem on the warcraft tile
dataset, and a capacitated multiproduct newsvendor prob-
lem. We have shown in experimental results that the Pro-
jectNet method is computationally more efficient than other
end-to-end methods while still being competitive in terms of
task-based loss against other existing end-to-end methods.

7259



References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, J. Z. 2019. Differentiable convex optimization
layers. Advances in neural information processing systems,
32.
Amos, B.; and Kolter, J. Z. 2017. OptNet: Differentiable Op-
timization as a Layer in Neural Networks. In Precup, D.; and
Teh, Y. W., eds., Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, 136–145. PMLR.
Andrychowicz, M.; Denil, M.; Gomez, S.; Hoffman, M. W.;
Pfau, D.; Schaul, T.; Shillingford, B.; and De Freitas, N.
2016. Learning to learn by gradient descent by gradient de-
scent. Advances in neural information processing systems,
29.
Ban, G.-Y.; and Rudin, C. 2019. The Big Data Newsvendor:
Practical Insights from Machine Learning. Oper. Res., 67:
90–108.
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940.
Berthet, Q.; Blondel, M.; Teboul, O.; Cuturi, M.; Vert, J.-P.;
and Bach, F. 2020. Learning with Differentiable Perturbed
Optimizers. ArXiv, abs/2002.08676.
Bertsimas, D.; and Kallus, N. 2020. From Predictive to
Prescriptive Analytics. Management Science, 66(3): 1025–
1044.
Cameron, C.; Hartford, J.; Lundy, T.; and Leyton-Brown, K.
2021. The Perils of Learning Before Optimizing. arXiv
preprint arXiv:2106.10349.
Chen, Y.; Hoffman, M. W.; Colmenarejo, S. G.; Denil, M.;
Lillicrap, T. P.; Botvinick, M.; and Freitas, N. 2017. Learn-
ing to learn without gradient descent by gradient descent. In
International Conference on Machine Learning, 748–756.
PMLR.
Deutsch, F.; and Hundal, H. 1994. The rate of conver-
gence of dykstra’s cyclic projections algorithm: The polyhe-
dral case. Numerical Functional Analysis and Optimization,
15(5-6): 537–565.
Dobkin, D.; Lipton, R. J.; and Reiss, S. 1979. Linear pro-
gramming is log-space hard for P. Information Processing
Letters, 8(2): 96–97.
Donti, P.; Amos, B.; and Kolter, J. Z. 2017. Task-based end-
to-end model learning in stochastic optimization. Advances
in neural information processing systems, 30.
Donti, P. L.; Rolnick, D.; and Kolter, J. Z. 2021. DC3:
A learning method for optimization with hard constraints.
CoRR, abs/2104.12225.
Dykstra, R. L. 1983. An Algorithm for Restricted Least
Squares Regression. Journal of the American Statistical As-
sociation, 78(384): 837–842.
Elmachtoub, A. N.; and Grigas, P. 2022. Smart “predict,
then optimize”. Management Science, 68(1): 9–26.
Frerix, T.; Nießner, M.; and Cremers, D. 2019. Linear In-
equality Constraints for Neural Network Activations. CoRR,
abs/1902.01785.

Guyomarch, J. 2017. Warcraft ii open-source map editor.
http://github.com/war2/war2edit.
Hopfield, J.; and Tank, D. 1985. Neural Computation of De-
cisions in Optimization Problems. Biological cybernetics,
52: 141–52.
Kao, Y.-h.; Roy, B.; and Yan, X. 2009. Directed Regres-
sion. In Bengio, Y.; Schuurmans, D.; Lafferty, J.; Williams,
C.; and Culotta, A., eds., Advances in Neural Information
Processing Systems, volume 22. Curran Associates, Inc.
Mandi, J.; and Guns, T. 2020. Interior Point Solving for LP-
based prediction+optimisation. ArXiv, abs/2010.13943.
Niepert, M.; Minervini, P.; and Franceschi, L. 2021. Implicit
MLE: backpropagating through discrete exponential family
distributions. Advances in Neural Information Processing
Systems, 34: 14567–14579.
Petersen, F.; Borgelt, C.; Kuehne, H.; and Deussen, O. 2021.
Learning with algorithmic supervision via continuous relax-
ations. Advances in Neural Information Processing Systems,
34: 16520–16531.
Sergio, Y. C. M. W. H.; and Colmenarejo, G. 2016. Learning
to Learn for Global Optimization of Black Box Functions.
stat, 1050: 18.
Shirobokov, S.; Belavin, V.; Kagan, M.; Ustyuzhanin, A.;
and Baydin, A. G. 2020. Black-box optimization with lo-
cal generative surrogates. Advances in Neural Information
Processing Systems, 33: 14650–14662.
Vinyals, O.; Fortunato, M.; and Jaitly, N. 2015. Pointer Net-
works. arXiv e-prints, arXiv:1506.03134.
Vlastelica, M. P.; Paulus, A.; Musil, V.; Martius, G.; and Ro-
linek, M. 2020. Differentiation of Blackbox Combinatorial
Solvers. ArXiv, abs/1912.02175.
Wilder, B.; Dilkina, B.; and Tambe, M. 2019. Meld-
ing the Data-Decisions Pipeline: Decision-Focused Learn-
ing for Combinatorial Optimization. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI, 1658–
1665. AAAI Press.
Wilson, G. V.; and Pawley, G. S. 1988. On the Stability of
the Travelling Salesman Problem Algorithm of Hopfield and
Tank. Biol. Cybern., 58(1): 63–70.

7260


