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Abstract

Neural forecasting of spatiotemporal time series drives both
research and industrial innovation in several relevant appli-
cation domains. Graph neural networks (GNNs) are often
the core component of the forecasting architecture. However,
in most spatiotemporal GNNs, the computational complexity
scales up to a quadratic factor with the length of the sequence
times the number of links in the graph, hence hindering the
application of these models to large graphs and long temporal
sequences. While methods to improve scalability have been
proposed in the context of static graphs, few research efforts
have been devoted to the spatiotemporal case. To fill this gap,
we propose a scalable architecture that exploits an efficient
encoding of both temporal and spatial dynamics. In particu-
lar, we use a randomized recurrent neural network to embed
the history of the input time series into high-dimensional state
representations encompassing multi-scale temporal dynam-
ics. Such representations are then propagated along the spatial
dimension using different powers of the graph adjacency ma-
trix to generate node embeddings characterized by a rich pool
of spatiotemporal features. The resulting node embeddings
can be efficiently pre-computed in an unsupervised manner,
before being fed to a feed-forward decoder that learns to map
the multi-scale spatiotemporal representations to predictions.
The training procedure can then be parallelized node-wise by
sampling the node embeddings without breaking any depen-
dency, thus enabling scalability to large networks. Empirical
results on relevant datasets show that our approach achieves
results competitive with the state of the art, while dramati-
cally reducing the computational burden.

1 Introduction

As graph neural networks (GNNs; Scarselli et al. 2008; Bac-
ciu et al. 2020) are gaining more traction in many applica-
tion fields, the need for architectures scalable to large graphs
— such as those associated with large sensor networks — is
becoming a pressing issue. While research to improve the
scalability of models for static graph signals has been very
prolific (Hamilton, Ying, and Leskovec 2017; Chiang et al.
2019; Zeng et al. 2019; Frasca et al. 2020), little attention
has been paid to the additional challenges encountered when
dealing with discrete-time dynamical graphs, i.e., spatiotem-
poral time series. Several of the existing scalable training
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Figure 1: Overview of the forecasting framework. Light-
grey boxes denote training-free components. At first, an
Echo-State Network (ESN) — with shared parameters across
nodes — encodes multi-scale temporal dynamics. Then, K
graph shift operators are used to propagate spatial informa-
tion. The resulting K + 1 representations are concatenated
and fed to an MLP to predict the next H node observations.

techniques rely on subsampling graphs to reduce the compu-
tational requirements of the training procedure, e.g., (Hamil-
ton, Ying, and Leskovec 2017; Zeng et al. 2019). However,
sampling the node-level observations as if they were i.i.d.
can break relational (spatial) dependencies in static graphs
and it is even more problematic in the dynamic case, as de-
pendencies occur also across the temporal dimension. In-
deed, complex temporal and spatial dynamics that emerge
from the interactions across the whole graph over a long
time horizon, can be easily disrupted by perturbing such spa-
tiotemporal structure with subsampling. As an alternative,
precomputing aggregated features over the graph allows for
factoring out spatial propagation from the training phase in
certain architetures (Frasca et al. 2020). However, similarly
to the subsampling approach, extending this method to the
spatiotemporal case is not trivial as the preprocessing step
must account also for the temporal dependencies besides the
graph topology.

In this paper, we propose a novel scalable encoder-



decoder architecture for processing spatiotemporal data;
Fig. 1 shows high-level schematics of the proposed ap-
proach. The spatiotemporal encoding scheme is training-
free: first, it exploits a deep randomized recurrent neural net-
work (Jaeger 2001; Gallicchio, Micheli, and Pedrelli 2017)
to encode the history of each sequence in a high-dimensional
vector embedding; then, it uses powers of the graph adja-
cency matrix to build informative node representations of
the spatiotemporal dynamics at different scales. According
to the downstream task at hand, the decoder maps the node
representations into the desired output, e.g., the future val-
ues of the time series associated with each node. To improve
efficiency, we exploit the structure of the extracted embed-
ding to design the decoder to act as a collection of filters
localized at different spatiotemporal scales.

Since the spatiotemporal encoder requires neither training
nor supervision, the representation of each node and time
step can be computed in a preprocessing stage, without the
constraints that come from online training on GPUs with
limited memory. The decoder is the only component of the
architecture with trainable parameters. However, since spa-
tiotemporal relationships are already embedded in the repre-
sentations, the embeddings can be processed independently
from their spatiotemporal context with two consequent ad-
vantages. First, training can be done node-wise, allowing for
sampling node representations in mini-batches of a size pro-
portional to the hardware capacity. Second, the decoder can
be implemented similarly to a standard multilayer percep-
tron (MLP) readout, which is fast and easy to train.

Let 7" and E be the number of steps and the number of
edges in the input graph, respectively. The cost of training
a standard spatiotemporal GNN on a mini-batch of data has
a computational and memory cost that scales as O(TE), or
O(T?E) in attention-based architectures (Wu et al. 2022).
Conversely, in our approach mini-batches can be sampled
disregarding the length of the sequence and size of the graph,
thus making scalability in training constant, i.e., O(1), w.r.t.
the spatiotemporal dimension of the problem.

Our contributions can be summarized as follows.

* We propose a general scalable deep learning framework
for spatiotemporal time series, which exploits a novel en-
coding method based on randomized recurrent compo-
nents and scalable GNNs architectures.

e We apply the proposed model to forecast multivariate
time series, whose channels are subject to spatial rela-
tionships described by a graph.

* We carry out a rigorous and extensive empirical evalua-
tion of the proposed architecture and variations thereof.
Notably, we introduce fwo benchmarks for scalable spa-
tiotemporal forecasting architectures.

Empirical results show that our approach performs on par
with the state of the art while being easy to implement, com-
putationally efficient, and extremely scalable. Given these
considerations, we refer to our architecture as Scalable
Graph Predictor (SGP).
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2 Preliminaries and Problem Definition

We consider discrete-time spatiotemporal graphs. In partic-
ular, given NV interlinked sensors, we indicate with :c% € Ré=
the d,-dimensional multivariate observation associated with
the i-th sensor at time-step ¢, with X; € RNV *d= the node at-
tribute matrix encompassing measurements graph-wise, and
with X, the sequence of T" measurements collected in
the time interval [¢,¢ + T) at each sensor. Similarly, we in-
dicate with U; € RN X9 the matrix containing exogenous
variables (e.g., weather information related to a monitored
area) associated with each sensor at the ¢-th time-step. Then,
we indicate additional, optional, static node attributes as
V € RNV*dv The relational information is encoded in a, po-
tentially dynamic, weighted adjacency matrix A; € RV*/,
We indicate with the tuple G; = (X3, U, V, A;) the graph
signal at the ¢-th time-step. Note that the number of sensors
in a network is here considered fixed only to ease the pre-
sentation; we only request nodes to be distinguishable across
time steps. The objective of spatiotemporal forecasting is to
predict the next H observations given a window of W past
measurements. In particular, we consider the family of fore-
casting models Fy(-) s.t.

Xiosn = Fo (Giowe) (1)

where 0 indicates the learnable parameters of the model and
X1+ m the H-step ahead point forecast.

Echo-State Networks Echo state networks (Jaeger 2001;
LukoSevicius and Jaeger 2009) are a class of randomized
architectures that consist of recurrent neural networks with
random connections that encode the history of input signals
into a high-dimensional state representation to be used as in-
put to a (trainable) readout layer. The main idea is to feed
an input signal into a high-dimensional, randomized, and
non-linear reservoir, whose internal state can be used as an
embedding of the input dynamics. An echo state network is
governed by the following state update equation:

h; =0 (W,x; + Wyh;_1 +b), 2

where x; indicates a generic input to the system, W, &
R4Xd= and W) € RI*dn are the random matrices
defining the connectivity pattern in the reservoir, b €
R is a randomly initialized bias, h; indicates the reser-
voir state, and o is a nonlinear activation function (usu-
ally tanh). If the random matrices are defined properly, the
reservoir will extract a rich pool of dynamics character-
izing the system underlying the input time series x; and,
thus, the reservoir states become informative embeddings of
x—71.+ (Lukosevicius and Jaeger 2009). Thanks to the non-
linearity of the reservoir, the embeddings are commonly pro-
cessed with a linear readout that is optimized with a least
squares procedure to perform classification, clustering, or
time series forecasting (Bianchi et al. 2020).

3 Scalable Spatiotemporal GNNs

This section presents our approach to building scalable GNN
architectures for time series forecasting. Our method is
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Figure 2: Overview of the SGP encoder. Input time series are fed into a randomized network with recurrent connections and
embedded into a hierarchical vector representation. A graph shift operator is used to propagate and aggregate spatial information
of different order which is then concatenated to obtain a final embedding.

based on a hybrid encoder-decoder architecture. The en-
coder first constructs representations of the time series ob-
served at each node by using a reservoir that accounts for
dynamics at different time scales. Representations are fur-
ther processed to account for spatial dynamics described by
the graph structure. In particular, as shown on the right-hand
side of Fig. 2, we use incremental powers of the graph adja-
cency matrix to propagate and aggregate information along
the spatial dimension. Each power of the propagation ma-
trix accounts for different scales of spatial dynamics. The
final embedding is then built by concatenating representa-
tions obtained w.r.t. each propagation step, thus resulting in
a rich encoding of both spatial and temporal features.

The encoder does not need any training and, once com-
puted, the embeddings can be uniformly sampled over time
and space when training a nonlinear readout to perform H-
step-ahead predictions. The straightforward choice for the
decoder (i.e., readout) is to map the encodings to the out-
puts (i.e., predictions) by using a linear transformation or a
standard MLP. However, to further enhance scalability, our
decoder exploits the structure of the embedding to reduce
the number of parameters and learn filters that are localized
in time and space. As we will discuss in Sec. 3.2, this is done
by learning separate weight matrices for each spatiotempo-
ral scale.

The following subsections describe in detail each compo-
nent of the architecture.

3.1 Spatiotemporal Encoder

We consider as temporal encoders deep echo state net-
works (DeepESN; Gallicchio, Micheli, and Pedrelli 2017)
with leaky integrator neurons (Jaeger et al. 2007). In partic-
ular, we consider networks where the signal associated with
each node is encoded by a stack of L randomized recurrent
layers s.t.

ht( ) [wt”ut] )
Ry © = tanh (WO R+ wiOn

+ ’Wi]’i,(l)7

+ b(”) .03

Ry = (1 -5l I=1,..

L
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where 7; € (0, 1] is a discount factor associated with [-
th layer, W" € R *dui-1 W), € R ¥dut | b € Rl
are random weight matrices, hi’(l) indicates the hidden state
of the system w.r.t. the i-th node at the [-th layer, and ||
indicates node-wise concatenation. As Eq. 3 shows, Deep-
ESNs are a hierarchical stack of reservoir layers that, e.g.,
by changing the discount factor at each layer, extract a rich
pool of multi-scale temporal dynamics (Gallicchio, Micheli,
and Pedrelli 2017)'. Given a DeepESN encoder, the input
is represented by the concatenation of the states from each

layer, i.e., we obtain node-level temporal encodings Ez for
each node 7 and time-step ¢ as

7 0,(0) 3%, (1 i,(L
Ry = (R OlRy @Ry ) )

We indicate as H, the encoding for the whole graph at time
t. The extraction of the node-level temporal embeddings is
depicted on the left-end side of Fig. 2, where, to simplify the
drawing, we depict an ESN with a single layer.

The next step is to propagate information along the spa-
tial dimension. As discussed at the beginning of the section,
we use powers of a graph shift operator A to propagate and
aggregate node representations at different scales. By using
a notation similar to Eq. 4, we obtain spatiotemporal encod-
ings as

0 x7 0 1 L
s\ =H, = ("= ... | H"),

k T alk— e e e L
s = As ) = (AH | A Y. | AT HD),
5= (SUSV- 188

where A indicates a generic graph shift operator matching
the sparsity pattern of the graph adjacency matrix. In prac-
tice, by indicating with D the graph degree matrix, we use
A = D~ Ain the case of a directed graph and the symmet-
rically normalized adjacency A=D"12AD~1/2 in the
undirected case. Furthermore, for directed graphs we op-
tionally increase the number of representations to 2K + 1

(&)

"We refer to (Gallicchio, Micheli, and Pedrelli 2018) for more
details on the properties and stability of DeepESNs.



to account for bidirectional dynamics, i.e., we repeat the en-
coding process w.r.t. the transpose adjacency matrix simi-
larly to (Li et al. 2018). Intuitively, each propagation step
A.S’t(kfl) propagates and aggregates — properly weighted —
features between nodes connected by paths of length &k in
the graph. As shown in Eq. 5, features corresponding to each
order k can be computed recursively with K sparse matrix-
matrix multiplications (Fig. 2). Alternatively, each matrix
AP can be precomputed and the computation of the different
blocks of matrix S; can be distributed in a parallel fashion
as suggested in Fig. 1. Even in the case of extremely large
graphs, features S; can be computed offline by exploiting
distributed computing as they do not need to be loaded on
the GPU memory.

3.2 Multi-Scale Decoder

The role of the decoder is that of selecting and weighing
from the pool of the (possibly redundant) features extracted
by the spatiotemporal encoder and mapping them to the de-
sired output. Representations .S; can be fed into an MLP
that performs node-wise predictions. Since the representa-
tions are large vectors, a naive implementation of the MLP
results in many parameters that hinder scalability. Therefore,
we replace the first MLP layer with a more efficient imple-
mentation that exploits the structure of the embeddings.

As we described in Sec. 3.1, S, is the concatenation of
the representations corresponding to different spatial propa-
gation steps which, in turn, are obtained from the concatena-
tion of multi-scale temporal features. To exploit this struc-
ture, we design the first layer of the decoder with a sparse
connectivity pattern to learn representations Z; s.t.

z =0 (A*H6| ... | A HP )  ©)

e 0
ok N , ™

o e"

o4 0 1 K
Z, = (2120)...12"), ®)

where @21) € R 4= are the learnable parameters and o
is an activation function. In practice, representations Z, can
be efficiently computed by exploiting grouped 1-d convo-
lutions (e.g., see Krizhevsky, Sutskever, and Hinton 2012)
to parallelize computation on GPUs. In particular, if we in-
dicate the 1-d grouped convolution operator with g groups
and kernel size r as *, 4 , and the collection of the decoder

parameters @;ﬂl) as © we can compute Z; as

Z,=0(©%,5), ©)

with ¢ = L(K + 1) in the case of undirected graphs and
g = L(2K + 1) for the directed case. Besides reducing the
number of parameters by a factor of L(K + 1), this architec-
ture localizes filters @ff) w.r.t. the dynamics of spatial order
k and temporal scale [. In fact, as highlighted in Eq. 6-8, rep-
resentation Z, can be seen as a concatenation of the results
of L(K + 1) graph convolutions of different order. Finally,
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the obtained representations are fed into an MLP that pre-
dicts the H-step-ahead observations as

Ty, g =MLP (Z},v"), (10)
where the static node-level attributes v can also be aug-
mented by concatenating a set of learnable parameters (i.e.,
a learnable positional encoding).

Training and sampling The main improvement intro-
duced by the proposed approach in terms of scalability
concerns the training procedure. Representations S; embed
both the temporal and spatial relationships among obser-
vations over the sensor network. Consequently, each sam-
ple 5y can be processed independently since no further spa-
tiotemporal information needs to be collected. This allows
for training the decoder with SGD by uniformly and inde-
pendently sampling mini-batches of data points s;. This is
the key property that makes the training procedure extremely
scalable and drastically reduces the lower bound on the com-
putational complexity required for the training w.r.t. stan-
dard spatiotemporal GNN architectures.

4 Related Works

Spatiotemporal GNNs are essentially based on the idea
of integrating message-passing modules in architectures to
process sequential data. Notably, Seo et al. (2018) and Li
et al. (2018) use message-passing to implement gates of
recurrent neural networks. Yu, Yin, and Zhu (2018) and
Wu et al. (2019, 2020) proposed architectures alternating
temporal and spatial convolutions. Wu et al. (2022) and
Marisca, Cini, and Alippi (2022), instead, exploit the at-
tention mechanism to propagate information along both
time and space. Modern architectures often combine some
type of relational inductive bias, with full Transformer-
like attention (Vaswani et al. 2017) along the spatial di-
mension (Zheng et al. 2020; Oreshkin et al. 2021; Sator-
ras, Rangapuram, and Januschowski 2022), which, however,
makes the computation scale quadratically with the number
of nodes. SGP falls within the category of time-then-graph
models, i.e., models where the temporal information is en-
coded before being propagated along the spatial dimension.
Gao and Ribeiro (2022) showed that such models can be
more expressive than architectures that alternate temporal
and spatial processing steps.

Research on scalable models for discrete-time dynamic
graphs has been relatively limited. Practitioners have mostly
relied on methods developed in the context of static
graphs which include node-centric, GraphSAGE-like, ap-
proaches (Hamilton, Ying, and Leskovec 2017) or sub-
graph sampling methods, such as ClusterGCN (Chiang et al.
2019) or GraphSAINT (Zeng et al. 2019). Wu et al. (2020);
Gandhi et al. (2021); Wu et al. (2021) are examples of
such approaches. Among scalable GNNs for static graphs,
SIGN (Frasca et al. 2020) is the approach most related to
our method. Like in our approach, SIGN performs spatial
propagation as a preprocessing step by using different shift
operators to aggregate across different graph neighborhoods,
which are then fed to an MLP. However, SIGN is limited
to static graphs and propagates raw node-level attributes.



METR-LA | PEMS-BAY

I5m  30m 60m | Average | I5m 30m 60m | Average

MAE MAE MAE ‘ MAE MSE MAPE ‘ MAE MAE MAE ‘ MAE MSE MAPE
LSTM 2.99+00 3.58+00 4.43+01]3.58+00 53.01+£13 1.19+05 [1.39+00 1.83+01 2.35+01]1.79+00 17.72+08 4.16+05
FC-LSTM |3.33+01 3.43+01 3.67+01|3.46+01 44.85+12 1.15+00 |2.22+01 2.25+01 2.34+.02|2.26+01 22.31+27 5.33+.04
DynGESN |3.27+00 3.99+00 5.00+.00|3.98+00 5.30+07 11.11+01|1.57+00 2.13+01 2.81+.02]2.09+01 18.43+.07 4.74+01
DCRNN 2.82+00 3.23+01 3.74+.01(3.20+00 41.57+22 8.88+05 [1.36+00 1.71+00 2.08+01]1.66+00 14.40+.15 3.76+.01
GWNet 2.72+01 3.10+£02 3.54+03|3.06+02 38.22+3 8.40+03 [1.31+00 1.64+£01 1.94+01|1.58+£00 13.12+14 3.58+02
FC-GGN |2.72+01 3.05+.01 3.44+.01|3.01+00 37.48+32 8.27+00 |1.32+00 1.63+01 1.89+.01|1.56+01 12.96+.11 3.51+.03
UG-GGN |2.72+00 3.10+00 3.54+.01|3.06+00 38.82+08 8.40+04 [1.33£00 1.67+t01 1.99+01|1.61+01 13.76+14 3.59+03
SGP |2.69+00 3.05+00 3.45+.00]3.00£00 36.70=+10 8.27:+02 |1.30+.00 1.60+.00 1.88+.00|1.54£00 12.43+.03 3.44+
Ablations
—No-Graph | 2.84+.00 3.26+00 3.74+00|3.22+00 44.55+05 9.20+01 |1.34+00 1.68+00 2.02+00|1.62+00 14.14+06 3.67+.01
—-FC-Dec. [2.76+01 3.13+01 3.52+.02(3.08+01 37.92+35 8.63+.11 [1.35+01 1.67+01 1.96+01|1.61+01 13.04+23 3.61+04
—-GC-Dec. (2.77+00 3.17+00 3.63+.00|3.12+00 40.67+06 8.74+01 |1.32+£00 1.65+00 1.97+00]|1.59+00 13.47+08 3.60+.01

Table 1: Results on benchmark traffic datasets (averaged over 3 independent runs). We report MAE, MSE, and MAPE averaged
over a one-hour (12 steps) forecasting horizon. We also show MAE for H € {15, 30,60} minutes time horizons. Bold numbers

are within a standard deviation from the best average.

Finally, similar to our work, DynGESN (Micheli and Tor-
torella 2022) processes dynamical graphs with a recurrent
randomized architecture. However, the architecture in Dyn-
GESN is completely randomized, while ours is hybrid as it
combines randomized components in the encoder with train-
able parameters in the decoder.

S Empirical Evaluation

We empirically evaluate our approach in 2 different scenar-
ios. In the first one, we compare the performance of our
forecasting architecture against state-of-the-art methods on
popular, medium-scale, traffic forecasting benchmarks. In
the second one, we evaluate the scalability of the proposed
method on large-scale spatiotemporal time series datasets by
considering two novel benchmarks for load forecasting and
PV production prediction. Further details on datasets, base-
lines, and experimental settings are detailed in the supple-
mental material>. We provide an efficient open-source im-
plementation of SGP together with the code to reproduce all
the experiments?.

Datasets In the first experiment we consider the METR-
LA and PEMS-BAY datasets (Li et al. 2018), which are
popular medium-sized benchmarks used in the spatiotempo-
ral forecasting literature. In particular, METR-LA consists
of traffic speed measurements taken every 5 minutes by 207
detectors in the Los Angeles County Highway, while PEMS-
BAY includes analogous observations recorded by 325 sen-
sors in the San Francisco Bay Area. We use the same prepro-
cessing steps of previous works to extract a graph and obtain
train, validation and test data splits (Wu et al. 2019). For the
second experiment, we introduce two larger-scale datasets
derived from energy analytics data. The first dataset contains

2See https://arxiv.org/abs/2209.06520.
*https://github.com/Graph-Machine- Learning- Group/sgp
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data coming from the Irish Commission for Energy Reg-
ulation Smart Metering Project (CER-E; Commission for
Energy Regulation 2016), which has been previously used
for benchmarking spatiotemporal imputation methods (Cini,
Marisca, and Alippi 2022); however, differently from previ-
ous works, we consider the full sensor network consisting
of 6435 smart meters measuring energy consumption ev-
ery 30 minutes at both residential and commercial/industrial
premises. The second large-scale dataset is obtained from
the synthetic PV-US* dataset (Hummon et al. 2012), con-
sisting of simulated energy production by 5016 PV farms
scattered over the United States given historic weather data
for the year 2006, aggregated in half an hour intervals. Since
the model does not have access to weather information, PV
production at neighboring farms is instrumental for obtain-
ing good predictions. Notably, CER-E and PV-US datasets
are at least an order of magnitude larger than the datasets
typically used for benchmarking spatiotemporal time series
forecasting models. Note that for both PV-US and CER-En
the (weighted) adjacency is obtained by applying a thresh-
olded Gaussian kernel to the similarity matrix obtained by
considering the geographic distance among the sensors and
the correntropy (Liu, Pokharel, and Principe 2007) among
the time series, respectively. We provide further details on
the datasets in the supplemental material.

Baselines We consider the following baselines:

1. LSTM: a single standard gated recurrent neural net-
work (Hochreiter and Schmidhuber 1997) trained by
sampling window of observations from each node-level
time series by disregarding the spatial information;

. FC-LSTM: an LSTM processing input sequences as if
they were a single high-dimensional multivariate time se-
ries;

*https://www.nrel.gov/grid/solar-power-data.html



PV-US | CER-En
Prediction error (MAE) | Resource utilization | Prediction error (MAE) | Resource utilization

30m 7h30m 11h | Batch/s Memory Batch| 30m 7h30m 11h | Batch/s Memory Batch

DCRNN |[1.394+.09 3.34+22 3.54+48| 2.04+01 9.63 GB 2 10.22+00 0.28+.00 0.29+00| 1.43+02 11.10GB 2

% GWNet |1.45+13 5.09+63 526+134| 2.01x02 11.64GB 2 [0.23+00 0.36x01 0.36+01| 2.41+03 8.39 GB 1

8' UG-GGN |1.33+08 2.94+.05s 3.12+a4 | 841+00 1146GB 5 [0.22+00 0.28+.00 0.28+.00| 821+08 11.70GB 4
- ‘ SGP ‘ 1.09+.01 3.14+21 3.16+.19 ‘ 116.58+874 2.21 GB 4096 ‘ 0.21+.00 0.30+00 0.31+.01 ‘ 117.32+836 2.21 GB 4096

DCRNN [1.59+17 4.10+27 4.93+60| 1.37+00 11.59GB 1 [0.23+00 0.29+00 0.29+.00| 1.13+01 11.10GB 1*

=|GWNet |1.65+23 6.93+58 7.93+.17 TJ7+00 11.35GB 2 [0.25+01 0.38+03 0.37+01| 1.26+x01 8.58 GB 1

£ |UG-GGN |1.61 406 3.25+04 3.0d+0s| 8.83+t10 11.14GB 1% [022+00 0.28+.00 0.29+.00| 8.77+10 11.14GB 1*
‘ SGP ‘ 1.09+.00 3.06+.11 3.13+.13 ‘ 118.64+835 2.21 GB 4096 ‘ 0.21+.00 0.30+.00 0.31+.01 ‘ 115.85+1.60 2.21 GB 4096

Table 2: Results on large-scale datasets (averaged over at least 3 independent runs). We report MAE over H -step-ahead predic-
tions, H = {30m, 7h30m, 11h}, together with timings and memory consumption.  indicates that subsampling was needed to
comply with the memory constraints. Bold numbers are within a standard deviation from the best average.

Dataset | #steps #nodes # edges sparsity
METR-LA 34272 207 1515 3.54%
PEMS-BAY 52116 325 2369 2.24%
PV-US (100nn) 8868 5016 417,199 1.66%
CER-En (100nn) | 8868 6435 639,369 1.54%
PV-US 8868 5016 3,710,008  14.75%
CER-En 8868 6435 3,186,369  7.69%

Table 3: Additional information on the considered datasets.

. DCRNN: a recurrent graph network presented in (Li
et al. 2018) — differently from the original model we use
a recurrent encoder followed by a linear readout (more
details in the appendix);

. Graph WaveNet (GWNet): a residual network that al-
ternates temporal and graph convolutions over the graph
that is given as input and an adjacency matrix that is
learned by the model (Wu et al. 2019);

. GatedGN (GGN): a state-of-the-art time-than-
graph (Gao and Ribeiro 2022) model introduced
in (Satorras, Rangapuram, and Januschowski 2022) for
which we consider two different configurations. The
first one (FC) uses attention over the full node set to
perform spatial propagation, while the second one (UG)
constrains the attention to edges of the underlying graph.

. DynGESN: the echo state network for dynamical graphs
proposed in (Micheli and Tortorella 2022).

For all the baselines, we use, whenever possible, the config-
uration found in the original papers or in their open-source
implementation; in all the other cases we tune hyperparam-
eters on the holdout validation set.

Experimental setup For the traffic datasets, we replicate
the setup used in previous works. In particular, each model
is trained to predict the 12-step-ahead observations. In SGP,
the input time series are first encoded by the spatiotemporal
encoder, and then the decoder is trained by sampling mini-
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batches along the temporal dimension, i.e., by sampling B
sequences G;_yy . of observations.

For the large-scale datasets, we focus on assessing the
scalability of the different architectures rather than maximiz-
ing forecasting accuracy. In particular, for both datasets, we
consider the first 6 months of data (4 for months for training,
1 month for validation, and 1 month for testing). The models
are trained to predict the next {00:30,07:30,11:00} hours.
We repeat the experiment in two different settings to test the
scalability of the different architectures w.r.t. the number of
edges. In the first setting, we extract the graph by sparsify-
ing the graph adjacency matrix imposing a maximum of 100
neighbors for each node, while, in the second case, we do
not constrain the density of the adjacency matrix. Tab. 3 re-
ports some details for the considered benchmarks. To assess
the performance in terms of scalability, we fix a maximum
GPU memory budget of 12 GB and select the batch size ac-
cordingly; if a batch size of 1 does not fit in 12 GB, we uni-
formly subsample edges of the graph to reduce the memory
consumption. Differently from the other baselines, in SGP
we first preprocess the data to obtain spatiotemporal embed-
dings and then train the decoder by uniformly sampling the
node representations. We train each model for 1 hour, then
restore the weights corresponding to the minimum training
error and evaluate the forecasts on the test set. The choice
of not running validation at each epoch was dictated by the
fact that for some of the baselines running a validation epoch
would take a large portion of the 1 hour budget.

The time required to encode the datasets with SGP’s en-
coder ranges from tens of seconds to ~ 4 minutes on an
AMD EPYC 7513 processor with 32 parallel processes. To
ensure reproducibility, the time constraint is not imposed as
a hard time out; conversely, we measure the time required for
the update step of each model on an NVIDIA RTX A5000
GPU and fix the maximum number of updates accordingly.
For SGP, the time required to compute node embeddings
was considered as part of the training time and the number
of updates was appropriately reduced to make the compari-
son fair. For all the baselines, we keep the same architecture
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Figure 3: Training curves on PV-US. The plot shows the av-
erage + the standard deviation of 3 independent runs. The
plotted curves are smoothed with a running average of 8
steps.

used in the traffic experiment. For SGP we use the same hy-
perparameters for the decoder, but we reduce the dimension
of the embedding (the value of K) so that a preprocessed
dataset can fit in a maximum of ~ 80 GB of storage. To ac-
count for the different temporal scales, we increase the win-
dow size for all baselines and increase the number of layers
in the ESN (while keeping the final size of H; similar). Ad-
ditional details are provided in the supplementary material.

5.1 Results

Results for the traffic benchmarks are reported in Tab. 1;
while the outcomes of the scalability experiments are shown
in Tab. 2. We consider mean absolute error (MAE), mean
squared error (MSE), and mean absolute percentage error
(MAPE) as evaluation metrics.

Traffic experiment The purpose of the first experiment is
to demonstrate that the proposed method achieves perfor-
mance comparable to that of the state of the art. In this re-
gard, results in Tab. 1 show that in all the considered sce-
narios SGP is always among the best-performing forecast-
ing architectures. The full-attention baseline is the strongest
competitor but, however, has time and memory complexi-
ties that scale quadratically with the number of nodes. Re-
garding the other baselines, DCRNN underperforms com-
pared to the other spatiotemporal GNN architectures. Dyn-
GESN, the fully randomized architecture, despite being very
fast to train, obtains reasonable performance in short-range
predictions but falls short over longer forecasting horizons
in the considered scenarios. In light of these results, it is
worth commenting on the efficiency of SGP compared to
the baselines. Approaches like DCRNN and Graph Wavenet,
perform graph convolutions whose time and space of com-
plexity is O(LTE), being E the number of edges, L the
number of layers (8 in Graph Wavenet), and 7" the time steps.
Such complexity is completely amortized by the preprocess-
ing step in our architecture. Similarly, GatedGN, while being
architecturally much simpler, propagates spatial information
by relying on the attention mechanism that is known to scale
poorly with the dimensionality of the problem. The next ex-

7224

perimental setting shines a light on these shortcomings.

The bottom of Tab. 1 reports results for the ablation of key
elements of the proposed architecture: No-Graph indicates
that the embeddings are built without the spatial propagation
step; FC-Dec. consider the case where the structure of the
embedding is ignored in the readout and the sparse weight
matrix in Eq. 7 is replaced by a fully-connected one; GC-
Dec. indicates that the spatial propagation is limited to the
neighbors of order K = 1 and, thus, the decoder behaves
similarly to a single-layer graph convolutional network. Re-
sults clearly show the optimality of the proposed architec-
tural design.

Large-scale experiment Tab. 2 reports the results of the
scalability experiment where we considered only the spa-
tiotemporal GNNs trained by gradient descent. We excluded
the full-attention baseline (FC-GatedGN) as its O(NN?) com-
plexity prevented scaling to the larger datasets; however, we
considered the UG version where attention is restrained to
each node’s neighborhood. There are several comments that
need to be made here. First of all, batch size has a different
meaning for our model and the other baselines. In our case,
each sample corresponds to a single spatiotemporal (prepro-
cessed) observation; for the other methods, a sample cor-
responds to a window of observations G;_y . where edges
of the graph are eventually subsampled if the memory con-
straints could not be met otherwise. In both cases, the loss
is computed w.r.t. all the observations in the batch. The re-
sults clearly show that SGP can be trained efficiently also in
resource-constrained settings, with contained GPU memory
usage. In particular, the update frequency (batch/s) is up to
2 order of magnitude higher. Notably, resource utilization at
training time remains constant (by construction) in the two
considered scenarios, while almost all the baselines require
edge subsampling in order to meet the resource constraints.
Fig. 3 shows learning curves for the PV-US dataset, further
highlighting the vastly superior efficiency, scalability, and
learning stability of SGP. Finally, results concerning fore-
casting accuracy show that performance is competitive with
the state of the art in all the considered scenarios.

6 Remarks and Conclusion

We proposed SGP, a scalable architecture for graph-based
spatiotemporal time series forecasting. Our approach com-
petes with the state of the art in popular medium-sized
benchmark datasets, while greatly improving scalability in
large sensor networks. While in SGP sampling largely re-
duces GPU memory usage compared to the other methods,
the entire processed sequence can take up a large portion
of system memory, depending on the size of the reservoir.
Nevertheless, the preprocessing can be distributed, the pre-
processed data stored on disk and loaded in batches during
training, as customary for large datasets. We believe that
SGP constitutes an important stepping stone for future re-
search on scalable spatiotemporal forecasting and has the
potential of being widely adopted by practitioners. Future
work can explore a tighter integration of the spatial and tem-
poral encoding components and assess performance on even
larger benchmarks.
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