
Continuous Mixtures of Tractable Probabilistic Models

Alvaro H.C. Correia1,*, Gennaro Gala1,*,
Erik Quaeghebeur1, Cassio de Campos1, Robert Peharz1,2

1 Eindhoven University of Technology
2 Graz University of Technology

{a.h.chaim.correia, g.gala, e.quaeghebeur, c.decampos, r.peharz}@tue.nl

Abstract

Probabilistic models based on continuous latent spaces, such
as variational autoencoders, can be understood as uncountable
mixture models where components depend continuously on
the latent code. They have proven to be expressive tools for
generative and probabilistic modelling, but are at odds with
tractable probabilistic inference, that is, computing marginals
and conditionals of the represented probability distribution.
Meanwhile, tractable probabilistic models such as probabilis-
tic circuits (PCs) can be understood as hierarchical discrete
mixture models, and thus are capable of performing exact
inference efficiently but often show subpar performance in
comparison to continuous latent-space models. In this paper,
we investigate a hybrid approach, namely continuous mixtures
of tractable models with a small latent dimension. While these
models are analytically intractable, they are well amenable
to numerical integration schemes based on a finite set of in-
tegration points. With a large enough number of integration
points the approximation becomes de-facto exact. Moreover,
for a finite set of integration points, the integration method ef-
fectively compiles the continuous mixture into a standard PC.
In experiments, we show that this simple scheme proves re-
markably effective, as PCs learnt this way set new state of the
art for tractable models on many standard density estimation
benchmarks.

Introduction
Probabilistic modelling typically aims to capture the data-
generating joint distribution, which can then be used to per-
form probabilistic inference to answer queries of interest.
A recurring scheme in probabilistic modelling is the use of
an uncountable mixture model, that is, the data generating
distribution is approximated by

p(x) = Ep(z) [p(x | z)] =
∫

p(x | z) p(z) dz (1)

where p(z) is a mixing distribution (prior) over latent vari-
ables Z, p(x | z) is a conditional distribution of x given z
(mixture components), and p(x) is the modelled density over
variables X, given by marginalising Z from the joint distri-
bution defined by p(x | z) p(z).

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Some successful recent examples of uncountable mixtures
are variational autoencoders (VAEs) (Kingma and Welling
2014), generative adversarial networks (GANs) (Goodfellow
et al. 2014), and normalising Flows (Rezende and Mohamed
2015). All three of these models use a simple prior p(z),
e.g. an isotropic Gaussian, and represent the mixture com-
ponents with a neural network. In the case of VAEs, the
mixture component is a proper density p(x | z) with respect
to the Lebesgue measure, represented by the so-called de-
coder, while for GANs and Flows the mixture component is
a point measure, i.e. a deterministic function x = f(z)1. The
use of continuous neural networks topologically relates the
latent space and the observable space with each other, so that
these models can be described as continuous mixture models.
The use of continuous mixtures allows, to a certain extent,
the interpretation of Z as a (latent) embedding of X, but also
seems to benefit generalisation, i.e. to faithfully approximate
real-world distributions with limited training data.

However, while continuous mixture models have achieved
impressive results in density estimation and generative mod-
elling, their ability to support probabilistic inference remains
limited. Notably, the key inference routines of marginalisa-
tion and conditioning, which together form a consistent rea-
soning process (Ghahramani 2015; Jaynes 2003), are largely
intractable in these models, mainly due to the integral in (1)
which forms a hard computational problem in general.

Meanwhile, the area of tractable probabilistic modelling
aims at models which allow a wide range of exact and effi-
cient inference routines. One of the most prominent frame-
works to express tractable models are probabilistic circuits
(PCs) (Vergari et al. 2020), which are computational graphs
composed of (simple) tractable input distributions, factori-
sations (product nodes) and discrete mixture distributions
(sum nodes). PCs describe many tractable models such as
Chow-Liu trees (Chow and Liu 1968), arithmetic circuits
(Darwiche 2003), sum-product networks (Poon and Domin-
gos 2011), cutset networks (Rahman, Kothalkar, and Gogate
2014), probabilistic sentential decision diagrams (Kisa et al.
2014), and generative forests (Correia, Peharz, and de Cam-
pos 2020). The distribution represented by a PC depends
both on its network structure S and its parameters ϕ, which

1In Flows z is not truly latent since it relates to x via a bijection.
An extended version of this paper that includes the Appendix

is available at arxiv.org/abs/2209.10584.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7244

contains all weights of its sum nodes and parameters of its
input distributions.

From a representational point of view, PCs can be inter-
preted as hierarchical, discrete mixture models (Peharz et al.
2016; Zhao, Poupart, and Gordon 2016), i.e. they can be
generally written as

p(x) =
∑
z′

p(x | z′) p(z′) (2)

where Z′ is a discrete latent vector, but otherwise the form
is similar to the continuous mixture in (1). The number of
states of Z′ and thus the number of represented mixture com-
ponents p(x | z′) grows exponentially in the depth of the
PC (Peharz 2015; Zhao, Poupart, and Gordon 2016). More-
over, recent vectorisation-based implementations (Peharz
et al. 2020a) have enabled large PC architectures (>100M
of parameters) at execution speeds comparable to standard
neural networks. These endeavours evidently boosted the per-
formance of tractable models, yet there is still a notable gap
to intractable models like VAEs. One reason for this perfor-
mance gap is likely the structural constraints in PCs, which
are required to maintain tractability but are at odds with ex-
pressivity. On the other hand, a huge discrete mixture model
of the form (2) should in principle be able to outperform a
moderately sized uncountable mixture (1). Yet, on standard
benchmarks, we do not see this result. For instance, a vanilla
VAE with a few million parameters gets test log-likelihoods
higher than -90 nats on Binary MNIST (Tomczak and Welling
2018), while an Einet with 84 million parameters (Peharz
et al. 2020a) barely gets above -100 nats (or 0.184 bpd) as
shown in Table 3. Thus, a complementary explanation is that
discrete (and hierarchical) mixtures—like PCs—are hard to
learn (or generalise poorly), while continuous mixtures—like
VAEs—are easier to learn (or generalise well).

In this paper, we follow a hybrid approach and consider
continuous mixtures of tractable models. In particular, we
consider continuous mixtures of two very simple tractable
models, namely completely factorised distributions and tree-
shaped graphical models, which can both be easily expressed
as PCs. Specifically, we consider models of the form

p(x) = Ep(z) [p(x | ϕ(z))] , (3)

where p(z) is an isotropic Gaussian prior and p(x | ϕ(z)) is
a PC with its parameters depending on z via some neural-
network ϕ(z). That has certain parallels to previous works in
Conditional SPNs (Shao et al. 2020) and HyperSPNs (Shih,
Sadigh, and Ermon 2021). While continuous mixtures are
analytically intractable, we can approximate the marginali-
sation of z arbitrarily well with numerical techniques, such
as Gaussian quadrature rules and (quasi) Monte Carlo. The
common principle of these methods is that they select a finite
set of integration points z1, . . . , zN in either a deterministic
or (partially) random manner and construct a corresponding
weight function w(z) such that (3) is approximated as

p(x) = Ep(z) [p(x | ϕ(z))] ≈
N∑
i=1

w(zi) p(x | ϕ(zi)). (4)

All integration methods we consider become exact for N→∞
and, under certain conditions on ϕ(z), one can derive guaran-
tees for the approximation error for N < ∞. In particular, for
(quasi) Monte Carlo integration it is straightforward to derive
probabilistic error guarantees for the approximation quality
by leveraging concentration bounds. Moreover, an empirical
observation is that numerical integration works reasonably
well for low dimensional spaces, but tends to deteriorate for
larger dimensionality. Thus, in this paper we keep the dimen-
sionality of Z relatively small (≤ 16), so that our continuous
mixtures of tractable models remain ‘morally tractable’.

Specifically, the integration weights {w(zi)}Ni=1 typically
sum to one2, so that the approximation in (4) can be in-
terpreted as a discrete mixture model. For fixed zi, each
p(x | ϕ(zi)) is simply a PC with fixed parameters ϕi =
ϕ(zi), so that (4) is in fact a mixture of PCs, which in turn
can be interpreted as a larger PC (Vergari et al. 2020). Thus,
we can convert a learnt intractable model from (3) into a PC
which facilitates exact inference, that is, ‘performing exact
inference in an accurately approximate model’.

To the best of our knowledge, this simple idea for con-
structing tractable models has not been explored before. Yet,
it delivers astonishing results: on 16 out of 20 commonly
used density estimation benchmarks, we set new state of the
art (SOTA) among tractable models, outperforming even the
most sophisticated PC structure and parameter learners. We
also achieve competitive results on image datasets, where in
comparison to other PCs, our models produced better samples
and often attained better test log-likelihoods.

Background and Related Work
In this paper we are interested in tractable probabilistic mod-
els, i.e. models which allow for exact and efficient inference.
Probabilistic circuits (PCs) are a prominent language for
tractable models and are defined as follows.

Definition 1 (Probabilistic Circuit). Given a set of random
variables X, a probabilistic circuit (PC) is based on an
acyclic directed graph S containing three types of nodes:
tractable distribution nodes over a subset of the random vari-
ables in X, e.g. Gaussian, Categorical, or other exponential
families; sum nodes, which compute a convex combination (a
mixture) of their inputs; and product nodes, which compute
the product (a factorisation) of their inputs. All leaves of S
are distribution nodes and all internal nodes are either sum
or product nodes. We assume that S has a single root, which
is the output of the PC, computing a density over X.

As mentioned in the introduction, PCs can express many
different tractable models (Vergari et al. 2020). Of partic-
ular interest in this paper are PCs representing completely
factorised distributions, p(x) =

∏D
d=1 p(xd), and Chow-Liu

trees (CLTs) (Chow and Liu 1968), tree-shaped graphical
models that can be learnt in polynomial time. CLTs can also
be easily converted into PCs (Dang, Vergari, and Broeck

2For Monte Carlo, the weights are simply w(zi) = 1
N

. For
Gaussian quadratures the sum of the weights is a function of the
domain of integration, but knowledge that p(x) is a probability
distribution gives licence to re-normalise the weights in this case.

7245

2020; Di Mauro et al. 2021). We will denote PC structures
corresponding to factorised distributions as SF and CLT struc-
tures as SCLT. While these structures are arguably simple, we
show in the experiment section that continuous mixtures of
such PCs outperform all state-of-the-art PC learners on 16
out of 20 common benchmark datasets.

The perhaps most widely known continuous mixture model
is the variational autoencoder (VAE) (Kingma and Welling
2014; Rezende and Mohamed 2015), specifying the model
density as p(x) =

∫
p(x | ϕ(z)) p(z)dz where p(z) is an

isotropic Gaussian and p(x | ϕ(z)) is typically a fully fac-
torised distribution of Gaussians or Binomials, whose param-
eters are provided by a neural network ϕ(z)—the so-called
decoder—taking z as input. Since the latent code in VAEs is
usually relatively high-dimensional, learning and inference
is done via amortised inference (Kingma and Welling 2014).

When using SF, our models specify in fact the same model
as VAEs, which has originally been introduced by McKay
(MacKay 1995) under the name density network. Our work es-
sentially re-visits McKay’s work, who already mentions: For
a hidden vector of sufficiently small dimensionality, a simple
Monte Carlo approach to the evaluation of these integrals can
be effective. For this paper, we considered various numerical
integration methods and found that randomised quasi-Monte
Carlo (RQMC) performs best for our purposes. Moreover,
we also use numerical approximation as a ‘compilation ap-
proach’, whereby the continuous mixture is converted into a
tractable discrete mixture that sets new state of the art among
tractable models in a number of datasets.

Similar approaches to our method are HyperSPNs (Shih,
Sadigh, and Ermon 2021) and conditional SPNs (Shao et al.
2020), both of which use neural nets to compute the weights
of PCs. However, HyperSPNs are primarily a regularisation
technique that applies to a single PC, whereas we use neural
nets to learn continuous mixtures of PCs. In conditional SPNs
the parameters are a function of observed variables, while in
this work they are a function of a continuous latent space.

Inference and Learning
Our model as specified in (3) consists of a continuous latent
space Z and a given PC structure S , whose parameters ϕ(z)
are a differentiable function of the latent variables. We will
broadly refer to function ϕ as decoder and to the model as a
whole as continuous mixtures. We use cm(SF) and cm(SCLT)
to denote continuous mixtures with factorised structure and
CLT structure, respectively.

Amortised inference (Kingma and Welling 2014; Rezende
and Mohamed 2015) is the de-facto standard way to learn con-
tinuous mixture models. In this approach, a separate neural
network—the so-called encoder—represents an approximate
posterior q(z |x). The encoder and decoder are learnt simul-
taneously by maximising the evidence lower bound (ELBO)

Eq[log p(x | z)− log q(z |x) + log p(z)] (5)

which is a lower bound of the (marginal) log-likelihood
log p(x) and thus a principled objective. At the same time,
maximising the ELBO is moving q closer to the true posterior
in Kullback-Leibler sense, hence tightening the ELBO.

In this paper, we investigate numerical integration as an
alternative inference and learning method. In particular, we
do not require an encoder or any other parametric form of
approximate posterior.

Inference via Numerical Integration
Given some function f , a numerical integration method
consists of a set of N integration points {zi}Ni=1 and a
weight function w : z 7→ R such that the integration error
ε =

∣∣∣∫ f(z) dz−
∑N

i=1 w(zi) f(zi)
∣∣∣ is as small as possible.

In this paper, we are interested in approximating the den-
sity p(x) =

∫
p(x | z) p(z) dz of a cm model, so that the

integration error with integration points {zi}Ni=1 is given as

εcm(x, {zi}Ni=1) =∣∣∣∣∣
∫

p(x |ϕ(z)) p(z) dz−
N∑
i=1

w(zi) p(x |ϕ(zi))

∣∣∣∣∣ . (6)

Quadrature Rules divide the integration domain into sub-
intervals and approximate the integrand on these intervals
with polynomials, which are easy to integrate. They yield
a set of deterministic integration points and weights as a
function of the degree of the interpolating polynomial. Com-
mon quadrature rules like trapezoidal and Simpson’s rule
achieve error bounds of O(N−2) and O(N−4), respectively.
Gaussian quadrature rules go a step further and allow us to
take into account the distribution of Z; e.g. Gauss-Hermite
quadrature is designed for indefinite integrals of the form (1)
with z ∼ N (0,1). Gaussian quadratures integrate exactly
any polynomial of degree 2N−1 or less, which makes them
attractive for general integrands, since by the Weierstrass
approximation theorem, any function can be approximated
by a polynomial to arbitrary precision under mild regularity
conditions (Weierstrass 1885).

Sparse Grids. Unfortunately, quadrature rules do not scale
well to high dimensions, since multi-dimensional quadrature
rules are usually constructed as the tensor product of univari-
ate rules. If a univariate quadrature rule has an error bound
of O(N−r), the corresponding rule in d dimensions with Nd

integration points would achieve an error bound O(N−r/d),
which degrades quickly due to the curse of dimensionality.
Sparse grids (Bungartz and Griebel 2004; Smolyak 1960)
try to circumvent that by a special truncation of the tensor
product expansion of univariate quadrature rules. This re-
duces the number of integration points to O(N(logN)d−1)
without significant drops in accuracy (Gerstner and Griebel
2010). However, even if the underlying quadrature formulas
are positive, sparse grids can yield negative weights w(zi).
In our preliminary experiments, this property of sparse grids
was highly problematic, in particular when inference was
used as part of a learning routine.

Monte Carlo (MC) methods cast the integral as an ex-
pectation such that we can compute

∫
p(x | z) p(z) dz as

Ep(z)[p(x | z)] =
∑N

i=1
1
N p(x | zi). MC is easy to use and

especially attractive for high-dimensional problems since
its convergence rate O(N−1/2) is not directly dependent

7246

on the problem dimensionality. However, this convergence
rate decelerates quickly as one increases the number of in-
tegration points, which can be too slow. Quasi-Monte Carlo
(QMC) methods (Caflisch 1998) replace the (pseudo-)random
sequences of integration points of standard MC with low-
discrepancy ones, with the intent of reducing the variance
of the estimator and converging faster than O(N−1/2). Cru-
cially, QMC is deterministic, which makes it hard to esti-
mate the integration error in practice. Randomised quasi-
Monte Carlo (RQMC) reintroduces randomness into the low-
discrepancy sequences of integration points, enabling error
estimation (via multiple simulations) and essentially turning
QMC into a variance reduction method (l’Ecuyer 2016).

In our experiments, we opt for RQMC for two reasons.
First, its convergence does not depend directly on the dimen-
sionality, meaning we have more freedom to define the latent
space. In fact, we empirically observe that increasing the
latent dimensionality does not hurt performance (see addi-
tional results in Appendix B). We conjecture that training via
numerical integration sufficiently regularises the decoder so
that it remains amenable to numerical integration, even when
using a relatively large latent dimensionality in the order of
tens. Second, in contrast to Monte Carlo, RQMC produces
integration points of lower variance (l’Ecuyer 2016), which
often facilitates training (see Appendix G); and, in compari-
son to QMC, RQMC reintroduces randomness into the sets
of integration points which helps to avoid overfitting.

Learning the Decoder
In principle, continuous mixture models can be learnt in
many ways, such as amortised variational inference (Kingma
and Welling 2014) or adversarial training (Goodfellow et al.
2014). However, these methods do not encourage the decoder
to be amenable to numerical integration, and thus their ap-
proximation by (or compilation to) a mixture of tractable
models is subpar. Perhaps not surprisingly, we find that train-
ing via numerical integration is the best way to learn and
extract expressive mixtures of tractable probabilistic models.
We compare numerical integration and variational inference
in Figure 1 and Appendix C.

Training via integration simply amounts to selecting a set
of integration points {zi}Ni=1 using any numerical integration
method of choice and, for some training data {xj}Mj=1, max-
imising the log-likelihood (LL) of the approximate model
with respect to the decoder parameters:

LL =
M∑
j=1

log
N∑
i=1

w(zi) p(xj |ϕ(zi)). (7)

For N → ∞, this objective converges to the exact log-
likelihood of the continuous mixture, and for 1 ≪ N < ∞ it
serves as a reasonable approximation.

In particular, when using (RQ)MC methods the inner sum
of (7) is unbiased, yielding a negatively biased estimate of the
true log-likelihood due to Jensen’s inequality—i.e. a ‘noisy
lower bound’—justifying (7) as training objective for similar
reasons as the variational ELBO (5). However, (7) should not
be confused with the standard ELBO as it does not involve a
posterior approximation and, unlike the ELBO, it becomes

tight for N → ∞. We further note that (RQ)MC methods
to estimate the log-likelihood of latent variable models is
not a new idea and has been widely explored either directly
(MacKay 1995) or to improve ELBO techniques (Burda,
Grosse, and Salakhutdinov 2015; Mnih and Rezende 2016;
Buchholz, Wenzel, and Mandt 2018). In this paper, however,
we are specifically interested in combining continuous mix-
tures with tractable models via numerical integration, as this
direction has been explored rather little.

One can interpret our model in two distinct ways. The
first is to interpret it as a ‘factory’ method, whereby each
fixed set of latent variables {zi}Ni=1 yields a tractable model
supporting exact likelihood and marginalisation, namely a
PC (trivially a mixture of PCs is a PC). The second is to take
it as an intractable continuous latent variable model, but one
that is amenable to numerical integration. At test time, we are
free to choose the set of integration points, possibly changing
the integration method and number of integration points N if
more or less precision is needed.

Efficient Learning
When using a neural network to fit p(x |ϕ(z)), computing the
backward pass with respect to the log-likelihood objective in
(7) can be memory intensive. We can circumvent that by first
finding the K integration points that are most likely to have
generated each training instance. We do so via a forward pass
(with no gradient computation) that allows us to identify the
K values of z (among the N points {zi}Ni=1 defined by the
integration method) that maximise w(z) p(xj |ϕ(z)) for each
xj in a training batch. We then run backprop to optimise a
cheaper estimate of the log-likelihood (8) which only requires
K values {zij}Ki=1 for each xj , instead of N

LL′ =
M∑
j=1

log
K∑
i=1

w(zij) p(xj |ϕ(zij)). (8)

For K ≪ N this results in large improvements in memory ef-
ficiency. In our experiments, we only use this approximation
for non-binary image datasets for which K = 1 was already
sufficient to get good results.

Latent Optimisation
As mentioned in the last section, once the decoder is trained,
we can compile a continuous mixture into a PC by fixing a set
of integration points (selected via some integration method),
leading to a discrete mixture of PCs. However, rather than
using a fixed integration scheme, one might also treat the
integration points as ‘parameters’ and optimise them. More
precisely, given training instances {xj}Mj=1, we might find
suitable {zi}Ni=1 by maximising the log-likelihood:

argmax
{zi}N

i=1

M∑
j=1

log
N∑
i=1

w(zi) p(xj |ϕ(zi)). (9)

Due to the similarity to (Bojanowski et al. 2018; Park et al.
2019) we refer to this technique as Latent Optimisation (LO).
There are, however, a few differences in spirit: in (Bojanowski
et al. 2018; Park et al. 2019) the decoder and individual latent

7247

Dataset BestPC cm(SF) cm(SCLT) LO(cm(SCLT)) Dataset BestPC cm(SF) cm(SCLT) LO(cm(SCLT))

accid. -26.74 -33.27 -28.69 -28.81 jester -52.46 -51.93 -51.94 -51.94
ad -16.07 -18.71 -14.76 -14.42 kdd -2.12 -2.13 -2.12 -2.12
baudio -39.77 -39.02 -39.02 -39.04 kosarek -10.60 -10.71 -10.56 -10.55
bbc -248.33 -240.19 -242.83 -242.79 msnbc -6.03 -6.14 -6.05 -6.05
bnetflix -56.27 -55.49 -55.31 -55.36 msweb -9.73 -9.68 -9.62 -9.60
book -33.83 -33.67 -33.75 -33.55 nltcs -5.99 -5.99 -5.99 -5.99
c20ng -151.47 -148.24 -148.17 -148.28 plants -12.54 -12.45 -12.26 -12.27
cr52 -83.35 -81.52 -81.17 -81.31 pumbs -22.40 -27.67 -23.71 -23.70
cwebkb -151.84 -150.21 -147.77 -147.75 tmovie -50.81 -48.69 -49.23 -49.29
dna -79.05 -95.64 -84.91 -84.58 tretail -10.84 10.85 -10.82 -10.81

Avg. rank 2.85 2.65 1.85 1.75

Table 1: Average test log-likelihoods on 20 density estimation benchmarks. We compare cm(SF), cm(SCLT) and LO(cm(SCLT))
with the best performing PC (BestPC) among 5 PC methods: Einets (Peharz et al. 2020a), LearnSPN (Gens and Pedro 2013),
ID-SPN (Rooshenas and Lowd 2014), RAT-SPN (Peharz et al. 2020b) and HCLT (Liu and Van den Broeck 2021). For cm(SF)
and cm(SCLT), we train with 210 integration points and test with a PC compiled with 213 points. LO is run over 210 integration
points. See Tables 10 and 11 in Appendix E for more results including standard deviation over 5 random seeds. Higher is better.

representations, one for each training instance, are jointly
learnt to minimise the reconstruction error. The latent space
is regularised to follow a Gaussian prior, but otherwise is
devoid of any probabilistic interpretation.

In our approach, however, the goal is an accurate yet com-
pact approximation to the true continuous mixture model.
Training the decoder and integration points together would
lead to overfitting, meaning that the decoder would not per-
form well with different integration points or methods. For
that reason, we only optimise the integration points as a post-
processing step, i.e. the decoder parameters remain fixed
throughout the optimisation process.

Our LO approach can also be interpreted as a way to learn
(or compile) PCs, using continuous mixtures as a teacher
model or regularizer. In our experiments, we see that this ap-
proach is remarkably effective. LO yields test log-likelihoods
similar to that obtained with RQMC while using considerably
fewer integration points, and thus delivering smaller PCs.

Experiments
We evaluated our method on common benchmarks for gener-
ative models, namely 20 standard density estimation datasets
(Lowd and Davis 2010; Van Haaren and Davis 2012; Bekker
et al. 2015) as well as 4 image datasets (Binary MNIST
(Larochelle and Murray 2011), MNIST (LeCun et al. 1998),
Fashion MNIST (Xiao, Rasul, and Vollgraf 2017) and Street
View House Numbers (SVHN) (Netzer et al. 2011)). All mod-
els were developed in python 3 with PyTorch (Paszke et al.
2019) and trained with standard commercial GPUs. We used
RQMC in all experiments (w(zi) = 1/N). Further experi-
mental details can be found in Appendix A, and our source
code is available at github.com/alcorreia/cm-tpm.

Standard Density Estimation Benchmarks
As a first experiment, we compared continuous mixtures of
factorisations, denoted cm(SF), and continuous mixtures of
CLTs, denoted cm(SCLT), as density estimators on a series
of 20 standard commonly used benchmark datasets. In this

set of experiments, we fixed the mixing distribution p(z)
to a 4-dimensional standard Gaussian and used N = 210

integration points during training. For the decoder we used
6-layer MLPs with LeakyReLUs activations.

At test time, the trained models can be evaluated with
any number of integration points N , yielding a mixture of
PCs and consequently indeed a standard PC (Vergari et al.
2020). In Table 1 we report the test log-likelihoods for cm
models with 213 components, averaged over the 5 random
seeds, and for current SOTA PCs. Our results set SOTA log-
likelihoods for tractable models on 16 out of 20 datasets and
are competitive on the remaining 4. For each dataset, we
ranked the performance of the considered models from 1 to
4, and reported the average rank at the bottom of the first
half of the table. In particular, we notice a substantial gap in
performance between cm(SCLT) and cm(SF) for the datasets
accidents, ad, dna and pumbs, which are known to be
highly structured. We emphasise that we used the exact same
hyperparameters for all datasets, and hence our SOTA results
do not stem from extensive tuning efforts.

In Figure 1, we plot the performance of our models relative
to the best results in Table 1, averaged over all 20 datasets.
This shows the effect of the number of integration points
at test time and indicates cm(SCLT) generally outperforms
cm(SF), especially for small numbers of integration points.

Latent Optimisation
Next, we showcase the effect of Latent Optimisation (LO),
i.e. learning the integration points after having fit the decoder,
as previously discussed. More precisely, we run LO to search
for a good set of integration points for a trained cm(SCLT) by
maximising (9). We show the results under LO(cm(SCLT))
in Table 1 and Figure 1.

We see that LO(cm(SCLT)) achieves essentially the same
performance as cm(SCLT) but with 8 times fewer integration
points, leading to much smaller PCs. However, as can be
seen in Figure 1, for a large number of integration points,
(RQ)MC estimates already have low-variance and there is
little room for improvement with LO. In fact, in this setting

7248

27 28 29 210 211 212 213

Number of integration points

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Pe
rf

or
m

an
ce

 g
ap

 (
%

) cm(F)
cm(F)VAE

cm(CLT)

LO(cm(CLT))

Figure 1: Relative performance gap to the best log-likelihood
in Table 1 as a function of the number of integration points
at test time and averaged over all 20 datasets. Latent Optimi-
sation is run (on purpose) for fewer number of integration
points yet performs best. Lower is better.

LO is prone to overfitting. This can be expected when the
number of integration points becomes too large (in compari-
son to the training data), since they are treated as trainable
parameters. For that reason, we limit our LO experiments to
210 integration points in all datasets in Table 1 and 2.

Comparison with Variational Learning
As the main idea of this paper is to relate continuous mix-
tures to PCs via numerical integration, we used (7) to train
our models thus far. However, the training of a continuous
mixture model and its subsequent conversion to a PC are
orthogonal to each other, and we might also use VAE training
to learn continuous mixtures. That is, we can train a standard
VAE with a small latent dimension, maximising the ELBO
(5) with amortised variational inference, and then convert the
resulting model into a PC using RQMC or LO.

We evaluated this alternative with the same experimental
setup and 20 density estimation datasets. We learnt continu-
ous mixtures with VAE training (Kingma and Welling 2014)
and subsequently numerically integrated the resulting model,
denoted cm(SF)VAE, with RQMC. Note that we used exactly
the same architecture for both cm(SF) and cm(SF)VAE, with
the only difference being the training method. Figure 1 shows
that cm(SF)VAE is outperformed by cm(SF), even for large
numbers of integration points at test time. We offer two ex-
planations for this result: First, it might be that cm(SF)VAE
models are less amenable to our numerical approximation
techniques and that their true log-likelihood is actually higher,
or conversely, that models trained with numerical integration
are more amenable to numerical integration at test time. Sec-
ond, it might also be that numerical integration leads to better
model training for small latent dimensionality. We provide
affirmative evidence for the latter in Appendix C. However,
evidently, VAE training is superior for large latent dimen-
sionality, as numerical integration degrades quickly in high
dimensional spaces. See Appendix C for more comprehen-
sive experimental details and further results.

Figure 2: Samples from ‘Small Einet’ (left column), ‘Big
Einet’ (middle column) and cm(SF) (right column).

Binary MNIST
We also evaluated our models on Binary MNIST (Larochelle
and Murray 2011). We followed the same experimental proto-
col as in the previous experiments, except that we employed
a larger latent dimensionality of 16 and increased the num-
ber of integration points during training to 214. We did not
use convolutions and stuck to 6-layer MLPs. We ran cm(SF)
and cm(SCLT) and applied LO to both final models for up
to 50 epochs, using early stopping on the validation set to
avoid overfitting. Table 2 shows that cm(SCLT) outperforms
cm(SF) overall and that LO is remarkably effective when
few integration points are used. In Table 3, we compare our
models against Einets (Peharz et al. 2020a), large scale PCs
designed to take advantage of GPU accelerators. We con-
sidered Einets of different sizes3 and used Poon-Domingos
architectures (Poon and Domingos 2011), which recursively
partition the image into contiguous square blocks.

Image Datasets
For non-binary image data we used a convolutional architec-
ture similar to that of DCGAN (Radford, Metz, and Chintala
2015) but also included residual blocks as in (Van Den Oord,
Vinyals et al. 2017). For both MNIST and SVHN data, we
used the same architecture and trained cm(SF) models with
16 latent dimensions and K=1 (see Efficient Learning). Once
more, we compared against Einets of different sizes. For
both Einets and our models, pixels were modelled with 256-
dimensional categorical distributions4. In all cases, we use no

3For Binary MNIST, ‘Small Einet’ and ‘Big Einet’ had respec-
tively 5 and 84 million parameters; for MNIST, 11 and 90 million
parameters; and for SVHN, 28 and 186 million parameters.

4See Appendix E for results using Normal distributions instead.

7249

Number of integration points at test time

Model N. Param 27 28 29 210 212 214

cm(SF) (LO) 1.2M -167.29 (-144.00) -150.67 (-135.89) -138.55 (-129.15) -129.24 (-123.44) -116.42 -108.69
cm(SCLT) (LO) 4.8M -127.59 (-114.02) -119.09 (-110.02) -113.15 (-107.14) -108.30 (-104.37) -101.55 -97.48

Table 2: Binary MNIST test log-likelihoods for cm(SF) and cm(SCLT) trained with 214 integration points. In parentheses we
report test log-likelihoods obtained via latent optimisation. Higher is better.

Model ‘Small Einet’ ‘Big Einet’ Ours (214)

Binary MNIST 0.206 0.184 0.179
MNIST 1.490 1.415 1.282
Fashion-MNIST 3.938 3.737 3.546
SVHN 6.442 5.961 6.307

Table 3: Bits per dim. (bpd) for image data. Lower is better.

auxiliary clustering algorithm to assign datapoints to compo-
nents of a sum node. Such a pre-processing step is applicable
to any method and does not add to the analysis in this paper.
That is why sample quality in Figure 2 is worse than that re-
ported in (Peharz et al. 2020a), where images were clustered
and a dedicated Einet was trained on each cluster.

As seen in Table 3, continuous mixtures outperform Einets
in all image datasets but SVHN. That is remarkable since our
models are extremely compact with the decoder given by a
light convolutional architecture of approximately 100K free
parameters for MNIST data, and 300K for SVHN; orders
of magnitude smaller than the competing Einets. Moreover,
our models also achieve better sample quality. In Figure 2,
we see samples from cm(SF) are clearly sharper and do not
suffer from intense pixelation like those from Einets.

Other Tractable Queries
Our models also support efficient marginalisation, since the
discrete approximation obtained via numerical integration
is a PC in itself. That allows us to handle missing data and
perform tasks like inpainting out-of-the-box, without any
extra modelling steps. While this is not the focus of the
paper—these queries are well-established for PCs, and it is
not surprising that our models support them as well—we do
present a couple of interesting experiments in Appendix F. We
successfully trained our model on MNIST with substantial
parts of the data missing. Note that such a training procedure
is delicate for intractable models like VAEs. Furthermore, we
included inpainting experiments on Binary MNIST, MNIST
and Fashion MNIST, i.e. reconstructing missing data at test
time, using a model trained on complete data.

Discussion
Our experiments show that continuous mixtures of PCs (or
actually their discrete approximations yielding again PCs)
outperform most previous PC methods on several datasets.
At first this might appear surprising. For fixed N , a discrete
mixture with N components is at least as expressive as a
continuous mixture approximated by N integration points,

since the former has mixture components with free (private)
parameters, while the latter has components which are de-
termined via a shared neural network, and thus entangled in
a complex way. Moreover, the PCs of previous works have
been deeper and used more sophisticated architectures than
our continuous mixtures. A comparison between our models
and discrete mixtures with the same shallow structures is
deferred to Appendix D.

The main reason for the efficacy of our approach might
be the continuity of the neural network, which topologically
relates the latent and observable space, thus identifying some
underlying latent structure; this is in fact one of the attractive
and widely appreciated properties of VAEs. Yet, the effect of
continuity on generalisation has not been much studied, and
our results provide an interesting pointer in this regard. Why
does continuity promote generalisation, or act as some form
of regularisation? For the one, there might be an Occam’s ra-
zor effect at work, since our models are usually much smaller
in terms of free parameters, yet they are expressive due to the
non-linear nature of neural nets. Furthermore, dependence
among components introduced via the latent space might
effectively facilitate learning by avoiding redundant or ‘dead’
components, which have been observed in vanilla PCs (Dang,
Liu, and Van den Broeck 2022).

These results have two important consequences for future
work on tractable probabilistic models: (i) continuous latent
spaces seem to be a valuable tool for learning tractable mod-
els and (ii) PCs in general seem to have untouched potential
not yet exploited by existing learning methods.

Conclusion
In this paper, we have investigated the marriage of contin-
uous mixtures and tractable probabilistic models. We have
observed that, even with simple structures and standard nu-
merical integration methods, continuous latent variables fa-
cilitate the learning of expressive PCs, as confirmed by SOTA
results on many datasets. Moreover, we have proposed la-
tent optimisation as an effective way to derive competitive
mixture models with relatively few components (integration
points). We believe continuous mixtures are a promising tool
for learning tractable probabilistic models as well as develop-
ing new hybrid inference models (Tan and Peharz 2019).

Our model is not without limitations, however. In partic-
ular, numerical integration is a computationally expensive
training approach, and we assume fixed PC structures (in-
dependent of the latent variables) that have to be defined
or learnt a priori. These two issues are promising avenues
for future work, especially with extensions to more complex
structures, like HCLTs (Liu and Van den Broeck 2021).

7250

Acknowledgements
We thank the Eindhoven Artificial Intelligence Systems Insti-
tute (EAISI) for its support. This research was supported by
the Graz Center for Machine Learning (GraML). This work
was partially funded by the EU European Defence Fund
Project KOIOS (EDF-2021-DIGIT-R-FL-KOIOS). We also
thank Guy Van den Broeck and team for their feedback that
helped us improve the paper.

References
Bekker, J.; Davis, J.; Choi, A.; Darwiche, A.; and Van den
Broeck, G. 2015. Tractable learning for complex probability
queries. Advances in Neural Information Processing Systems,
28.
Bojanowski, P.; Joulin, A.; Lopez-Pas, D.; and Szlam, A.
2018. Optimizing the Latent Space of Generative Networks.
In International Conference on Machine Learning (ICML),
600–609. PMLR.
Buchholz, A.; Wenzel, F.; and Mandt, S. 2018. Quasi-monte
carlo variational inference. In International Conference on
Machine Learning (ICML), 668–677. PMLR.
Bungartz, H.-J.; and Griebel, M. 2004. Sparse grids. Acta
numerica, 13: 147–269.
Burda, Y.; Grosse, R.; and Salakhutdinov, R. 2015.
Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519.
Caflisch, R. E. 1998. Monte carlo and quasi-monte carlo
methods. Acta numerica, 7: 1–49.
Chow, C.; and Liu, C. 1968. Approximating discrete proba-
bility distributions with dependence trees. IEEE transactions
on Information Theory, 14(3): 462–467.
Correia, A.; Peharz, R.; and de Campos, C. P. 2020. Joints in
Random Forests. Advances in Neural Information Processing
Systems, 33.
Dang, M.; Liu, A.; and Van den Broeck, G. 2022. Sparse
Probabilistic Circuits via Pruning and Growing. In The 5th
Workshop on Tractable Probabilistic Modeling.
Dang, M.; Vergari, A.; and Broeck, G. V. d. 2020. Strudel:
Learning Structured-Decomposable Probabilistic Circuits.
arXiv preprint arXiv:2007.09331.
Darwiche, A. 2003. A differential approach to inference
in Bayesian networks. Journal of the ACM (JACM), 50(3):
280–305.
Di Mauro, N.; Gala, G.; Iannotta, M.; and Basile, T. M. 2021.
Random probabilistic circuits. In Uncertainty in Artificial
Intelligence, 1682–1691. PMLR.
Gens, R.; and Pedro, D. 2013. Learning the structure of sum-
product networks. In International Conference on Machine
Learning (ICML), 873–880. PMLR.
Gerstner, T.; and Griebel, M. 2010. Sparse Grids. In Cont,
R., ed., Encyclopedia of Quantitative Finance. John Wiley
and Sons.
Ghahramani, Z. 2015. Probabilistic machine learning and
artificial intelligence. Nature, 521(7553): 452–459.

Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A. C.; and Bengio, Y.
2014. Generative Adversarial Nets. In NIPS.
Jaynes, E. T. 2003. Probability Theory: The Logic of Science.
Cambridge University Press.
Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In International Conference on Learning
Representations (ICLR). ArXiv:1312.6114.
Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In Proceed-
ings of the 14th international conference on principles of
knowledge representation and reasoning (KR), 1–10.
Larochelle, H.; and Murray, I. 2011. The neural autoregres-
sive distribution estimator. In Proceedings of the fourteenth
international conference on artificial intelligence and statis-
tics, 29–37. JMLR Workshop and Conference Proceedings.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Liu, A.; and Van den Broeck, G. 2021. Tractable regulariza-
tion of probabilistic circuits. Advances in Neural Information
Processing Systems, 34.
Lowd, D.; and Davis, J. 2010. Learning Markov network
structure with decision trees. In 2010 IEEE International
Conference on Data Mining, 334–343. IEEE.
l’Ecuyer, P. 2016. Randomized quasi-Monte Carlo: An in-
troduction for practitioners. In International Conference on
Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, 29–52. Springer.
MacKay, D. J. 1995. Bayesian neural networks and density
networks. Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 354(1): 73–80.
Mnih, A.; and Rezende, D. 2016. Variational inference for
monte carlo objectives. In International Conference on Ma-
chine Learning (ICML), 2188–2196.
Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; and
Ng, A. Y. 2011. Reading digits in natural images with un-
supervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning.
Park, J. J.; Florence, P.; Straub, J.; Newcombe, R.; and Love-
grove, S. 2019. Deepsdf: Learning continuous signed dis-
tance functions for shape representation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 165–174.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703.
Peharz, R. 2015. Foundations of Sum-Product Networks for
Probabilistic Modeling. Ph.D. thesis, Graz University of
Technology.
Peharz, R.; Gens, R.; Pernkopf, F.; and Domingos, P. 2016.
On the latent variable interpretation in sum-product networks.
IEEE transactions on pattern analysis and machine intelli-
gence, 39(10): 2030–2044.

7251

Peharz, R.; Lang, S.; Vergari, A.; Stelzner, K.; Molina, A.;
Trapp, M.; Van den Broeck, G.; Kersting, K.; and Ghahra-
mani, Z. 2020a. Einsum networks: Fast and scalable learning
of tractable probabilistic circuits. In International Conference
on Machine Learning (ICML), 7563–7574. PMLR.
Peharz, R.; Vergari, A.; Stelzner, K.; Molina, A.; Shao, X.;
Trapp, M.; Kersting, K.; and Ghahramani, Z. 2020b. Ran-
dom sum-product networks: A simple and effective approach
to probabilistic deep learning. In Uncertainty in Artificial
Intelligence, 334–344. PMLR.
Poon, H.; and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In 2011 IEEE International Con-
ference on Computer Vision Workshops (ICCV Workshops),
689–690. IEEE.
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434.
Rahman, T.; Kothalkar, P.; and Gogate, V. 2014. Cutset
networks: A simple, tractable, and scalable approach for
improving the accuracy of Chow-Liu trees. In Joint European
conference on machine learning and knowledge discovery in
databases, 630–645. Springer.
Rezende, D.; and Mohamed, S. 2015. Variational inference
with normalizing flows. In International Conference on Ma-
chine Learning (ICML), 1530–1538. PMLR.
Rooshenas, A.; and Lowd, D. 2014. Learning sum-product
networks with direct and indirect variable interactions. In
International Conference on Machine Learning (ICML), 710–
718. PMLR.
Shao, X.; Molina, A.; Vergari, A.; Stelzner, K.; Peharz, R.;
Liebig, T.; and Kersting, K. 2020. Conditional sum-product
networks: Imposing structure on deep probabilistic architec-
tures. In International Conference on Probabilistic Graphical
Models, 401–412. PMLR.
Shih, A.; Sadigh, D.; and Ermon, S. 2021. HyperSPNs:
Compact and Expressive Probabilistic Circuits. Advances in
Neural Information Processing Systems, 34.
Smolyak, S. A. 1960. Interpolation and quadrature formulas
for the classes Wα

s and Eα
s . In Doklady Akademii Nauk,

volume 131, 1028–1031. Russian Academy of Sciences.
Tan, P. L.; and Peharz, R. 2019. Hierarchical Decompo-
sitional Mixtures of Variational Autoencoders. In Chaud-
huri, K.; and Salakhutdinov, R., eds., Proceedings of the
36th International Conference on Machine Learning (ICML),
volume 97 of Proceedings of Machine Learning Research,
6115–6124. PMLR.
Tomczak, J.; and Welling, M. 2018. VAE with a VampPrior.
In International Conference on Artificial Intelligence and
Statistics, 1214–1223. PMLR.
Van Den Oord, A.; Vinyals, O.; et al. 2017. Neural discrete
representation learning. Advances in neural information
processing systems, 30.
Van Haaren, J.; and Davis, J. 2012. Markov network structure
learning: A randomized feature generation approach. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 26.

Vergari, A.; Choi, Y.; Peharz, R.; and Van den Broeck, G.
2020. Probabilistic Circuits: Representations, Inference,
Learning and Applications. http://starai.cs.ucla.edu/slides/
AAAI20.pdf. Tutorial at AAAI 2020.
Weierstrass, K. 1885. Über die analytische Darstell-
barkeit sogenannter willkürlicher Functionen einer reellen
Veränderlichen. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften zu Berlin, 2: 633–639.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Zhao, H.; Poupart, P.; and Gordon, G. 2016. A unified ap-
proach for learning the parameters of sum-product networks.
arXiv preprint arXiv:1601.00318.

7252

