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Abstract
CountSketch and Feature Hashing (the “hashing trick”) are
popular randomized dimensionality reduction methods that
support recovery of ℓ2-heavy hitters (keys i where v2i >
ϵ∥v∥22) and approximate inner products. When the inputs are
not adaptive (do not depend on prior outputs), classic esti-
mators applied to a sketch of size O(ℓ/ϵ) are accurate for a
number of queries that is exponential in ℓ. When inputs are
adaptive, however, an adversarial input can be constructed af-
ter O(ℓ) queries with the classic estimator and the best known
robust estimator only supports Õ(ℓ2) queries. In this work we
show that this quadratic dependence is in a sense inherent: We
design an attack that after O(ℓ2) queries produces an adver-
sarial input vector whose sketch is highly biased. Our attack
uses “natural” non-adaptive inputs (only the final adversarial
input is chosen adaptively) and universally applies with any
correct estimator, including one that is unknown to the attacker.
In that, we expose inherent vulnerability of this fundamental
method.

1 Introduction
CountSketch (Charikar, Chen, and Farach-Colton 2002)
and its variant feature hashing (Moody and Darken 1989;
Weinberger et al. 2009) are immensely popular dimensional-
ity reduction methods that map input vectors in Rn to their
sketches in Rd (where d≪ n). The methods have many ap-
plications in machine learning and data analysis and often are
used as components in large models or pipelines (Weinberger
et al. 2009; Shi et al. 2009; Pham and Pagh 2013; Chen et al.
2015, 2016; Aghazadeh et al. 2018; Spring et al. 2019; Ahle
et al. 2020; Cohen, Pagh, and Woodruff 2020).

The mapping is specified by internal randomness ρ ∼ D
that determines a set of d = ℓ · b linear measurements vectors
(µ(j,k))j∈[ℓ],k∈[b] in Rn. The sketch Sketchρ(v) of a vector
v ∈ Rn is the matrix of d linear measurements

Sketchρ(v) :=
(
⟨µ(j,k),v⟩

)
j∈[ℓ],k∈[b]

. (1)
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The salient properties of CountSketch are that (when set-
ting b = O(1/ϵ) and ℓ = O(log n)) the ℓ2-heavy hitters of
an input v, that is, keys i with v2i > ϵ∥v∥22, can be recovered
from Sketchρ(v) and that the inner product of two vec-
tors v, u can be approximated from their respective sketches
Sketchρ(v), Sketchρ(u). This recovery is performed by
applying an appropriate estimator to the sketch, for example,
the median estimator (Charikar, Chen, and Farach-Colton
2002) provides estimates on values of keys and supports
heavy hitters recovery. But recovery can also be implicit, for
example, when the sketch is used as a compression module in
a Neural Network (Chen et al. 2015), the recovery of features
is learned.

Randomized data structures and algorithms are typically
analysed under an assumption that the input sequence is
generated in a way that does not depend on prior outputs
and on the sketch randomness ρ. This assumption, however,
does not always hold, for example, when there is an intention
to construct an adversarial input or when the system has a
feedback between inputs and outputs (Spring et al. 2019;
Rothchild et al. 2020).

An interactive setting, where inputs are adaptive in that
they may depend on prior outputs, is more challenging to anal-
yse and there is growing interest in quantifying performance
and in designing methods that are robust to adaptive inputs.
Works in this vein span machine learning (Szegedy et al.
2013; Goodfellow, Shlens, and Szegedy 2014; Athalye et al.
2018; Papernot et al. 2017), adaptive data analysis (Freedman
1983; Ioannidis 2005; Lukacs, Burnham, and Anderson 2009;
Hardt and Ullman 2014; Dwork et al. 2015), dynamic graph
algorithms (Shiloach and Even 1981; Ahn, Guha, and McGre-
gor; Gawrychowski, Mozes, and Weimann 2020; Gutenberg
and Wulff-Nilsen 2020; Wajc 2020; Beimel et al. 2021), and
sketching and streaming algorithms (Mironov, Naor, and
Segev 2008; Ahn, Guha, and McGregor; Hardt and Woodruff
2013; Ben-Eliezer et al. 2021; Hassidim et al. 2020; Woodruff
and Zhou 2021; Attias et al. 2021; Ben-Eliezer, Eden, and
Onak 2021; Gupta et al. 2021; Cohen et al. 2022a). Robust-
ness to adaptive inputs can trivially be achieved by using a
fresh data structure for each query, or more finely, for each
time the output changes. Hence, ℓ independent replicas of
a non-robust data structure suffice for supporting ℓ adaptive
queries. A powerful connection between adaptive robustness
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and differential privacy (Dwork et al. 2015) and utilizing the
workhorse of advanced composition, yielded essentially a
wrapper around ℓ independent replicas of a non-robust data
structure that supports a quadratic number Õ(ℓ2) of adap-
tive queries (or changes to the output) (Hassidim et al. 2020;
Gupta et al. 2021; Beimel et al. 2021). For the problem of
recovering heavy-hitters from CountSketch, the “wrap-
per” method supports ≈ ϵℓ2 adaptive queries. The current
state of the art (Cohen et al. 2022a) is a robust estimator that
works with a variant of CountSketch and supports Õ(ℓ2)
adaptive queries.

Lower bounds on the performance of algorithms to adap-
tive inputs are obtained by designing an attack, a sequence
of input vectors, that yields a constructed input that is ad-
versarial to the internal randomness ρ. Tight lower bounds
on the robustness of statistical queries were established by
(Hardt and Ullman 2014; Steinke and Ullman 2015), who
designed an attack with a number of queries that is quadratic
in the sample size, which matches the known upper bounds
(Dwork et al. 2015). Their construction was based on fin-
gerprinting codes (Boneh and Shaw 1995). A downside of
these constructions is that the inputs used in the attack are
not “natural” and hence unlikely to shed some understanding
on practical vulnerability in the presence of feedback. Hardt
and Woodruff (Hardt and Woodruff 2013) provided an im-
possibility result for the task of estimating the norm of the
input within a constant factor from (general) linear sketches.
Their construction works with arbitrary correct estimators
and produces an adversarial distribution over inputs where
the sketch measurements are “far” from their expectations.
The attack size, however, has a large polynomial dependence
on the sketch size and is far from the respective upper bound.
Ben-Eliezer et al (Ben-Eliezer et al. 2021) present an attack
on the AMS sketch (Alon, Matias, and Szegedy 1999) for the
task of approximating the ℓ2-norm of the input vector. The
attack is tailored to a simplified estimator that is linear in the
set of linear measurements (whereas the “classic” estimator
uses a median of measurements and is not linear). Their at-
tack is efficient in that the number of queries is of the order
of the sketch size, rendering the estimator non-robust. It also
has an advantage of using “natural” inputs. More recently,
(Cohen et al. 2022a) presented attacks that are tailored to
specific estimators for CountSketch, including an attack
of size O(ℓ) on the classic median estimator and an attack of
size O(ℓ2) on their proposed robust estimator.

Contribution
Existing works proposed attacks of size that is far from the
corresponding known upper bounds or are tailored to a par-
ticular estimator. Specifically for CountSketch, there is
an upper bound of O(ℓ2) but it is not even known whether
there exist estimators that support a super-quadratic num-
ber of adaptive inputs. This question is of particular impor-
tance because CountSketch and its variants are the only
known efficient sketching method that allow recovery of ℓ2-
heavy hitters and approximating ℓ2 norms and inner products.
Moreover, their form as linear measurements is particularly
suitable for efficient implementations and integration as com-
ponents in larger pipelines. Finally, a recent lower bound

precludes hope for an efficient deterministic (and hence fully
robust) sketch (Kamath, Price, and Woodruff 2021), so it is
likely that the vulnerabilities of CountSketch are inher-
ent to ℓ2-heavy hitter (and approximate ℓ2-norm and inner
product) recovery from a small sketch.

We construct a universal attack on CountSketch, that
applies against any unknown, potentially non-linear, possibly
state maintaining, estimator. We only require that the esti-
mator is correct. Our attack uses O(ℓ2) queries, matching
the Õ(ℓ2) robust estimator upper bound (Cohen et al. 2022a).
Moreover, it suffices for the purpose of the attack that the
estimator only reports a set of candidate heavy keys without
their approximate values (we only require that heavy hitters
are reported with very high probability and 0 value keys are
reported with very small probability). Our attack also applies
against a correct inner-product estimator (that distinguishes
between ⟨v,u⟩ = 0 (reported with very small probability)
and ⟨v,u⟩2 ≥ ϵ∥v∥22∥u∥22 (reported with high probability.))
Additionally, we apply our attack method to ℓ2-norm estima-
tors applied to an AMS sketch (Alon, Matias, and Szegedy
1999) and obtain that an attack of size O(ℓ2) suffices to con-
struct an adversarial input. The AMS sketch can be viewed as
a CountSketch with b = 1 and is similar to the Johnson
Lindenstrauss transform (Johnson and Lindenstrauss 1984).

The product of our attack (with high probability) is an
adversarial input v on which the measurement values of
Sketchρ(v) are very biased with respect to their distribu-
tion when ρ ∼ D. Specifically, the design of CountSketch
results in linear measurements that are unbiased for any
input v under the sketch distribution ρ ∼ D: For each
key i and measurement vectors µ with µi ̸= 0 it holds
that Eρ[⟨v,µ⟩/µi − vi] = 0 but the corresponding ex-
pected values for our adversarial v in Sketchρ(v) are large
(≥ Bϵ∥v∥22 for a desired B > 1). This “bias” means that
the known standard (and robust) estimators for heavy hitters
and inner products would fail on this adversarial input. And
generally the usual design goal (for “learned” estimators) of
being correct on any input with high probability over the dis-
tribution of Sketchρ(v) is insufficient for an estimator to
be correct on adversarial inputs. We note however that our re-
sult does not preclude the existence of specialized estimators
that are correct on our adversarial inputs. This because some
estimators (when attacked) can force the sketch of our ad-
versarial input to be recognizably “out of distribution” (with
basic statistics that still falsely match those of an input with
a heavy key) and we do not preclude specialized estimators
on these “out of distribution” sketches.

Finally, our attacks use “natural” inputs that have the form
of a heavy key and random noise. The final adversarial input
is a linear combination of the noise components according to
the heavy hitter reports and is the only one that depends on
prior outputs. The simplicity of this attack suggests “practical”
vulnerability of this fundamental sketching technique.

Technique Our attacks construct an adversarial input with
respect to key h. The high level structure is to generate
“random tails,” (z(t))t∈[r], which are vectors with small
random entries. Ideally, we would like to determine for
each z(t) whether it is biased up or down with respect to
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key h. Roughly, considering the set Th of ℓ measurement
vectors with µh ∈ {−1, 1}, determine the sign s∗(t) of
1
ℓ

∑
µ∈Th

⟨µ, z(t)⟩ · µh. If we had that, the linear combi-
nation z∗(A) =

∑
t∈[r] s

∗(t)z(t) (with large enough r) is an
adversarial input. The intuition why this helps is that the
bias accumulates linearly with the number of tails r whereas
the standard deviation (essentially the ℓ2 norm), considering
randomness of the selection of tails, increases proportionally
to
√
r. The attack strategy is then to design query vectors

of the form v
(t)
h eh + z(t) so that from whether or not h is

reported as a heavy hitter candidate we obtain s(t) that corre-
lates with s∗(t). A higher correlation E[s∗(t)s(t)] yields more
effective attacks: With E[s∗(t)s(t)] = Ω(1) we get attacks of
size r = O(ℓ) and with E[s∗(t)s(t)] = Ω(1/

√
ℓ) we get at-

tack of size r = O(ℓ2). We show that we can obtain s(t) with
E[s∗(t)s(t)] = Ω(1/

√
ℓ) (thus matching the upper bound)

against any arbitrary and adaptable estimator as long as it
is correct. The difficulty is that such an estimator can be
non monotone in the value vh of the heavy key and change
between queries. Our approach is to select the value vh of
the heavy key in the input vectors uniformly at random from
an interval that covers the “uncertainty region” between val-
ues that must be reported as heavy to values that are hard
to distinguish from 0 and hence should not be reported. We
then observe that in expectation over the random choice, any
correct estimator must have a slight reporting advantage with
larger vh. Finally, we show that any particular sketch content
is equally likely with symmetrically larger vh with a tail that
is biased down or a smaller vh with a tail that is biased up.
This translates to a slight reporting advantage for h as a can-
didate heavy hitter when the tail is “biased up.” Therefore by
taking s(t) = 1 when h is reported and s(t) = −1 otherwise
we have the desired correlation.

Related work Attack vectors of similar random noise form
were used against specific estimators in (Cherapanamjeri and
Nelson 2020) to attack the Johnson Lindenstrauss transform
and as heuristic blackbox attacks on deep neural networks
in (Guo et al. 2019). Our work is most related to (Cohen
et al. 2022a) in that the structure of our attack vectors is
similar to those used in (Cohen et al. 2022a) to construct a
tailored attack on the classic CountSketchestimator. The
generalization however to a “universal” attack that is effec-
tive against arbitrary and unknown estimators was delicate
and required multiple new ideas. Our contribution is also re-
lated and in a sense complementary to (Hardt and Woodruff
2013) that designed attack on linear sketches that applies
with any correct estimator for (approximate) norms. Their
attack is much less efficient in that its size is a higher degree
polynomial and it uses dependent (adaptive) inputs (whereas
with our attack only the final adversarial input depends on
prior outputs). The product of their attack are constructed
vectors that are in the (approximate) null space of the sketch-
ing matrix. These “noise” vectors can have large norms but
are “invisible” in the sketch. When such “noise” is added
to an input with a signal (say a heavy hitter), the “signal” is
suppressed (entry no longer heavy) but can still be recov-

ered from the sketch. Our attack fails the sketch matrix in
a complementary way: we construct “noise” vectors that do
not involve a signal (a heavy entry) but the sketch mimics a
presence of that particular signal.

Overview Our attack is described in Section 3 with detailed
proofs provided in the full version (Cohen et al. 2022b). The
analysis is based on that of a corresponding interaction with
a mean estimator, that is described in Section 5. In Section 6
we describe another application of our attack technique, to
ℓ2 norm estimators for the AMS sketch (Alon, Matias, and
Szegedy 1999).

2 Preliminaries
We use boldface notation for vectors v, non boldface for
scalars v, ⟨v,u⟩ =

∑
i viui for inner product, and v · u for

scalar product. For a vector v ∈ Rn we refer to i ∈ [n] as a
key and vi as the value of the ith key (entry) and denote by
v = 1

n

∑n
i=1 vi the mean value. For exposition clarity, we

use ≈ to mean “within a small relative error.” We denote by
N (v, σ2) the normal distribution with mean v and variance
σ2 and by u ∼ Nℓ(v, σ

2) a vector in Rℓ with entries that are
i.i.d.N (v, σ2). The probability density function ofNℓ(v, σ

2)
is

fv(u) =
∏
i∈[ℓ]

1

σ
√
2π

e−
1
2 (

ui−v

σ )
2

. (2)

Definition 2.1. (heavy hitter) For ϵ > 0, and a vector v ∈
Rn, key i ∈ [n] is an ℓ2-ϵ-heavy hitter if v2i ≥ ϵ∥v∥22.

Clearly, there can be at most 1/ϵ ℓ2-ϵ heavy hitters.

Definition 2.2. (heavy hitters estimator) A ℓ2-ϵ-heavy hitters
estimator is applied to a sketch of an input vector v ∈ Rn

and returns a set of entries K ⊂ [n]. The output is correct
if K includes all the ℓ2-ϵ-heavy hitters keys and does not
include keys with vi = 0.

Remark 2.3. Our correctness definition is a weaker require-
ment than what the classic CountSketch estimator pro-
vides (Charikar, Chen, and Farach-Colton 2002). Since we
design attacks, the design is stronger against weaker require-
ments as less information on the randomness is revealed.

Definition 2.4. (inner product estimator) An inner-product
estimator is applied to sketches of two input vectors v,u ∈
Rn and returns s ∈ {−1, 1}. The output is correct if s = −1
when ⟨v,u⟩ = 0 and is s = 1 when ⟨v,u⟩2 ≥ ϵ∥v∥22∥u∥22.

2.1 CountSketch
The sketch (Charikar, Chen, and Farach-Colton 2002) is spec-
ified by parameters (n, ℓ, b), where n is the dimension of
input vectors, and d = ℓ · b. The internal randomness ρ
specifies a set of random hash functions hr : [n] → [b]
(r ∈ [ℓ]) with the marginals that ∀k ∈ [b], i ∈ [n],
Pr[hj(i) = k] = 1/b, and sj : [n] → {−1, 1} (j ∈ [ℓ])
so that Pr[sj(i) = 1] = 1/2. These hash functions define
d = ℓ ·b measurement vectors, µ(j,k) (j ∈ [ℓ], k ∈ [b]) where

µ
(j,k)
i := 1{hj(i)=k}sj(i),

organized as ℓ sets of b vectors each.

7237



For an input vector v ∈ Rn, Sketchρ(v) :=

(⟨µ(j,k),v⟩)j,k is the set of the respective measurement val-
ues. Note that for each key i ∈ [n] there are exactly ℓ mea-
surement vectors with a nonzero ith entry: (µ(j,hj(i)))j∈[ℓ]

and these measurement vectors are independent (as the only
dependency is between measurement in the same set of b,
and there is exactly one from each set). The respective set of
ℓ adjusted measurements:

(⟨µ(j,hj(i)),v⟩µ(j,hj(i))
i )j∈[ℓ] (3)

are unbiased estimates of vi: Eρ[⟨µ(j,hj(i)),v⟩µ(j,hj(i))
i ] =

vi.
The median estimator (Charikar, Chen, and Farach-Colton

2002) uses the median adjusted measurement to estimate
the value vi of each key i. The O(1/ϵ) keys with highest
magnitude estimates are then reported as heavy hitters. When
the same randomness ρ is used for r non-adaptive inputs
(inputs selected independently of ρ and prior outputs), sketch
parameter settings of ℓ = log(r · n/δ) and b = O(ϵ−1)
guarantee that with probability 1− δ, all outputs are correct
(in the sense of Remark 2.3).
CountSketch also supports estimation of inner prod-

ucts. For two vectors v, u, we obtain an unbiased estimate of
their inner product from the respective inner product of the
j ∈ [ℓ]th row of measurements:∑

k∈[b]

⟨µ(j,k),v⟩ · ⟨µ(j,k),u⟩ . (4)

The median of these ℓ estimates is within relative error
√
ϵ

with probability 1− exp(Ω(−ℓ)).
We note that pairwise independent hash functions hj

and sj suffice for obtaining the guarantees of Remark 2.3
(Charikar, Chen, and Farach-Colton 2002) whereas 4-wise
independence is needed for approximate inner products. The
analysis of the attack we present here, however, holds even
under full randomness.

2.2 Adversarial Input for CountSketch
Definition 2.5 (adversarial input). We say that an attack A
that is applied to a sketch with randomness ρ and outputs
i ∈ [n] and z(A) ∈ {−1, 0, 1}n (with z

(A)
i = 0) is (B, β)-

adversarial (for B > 1) if, with probability at least 1 − β
over the randomness of ρ,A, the adjusted measurements (3)
satisfy:

Pr
ρ∼D,A

1

ℓ

∑
j∈[ℓ]

⟨µ(j,hj(i)), z(A)⟩µ(j,hj(i))

i ≥
√

B

b
∥z(A)∥2


≥ 1− β. (5)

The adversarial input z(A) is a noise vector (with no heavy
hitters) but Sketchρ(z

(A)) “looks like” (in terms of the
average adjusted measurement of key i) a sketch of a vector
with a heavy key i. It follows from the standard analysis of
CountSketch that the event

1

ℓ

∑
j∈[ℓ]

⟨µ(j,hj(i)),v⟩µ(j,hj(i))
i ≥

√
B

b
∥v∥2 . (6)

(that corresponds to (5)) is very likely for vectors v such
that h is a heavy hitter (Definition 2.1) and extremely un-
likely when h is not a heavy hitter, and in particular, when
vh = 0. Similarly for inner products, considering the in-
ner product of v with the standard basis vector ei, the
sketch-based estimates (4) of each j ∈ ℓ computed from
Sketchρ(ei) and Sketchρ(v) are equal to the respective
adjusted measurement (3) of i from Sketchρ(v). The event
(6) is very likely when ⟨ei,v⟩ ≥ ϵ∥v∥22 and very unlikely
when ⟨ei,v⟩ = 0, noting that for our adversarial input z(A)

it holds that ⟨ei, z(A)⟩ = 0.
While this follows from the standard analysis, the sim-

ple structure of our noise vectors (described in Section 3.1)
allows for a particularly simple argument for bounding the
probability of (6) for v with the structure of z(A) : The dis-
tribution of an adjusted measurement of a v ∈ {−1, 0, 1}n
and vi = 0 with support size m = | supp (v)| = ∥v∥22
approaches N (0, m

b ) (for large m/b), and thus the average
approaches N (0, m

ℓ·b ). Therefore, the probability of (5) on
a random sketch of z(A) is ≤ exp(−ℓB/2) (applying tail
bounds on the probability of value exceeding

√
ℓB standard

deviations).

3 Attack Description
We describe our attack against heavy hitters estimators. The
modifications needed for it to apply with inner product estima-
tor are described in Section 3.3. The attack is an interaction
between the following components:
• Internal randomness ρ ∼ D that specifies linear measure-

ment vectors (µ(j,k))j∈[ℓ],k∈[b]. The sketch Sketchρ(v)
of a vector v ∈ Rn is the set of measurements
(⟨µ(j,k),v⟩)j∈[ℓ],k∈[b].

• A query-response algorithm that at each step t chooses a
heavy hitters estimator (see Definition 2.2). The choice
may depend on the randomness ρ and prior queries and re-
sponses (Sketchρ(v

(t′)),K(t′))t′<t. The algorithm re-
ceives Sketchρ(v

(t)), applies the estimator to the sketch,
and outputs K(t).

• An adversary that issues a sequence of input queries
(v(t))t and collects the responses (K(t))t. The ran-
domness ρ and the sketches of the query vectors
(Sketchρ(v

(t)))t are not known to the adversary. The
goal is to construct an adversarial input vector z(A) (see
Definition 2.5).

Our adversary generates the query vectors (v(t))t∈[r] non-
adaptively as described in Section 3.1. The attack interaction
and its properties are stated in Section 3.2.

3.1 Query Vectors
Our attack query vectors (v(t))t∈[r] have the form:

v(t) := v
(t)
h eh + z(t) ∈ Rn, (7)

where h is a special heavy key, that is selected uniformly
h ∼ U [n] and remains fixed, eh is the standard basis vector
(axis-aligned unit vector along h), and the vectors z(t) are
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tails. The (randomized) construction of tails is described
in Algorithm 1. The tail vectors (z(t))t∈[r] have support of
size | supp(z(t))| = m that does not include key h (h ̸∈
supp(z(t))) and so that the supports of different tails are
disjoint:

t1 ̸= t2 =⇒ supp(z(t1)) ∩ supp(z(t2)) = ∅ .

For query t and key i ∈ supp(z(t)), the values are selected
i.i.d. Rademacher z(t)i ∼ U [{−1, 1}]. Note that ∥v(t)∥22 =

(v
(t)
h )2+∥z(t)∥22 = (v

(t)
h )2+m. Note that the tails, and (as we

shall see) the selection of v(t)h , and hence the input vectors are
constructed non-adaptively. Only the final adversarial input
vector depends on the output of the estimator on prior queries.
The parameter m is set to a value that is polynomial in the
sketch size and large enough so that certain approximations
hold (see Section 4).

Algorithm 1: AttackTails
Input: Input dimension n, support size m, number of tails r
h← U [n] // Special heavy hitter key
S ← {h} // Keys used in support
for t ∈ [r] do

S′ ← random subset of size m from [n] \ S
z(t) ← 0
foreach i ∈ S′ do

z
(t)
i ∼ U [{−1, 1}]

S ← S ∪ S′

return h, (z(t))t∈[r]

Remark 3.1. The only piece of information needed from
the output of the estimator is whether the particular key h is
reported as a candidate heavy hitter of v(t), that is, whether
h ∈ K(t). Note that disclosing additional information can
only make the estimator more vulnerable to attacks.

3.2 Universal Attack
Our attack interaction is described in Algorithm 2. We gen-
erate r attack tails using Algorithm 1. We then construct r
queries of the form (7) with i.i.d. v(t)h ∼ U [a ·σ, (c+2a) ·σ].
At each step t ∈ [r], we feed the sketch of v(t) to the HH
estimator selected by the query response algorithm and col-
lect the output K(t) of the estimator. We then set s(t) ← 1
if h ∈ K(t) and s(t) ← −1 if h ̸∈ K(t). The final step
computes the adversarial input:

z(A) :=
∑
t∈[r]

s(t)z(t) . (8)

The statements below apply only to measurement vectors
with nonzero value for key h. To simplify the notation, we
use µ(j) := µ(j,hj(h)) for j ∈ [ℓ]. For randomness ρ, we use
µ(j)(ρ) for the respective measurement vectors and A(ρ) for
the output distribution of Algorithm 2 applied with random-
ness ρ.

Algorithm 2: Attack on CountSketch Heavy Hit-
ters Estimators

Set a = Θ(
√

ln(1/δ2)
ℓ

) and c = Θ(1) // With universal
constants as in Lemma 4.1

Input: Initialized CountSketchρ with parameters
(n, ℓ, b), Query-response algorithm, number of
queries r, tail support size m

(h, (z(t))t∈[r])← AttackTails(n,m, r) // Algorithm 1
for t ∈ [r] do // Compute Query Vectors

v
(t)
h ∼ U [a · σ, (c+ 2a) · σ] // σ :=

√
m/b

v(t) ← v
(t)
h eh + z(t) // Query vectors

for t ∈ [r] do // Apply Query Response
Choose a correct HH estimator M (t′) // With correct

reporting function (Definition 5.1), may depend on
(v

(t′)
h ,K(t′),M (t′))t′<t and ρ

K(t) ←M (t)(CountSketchρ(v
(t))) // Apply

estimator to sketch
if h ∈ K(t) then s(t) ← 1 else s(t) ← −1

return z(A) ←
∑

t∈[r] s
(t)z(t) // Adversarial input

The adversarial input has z(A)
h = 0 and norm ∥z(A)∥22 =

r ·m (it has support of size r ·m with values in the support
i.i.d Rademacher U [{−1, 1}]).

Let the random variable M(ρ) be the average adjusted
measurement of an adversarial vector z(A) constructed for
randomness ρ0 (ρ0 ∼ D, z(A) ∼ A(ρ0)) and sketched with
randomness ρ:

M(ρ) :=
1

ℓ

∑
j∈[ℓ]

⟨z(A),µ(j)(ρ)⟩ · µ(j)
h (ρ) .

When an adversarial input z(A) ∼ A(ρ0) is sketched using
a random ρ ∼ D it holds that for all j ∈ [ℓ]:

E
ρ0∼D,z(A)∼A(ρ0),ρ∼D

[
⟨z(A),µ(j)(ρ)⟩

]
= 0

Var
ρ0∼D,z(A)∼A(ρ0),ρ∼D

[
⟨z(A),µ(j)(ρ)⟩

]
≈ r ·m

b
= rσ2 .

and since the ℓ measurements are independent we get:

E
ρ0∼D,z(A)∼A(ρ0),ρ∼D

[M(ρ)] = 0

Var
ρ0∼D,z(A)∼A(ρ0),ρ∼D

[M(ρ)] ≈ r

ℓ
· σ2.

The adversarial input z(A) ∼ A(ρ0) behaves differently with
respect to the particular randomness ρ0 it was constructed for.
We will establish the following:
Lemma 3.2 (Properties of the adversarial input).

E
ρ0∼D,z(A)∼A(ρ0)

[M(ρ0)] ≈
r

ℓ
· 2σ

c+ a

Var
ρ0∼D,z(A)∼A(ρ0)

[M(ρ0)] ≈
r

ℓ
· σ2

The proof is provided in the full version (Cohen et al.
2022b). The high level idea, as hinted in the introduction,
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is that we establish that the event h ∈ K(t) and thus
s(t) = 1 is correlated with “positive bias”, that is, with the
event 1

ℓ

∑
j∈[ℓ]⟨s(t)z(t),µ(j)(ρ0)⟩ ·µ(j)

h (ρ0) > 0. In the sum∑
t∈[r] s

(t)z(t) the bias (which is “forced” error on the esti-
mates) increases linearly with r while the ℓ2 norm, which cor-
responds to the standard deviation of the error, increases pro-
portionally to

√
r. The main technique is abstracted through

an interaction described in Section 5.
As a corollary of Lemma 3.2, it follows that z(A) is an

adversarial input (see Definition 2.5).
Theorem 3.1 (Adversarial input). If for B > 1 we use attack
of size r = B · ℓ2 then

E
ρ0∼D,z(A)∼A(ρ0)

[M(ρ0)] ≈
2

c+ a

√
B

b
∥z(A)∥2

Var
ρ0∼D,z(A)∼A(ρ0)

[M(ρ0)] ≈
1

ℓ · b∥z
(A)∥22 .

Proof. Using Lemma 3.2, the expected value with attack size
r = Bℓ2 is

r

ℓ
· 2σ

c+ a
=

r

ℓ

√
m

b
· 2

c+ a
=

2

c+ a

√
r

ℓ

1√
b

√
r ·m

=
2

c+ a

√
B

b
∥z(A)∥2 since ∥z(A)∥2 =

√
r ·m

The variance of the average is

r

ℓ
σ2 =

r ·m
ℓ · b

=
1

ℓ · b
∥z(A)∥22

3.3 Attack of an Inner-Product Estimator
We describe the modifications to Algorithm 2 needed for the
attack to apply with an inner-product estimator. We compute
the same query vectors v(t)

t∈[r]. At each step t, the query re-
sponse algorithm chooses a correct inner-product estimator
M (t) (see Definition 2.4). The query is issued for the inner
product of v(t) with the standard basis vector eh. Note that
the value of the inner product is exactly v

(t)
h and the require-

ment of correct reporting of the inner product (Definition 2.4)
on these query vectors matches the requirement of a correct
heavy hitters reporting of the key h (Definition 2.2).

The input to the estimator are the sketches Sketchρ(eh)

and Sketchρ(v
(t)). Note that the information available to

the estimator from the provided sketches on v
(t)
h is the same

as with heavy-hitter queries: Sketchρ(eh) is simply the
vector with entries µ(j)

h , which does not add information as ρ
and h are assumed to be known to the estimator. The same
analysis therefore applies.

4 Sketch Distribution and Estimators
We show (see full version (Cohen et al. 2022b)) that with our
particular query inputs (7), for large enough m, the sketch
content that is relevant to determining whether h is a candi-
date heavy hitter is approximately u(t) ∼ Nℓ(v

(t)
h , σ2) where

σ =
√

m
b . The random variables u∗(t) = u(t) − v

(t)
h 1ℓ for

t ∈ [r] are approximately i.i.d. from Nℓ(0, σ
2).

We establish properties of any correct ℓ2 ϵ-heavy hitters
estimator that is applied to our query vectors. In its most
general form, a query response algorithm fixes before each
query t an estimator M (t). The estimator is applied to the
content of the sketch, which on our inputs are i.i.d. vectors
(u(t) ∼ Nℓ(v

(t)
h , σ2))t∈[r]. The estimator is specified by a

reporting function p(t) : Rℓ → [0, 1] so that p(t)(u(t)) :=
Pr[h ∈M (t)(u(t))] specifies the probability that the returned
K(t) includes key h when the sketch content is u(t). We
allow the query response algorithm to modify the estimator
arbitrarily between queries and in a way that depends on
sketches of prior inputs, prior outputs, and on a maintained
state from past queries (u(t′),K(t′))t′<t. The only constraint
that we impose is that (at each step t) the output is correct
with high probability: ℓ2-ϵ-heavy hitters are reported and 0
value keys are not reported (see Definition 2.2). We show
that a correct estimator on our query inputs must satisfy the
following:

Lemma 4.1 (Correct HH estimator basic property). For

δ1, δ2 ≪ 1, there are a = Θ(
√

ln(1/δ2)
ℓ ) and c = Θ(1)

so that the following holds. If the estimator satisfies (i) if h
is a heavy hitter then Pr[h ∈ K] ≥ 1− δ1 and (ii) if vh = 0
then Pr[h ̸∈ K] ≥ 1− δ2. Then

• |vh| ≥ c · σ =⇒ Pr[h ∈ K] ≥ 1− δ1
• |vh| ≤ a · σ =⇒ Pr[h ̸∈ K] ≥ 1− 1

δ
Ω(1)
2

• Otherwise, unrestricted

5 Mean Estimation Interaction
In this section we describe and state properties of an interac-
tion, stated in Algorithm 3, with a mean estimator for i.i.d
Normal random variables. Properties of Algorithm 2 can be
established through correspondence to Algorithm 3 (see full
version (Cohen et al. 2022b)). In Section 6 we describe an
attack on ℓ2-norm estimators applied to the AMS sketch that
can be analyzed also through Algorithm 3.

Algorithm 3: MeanEstAttack
Input: Parameters (a, c, σ, δ), number of queries r,

b ∈ (0, a], A query response algorithm A that
chooses (a, c, σ, δ)-correct reporting functions

for t ∈ [r] do // Generate queries and reporting functions
A chooses a (a, c, σ, δ)-correct reporting function
p(t) : Rℓ → [0, 1] // Definition 5.1. Choice may
depend on (u(t′), s(t

′))t′<t

v(t) ∼ U [a · σ, (c+ 2b) · σ]
u∗(t) ∼ Nℓ(0, σ

2)

for j ∈ [ℓ] do u
(t)
j ← v(t) + u

∗(t)
j // Compute

u(t) ∈ Rℓ, note that u(t) ∼ Nℓ(v
(t), σ2)

s(t) ← 1 w.p. p(t)(u(t)) and s(t) ← −1 otherwise

return u(A) ←
∑

t∈[r] s
(t)u∗(t)

We use the following definition:
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Definition 5.1 (correct reporting function). A reporting func-
tion p : Rℓ → [0, 1] is correct with respect to parameters:
(δ, c > a > 0, ℓ, σ) if

∀|v| ≥ c · σ, E
u∼Nℓ(v,σ2)

[p(t)(u)] ≥ 1− δ

∀|v| ≤ a · σ, E
u∼Nℓ(v,σ2)

[p(t)(u)] ≤ δ .

A correct reporting function can be viewed as a simple
mean estimator applied to ℓ i.i.d. samples from N (v, σ2):
With probability 1− δ, the output is 1 when |v| > c · σ and
−1 when |v| < a · σ.

We show the following (See (Cohen et al. 2022b)):
Lemma 5.2 (MeanEstAttack Properties). Consider Al-
gorithm 3 where b is such that√

ℓ

2π
e−ℓb2/2 ≪ 1

c− a+ 2b
.

Then the output u(A) ∈ Rℓ satisfies

E
A

[
u(A)

]
≈ r

ℓ
· 2σ

c− a+ 2b
(9)

r

ℓ
σ2

(
1− 2b

c− a+ 2b

)2

⪅ Var
A

[
u(A)

]
⪅

r

ℓ
σ2 (10)

6 Attack on the AMS Sketch

Algorithm 4: Attack on AMS norm estimation
Input: τ , ϵ, δ // Estimator parameters (Definition 6.1)
Initialized AMS Sketchρ with parameters (n, ℓ), number

of queries r, tail support size m

σ ← τ
√

1/2; c←
√
1 + 2ϵ; a← 1; b← Θ( 1√

ℓ
ln(

√
ℓ
ϵ
)

(h, (z(t))t∈[r])← AttackTails(n,m, r) // Choose tails
(Algorithm 1)

(z(t) ← z(t) · σ√
m
)t∈[r] // Rescale tails to have ℓ2 norm σ

for t ∈ [r] do // Generate Query Vectors
v
(t)
h ∼ U [a · σ, (c+ 2b) · σ]
v(t) ← v

(t)
h eh + z(t) // Query vectors

for t ∈ [r] do // Apply Query Response
Choose an (ϵ, δ, τ)-correct estimator M (t)

// Definition 6.1, may depend on

(v
(t′)
h , s(t

′),M (t′))t′<t and ρ

s(t) ←M (t)(Sketchρ(v
(t)) // Apply estimator to

sketch

return z(A) ←
∑

t∈[r] s
(t)z(t) // Adversarial input

The AMS sketch (Alon, Matias, and Szegedy 1999) and
the related Johnson Lindenstrauss transform (Johnson and
Lindenstrauss 1984) are randomized linear maps of input
vectors v ∈ Rn to their sketches Sketchρ(v) ∈ Rℓ. The
sketches support recovery of ℓ2 norms and distances. In this
section we describe an attack on the AMS sketch that applies
with any correct norm estimator. It suffices that the estimator
returns only one bit, comparing the norm to τ with accuracy
ϵ and confidence 1− δ:

Definition 6.1 (correct ℓ2-norm estimator). A norm estima-
tor is correct for parameters (ϵ, δ) and τ if for all v, when
∥v∥22 ≥ (1 + ϵ)τ2, the output is 1 with probability ≥ 1− δ
and if ∥v∥22 ≤ τ2 then the output is −1 with probability
≥ 1− δ.

The sketch is specified by parameters (n, ℓ), where n is
the dimension of input vectors and ℓ is the number of mea-
surements. The internal randomness ρ specifies a set of ran-
dom hash functions sj : [n] → {−1, 1} (j ∈ [ℓ]) so that
Pr[sj(i) = 1] = 1/2. These hash functions define ℓ measure-
ment vectors µ(j) (j ∈ [ℓ]): µ(j)

i := sj(i). The sketch has
the property that for any v ∈ Rn and j ∈ [ℓ], Eρ[⟨µ,v⟩2] =
∥v∥22 and Varρ[⟨µ,v⟩2] = O(∥v∥22). The average estima-
tor for the norm M(Sketchρ(v)) =

1
ℓ

∑
j∈[ℓ]⟨µ(j)(ρ),v⟩2

when ℓ = O(ϵ−2 log(1/δ)), for all v ∈ Rn,
Pr
ρ
[|∥v∥22 −M(Sketchρ(v))| ≥ ϵ∥v∥22] < δ .

Definition 6.2 (adversarial input for AMS). We say that an
attack A that is applied to a sketch with randomness ρ and
outputs z(A) ∈ {−1, 0, 1}n is (ξ, β)-adversarial (for ξ > 0)
if with probability at least 1− β over the randomness of ρ,A
it holds that:

Pr
ρ,A

[
M(Sketchρ(z

(A))) ≥ (1 + ξ) · ∥z(A)∥22
]
≥ 1− β .

(11)
Therefore, for (ξ, δ) such that ξ = Ω(

√
ln(1/δ)/ℓ), the

probability of the event in (11) on a non-adaptively chosen
input is smaller than δ but is at least 1− β on an adversarial
input. Algorithm 4 describes an attack that constructs an
adversarial input for a sketch with randomness ρ. Here we
consider both the accuracy ϵ of the estimator, which is at
least ϵ ≥ 1/

√
ℓ (otherwise correct estimators do not exist)

and the bias ξ = Ω(1/
√
ℓ in the product of the attack. We

establish the following (the proof is presented in the full
version (Cohen et al. 2022b)):
Lemma 6.3. For ϵ, ξ = Ω(1/

√
ℓ), any constant β > 0, and

attack size r = O(ξℓ2 min{ϵ2, ϵ}), the output of Algorithm 4
is (ξ, β)-adversarial.

Intuitively, more accurate estimators (that is, smaller ϵ)
leak more information on the randomness and hence are
easier to attack. We therefore expect attack size to increase
with ϵ. A larger bias ξ is harder to accrue and would require
a larger attack and hence attack size also increases with ξ.

Conclusion
Our results suggest interesting directions for future work. We
suspect that our attack technique can be generalized so that
it applies with any randomized linear sketch that supports
recovery of heavy hitters keys or other properties of the input
vectors. Our attack techniques can be viewed as constructing
“random noise” that mimics the presence of a signal. Similar
blackbox attacks were used heuristically in (Guo et al. 2019)
on trained neural networks with adaptive inputs. Our results
suggest that attacks can be effective even with non-adaptive
inputs (with only the final attack input depending on prior
outputs) and provide theoretical grounding to the observed
effectiveness.
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