
On the Complexity of PAC Learning in Hilbert Spaces

Sergei Chubanov
Bosch Center for Artificial Intelligence, Germany

sergei.chubanov@de.bosch.com

Abstract

We study the problem of binary classification from the point
of view of learning convex polyhedra in Hilbert spaces, to
which one can reduce any binary classification problem. The
problem of learning convex polyhedra in finite-dimensional
spaces is sufficiently well studied in the literature. We gener-
alize this problem to that in a Hilbert space and propose an
algorithm for learning a polyhedron which correctly classi-
fies at least 1 − ε of the distribution, with a probability of at
least 1 − δ, where ε and δ are given parameters. Also, as a
corollary, we improve some previous bounds for polyhedral
classification in finite-dimensional spaces.

Introduction
In general, the classification problem we are dealing with
can be formulated as follows: Find a binary classifier which
consistently classifies the training data such that the num-
ber of elementary operations involved in the description of
the classifier is as small as possible. The intuition behind
restricting the complexity of the classifier is based on the
well-known Occam’s razor principle; it has been proved (see
e.g. (Blumer et al. 1987, 1989)) that there is a relationship
between the complexity of a classifier and its prediction ac-
curacy, in the sense of the probably approximately correct
(PAC) classification.

We study this problem from the point of view of poly-
hedral classification, where the concept class to be learned
consists of polyhedra in a given inner-product space. Poly-
hedral separability is always realizable by choosing a suit-
able kernel; i.e., our results are universally applicable to the
general case of binary classification.

One should note that, unless P = NP, we cannot hope
for a polynomial-time method for finding a polyhedral clas-
sifier defined by the minimum possible number of halfspaces
because even the problem of polyhedral separation in finite-
dimensional spaces by means of two halfspaces is NP-hard
(Megiddo 1996).

Our results and related work. We propose an algorithm
for both proper and improper learning of polyhedral con-
cepts in inner-product spaces that can be finite-dimensional
Euclidean spaces or infinite-dimensional Hilbert spaces. In

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the context of our paper, proper learning means learning a
polyhedron defined by t halfspaces (t-polyhedron), under
the assumption that there exists a t-polyhedron consistently
classifying the entire instance space. Similarly to the pre-
vious publications with which we compare our results, we
assume that the halfspaces defining a hypothetical ground-
truth polyhedron do not contain any instance of the instance
space in their γ-margins, for some γ > 0.

Consistent polyhedral separation is a well-known prob-
lem which has been proved to be intractable even in the case
t = 2, as we have already mentioned. Despite to the NP-
hardness of exact separation with a given number of inequal-
ities in finite-dimensional spaces, there are different non-
trivial results concerning exponential bounds on the running
time of learning algorithms; see (Gottlieb et al. 2018). Our
contribution to this line of research is the following: First,
we propose a new algorithm allowing to improve existing
bounds on the running time of PAC learning algorithms for
the finite-dimensional case. Second, our algorithm is appli-
cable to infinite-dimensional Hilbert spaces, in which case
it guarantees similar complexity bounds in terms of a model
of computation including inner products as elementary op-
erations.

To the best of our knowledge, the current tightest bounds
for both proper and improper learning have been obtained
in (Gottlieb et al. 2018). There, the authors proposed algo-
rithms for both proper and improper learning of polyhedral
concepts in finite-dimensional spaces. A follow-up work re-
lated to (Gottlieb et al. 2018) appeared recently in (Gottlieb
et al. 2022) with some corrections of the previous work. For
a more exact comparison, we give a brief summary of their
performance bounds compared to ours:
• (Gottlieb et al. 2022):

– Running time for proper classification:

mO(tγ−2 log(γ−1)),

where m is the sample complexity.
– Running time for improper classification:

mO(γ−2 log(γ−1)),

– Sample complexity:

m = O(Dε−1 log2(ε−1) + log(δ−1)),

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7202

where D = (γ−2t log t).

– Applicability to Hilbert spaces: Although this is not
mentioned in (Gottlieb et al. 2022), their approach
seems to be applicable to Hilbert spaces. However,
it uses the Johnson-Lindenstrauss (JL) transform and,
therefore, may need some additional analysis to be for-
mulated in terms of a Hilbert space. At the same time,
our method does not use the JL transform.

• Ours (with respect to a finite-dimensional space):

– Running time for proper classification: mO(tγ−2).

– Running time for improper classification:

O
(
d ·m · (tγ−2)4γ

−2
)
.

– Sample complexity m:
* Proper learning: O(dt log t), where d is the dimen-

sion of the space.
* Improper learning: O(ε−1D + ε−1 log(δ−1)) where
D = O((γ−2 + log t)(tγ−2)4γ

−2

).

For proper classification, we save log(γ−1) in the power of
the exponent, compared to (Gottlieb et al. 2022). For im-
proper classification, the running time of our algorithm is
substantially better, but the sample complexity is exponen-
tial in γ−2.

An improper learning algorithm for finite-dimensional
spaces with the running time depending exponentially on
the dimension of the space and without a margin assump-
tion, but with additional assumptions about the probability
distribution, was presented in (Vempala 2010) and (Klivans,
O’Donnell, and Servedio 2008).

Support vector machines (Bennett and Bredensteiner
2000; Mavroforakis and Theodoridis 2006) as large margin
classifiers are certainly also related to our work. In particu-
lar, in (Bennett and Bredensteiner 2000) a relevant geomet-
ric interpretation of SVM has been proposed. Beyond the
kernel methods like SVM, research on large-margin classi-
fication directly in Hilbert (Rossi and Villa 2006) and Ba-
nach (Der and Lee 2007) spaces was initiated within the area
of functional data analysis.

The problem of polyhedral classification in Euclidean
spaces is known under various names, e.g., learning
convex polytopes (Gottlieb et al. 2018), linear decision
lists (Jeroslow 1975; Anthony 2004; Mangasarian 1968),
neural lists (Long and Servedio 2006), or threshold func-
tions (Anthony and Ratsaby 2012). Many of the methods for
learning such structures (see (Anthony 2004) for overview)
can be viewed as cutting-plane methods where inconsisten-
cies are resolved by sequentially adding and reorganizing
new halfspaces or hyperplanes at each iteration. These meth-
ods have several variations including a multisurface method
proposed in (Mangasarian 1968; Mangasarian, Setiono, and
Wolberg 1990), where at each stage two parallel hyperplanes
located close to each other are identified, such that the points
not enclosed between them have the same classification.

In (Manwani and Sastry 2010), the authors propose an
approach for learning polyhedral classifiers based on logis-
tic function. Paper (Kantchelian et al. 2014) proposes an

algorithm for learning polyhedral concepts using stochastic
gradient descent. The work (Anthony 2004) analyses gen-
eralization properties of techniques based on the use of lin-
ear decision lists and presents a bound on the generaliza-
tion error in a standard probabilistic learning framework.
The authors of (Chattopadhyay et al. 2019) have recently
demonstrated a lower-bound technique for linear decision
lists, which has been used to prove an explicit lower bound.

Preliminaries
In a Hilbert space H, a halfspace can be represented as
{z ∈ H : ⟨h, z⟩+ d ≥ 0} for some h ∈ H and d ∈ R. Here,
⟨·, ·⟩ is the inner product. Since it will always be known
from the context what spaces the respective elements be-
long to, we will not use an additional notation to specify
the space with which the respective inner product is associ-
ated. For instance, we will write ⟨(h1, d1), (h2, d2)⟩ for the
inner product of elements (hi, di), i = 1, 2, of the Cartesian
product H × R, where hi ∈ H and di ∈ R, meaning that
⟨(h1, d1), (h2, d2)⟩ = ⟨h1, h2⟩+ d1d2.

Large margins and polyhedra. Regarding large-margin
polyhedral classification, we will partially rely on the ter-
minology introduced in some previous works on polyhedral
classification in Euclidean spaces. The outer γ-margin of a
halfspace H is the set of points not in H whose distance to
its boundary ∂H is not greater than γ. The inner γ-margin
of H is the set of points in H whose distance to ∂H is not
greater than γ. The γ-margin of H is the union of its inner
and outer γ-margin. We denote by Hγ the union of H and
its γ-margin.

We say that two sets X− and X+ are linearly γ-separable
if there is a halfspace H such that H∩X− = ∅ and X+ ⊂ H
and the γ-margin of H does not contain any point of X− ∪
X+. For short, we will equivalently say that X is linearly
γ-separable.

A polyhedron F is the intersection ∩αHα of a finite col-
lection of some halfspaces Hα. Let F γ be the polyhedron
∩αH

γ
α. The γ-margin of F is F γ \ F. If for some set X

polyhedron F contains X+ and does not intersect with X−,
and at the same time the γ-margin of F does not intersect
with the whole set X, we say that F γ-separates X− from
X+. A t-polyhedron is a polyhedron being an intersection
of t halfspaces.

Instance space. The instance space X ⊂ H is assumed to
be contained in a unit ball centered at the origin 0 of H. That
is, ∥x∥ ≤ 1 for all x ∈ X . We assume that there are two class
labels −1 and 1 and that the instance space X is equipped
with a function y : X −→ {−1, 1} with the property that
there exists ρ > 0 such that

∀x, x′ ∈ X : y(x) ̸= y(x′) =⇒ ∥x− x′∥ ≥ ρ. (1)

This condition tells that two instances of different classes
cannot be arbitrarily close to each other. That is, the distance
between X− and X+ is nonzero, where X− and X+ are the
respective classes.

Further, when considering a subset X of X , we will de-
note by X− the set of all negatives, i.e., those x ∈ X with
y(x) = −1 and by X+ the set of all positives in X, i.e.,
those with y(x) = 1.

7203

Machine-learning framework. When talking about
probability distributions, we assume that our space is a cer-
tain reproducing kernel Hilbert space of a sufficiently well-
behaved kernel over an underlying Euclidean space such that
our instance space in the Hilbert space is an image of a com-
pact subset Ω of that Euclidean space. Drawing a sample
(a finite subset of instances in X) means drawing a sample
from a fixed probability distribution defined on Ω and then
considering its image in the Hilbert space.

We say that a subset H of H correctly classifies x ∈ X if
y(x) = 1 implies that x ∈ H and y(x) = −1 implies that
x ̸∈ H. In this role, we often refer to H as a classifier.

To estimate the prediction accuracy of polyhedral clas-
sifiers constructed by our algorithms, we use the classical
framework of probably approximately correct (PAC) learn-
ing based on VC dimension; 1−ε and 1−δ are the prediction
accuracy and the confidence estimate, respectively, where ε
and δ are given values in (0, 1/2). For the finite-dimensional
case, the VC dimension of linear concepts is bounded by the
dimension d of the space. The VC dimension of the family
of polyhedra defined by t halfspaces is bounded by d ·t log t,
which is a well-known fact. The infinite-dimensional case is
more difficult, although we can also provide a similar es-
timate where in place of d we use O(γ−2) under the as-
sumption that there is a t-polyhedron that γ-separates the
instance space. However, our algorithmic approach, though
working for the finite-dimensional case, does not guaran-
tee that the consistent polyhedron learned by the algorithm
belongs to this concept class. To overcome this difficulty,
we use discretization and an additional assumption that the
Hilbert space in question is a reproducing kernel Hilbert
space (RKHS) with a sufficiently well-behaved kernel. The
discretization allows us to learn from a finite concept class.

Realizability. Polyhedral separability of the image of any
finite-dimensional data with binary labels is always realiz-
able in a suitable RKHS. E.g., we can choose an RBF kernel
K or a suitable function K of a given kernel K ′ to guarantee
that K(x, x) = 1,K(x, x′) < 1, for all x, x′ ∈ X , x ̸= x′.
Then we can prove that the image of our original X in the
RKHS is γ-separable by a t-polyhedron, for some t and γ,
because of (1); see (Chubanov 2023) for details.

Model of computation. The elementary operations are
computations of inner products and norms in the vector
spaces involved, and arithmetic operations.

Linear Separation in Hilbert Spaces
In this section, we consider the following system P (X) of
strict linear inequalities associated with a subset X of X :

P (X) : y(x)(⟨x, h⟩+ d) > 0, ∀x ∈ X.

where we are looking for (h, d) ∈ H × R. A pair (h, d)
defines a halfspace

H = {z ∈ H : ⟨z, h⟩+ d ≥ 0},
which can serve as a linear classifier; If x ∈ H, it assigns
label 1 to x, otherwise, label −1 is assigned. If (h, d) is fea-
sible for P (X), then H assigns correct labels for all x ∈ X.

To solve P (X), we use Algorithm 1, which is a modifi-
cation of von Neumann’s algorithm for linear programming

Algorithm 1: Linear-programming (LP) algorithm
Input: System P (X), state S compatible with X, and γ.
Output: State S′.
S′ := S.
while S′ = ∅ or (hS′ , dS′) is not feasible for P (X) and
∥(hS′ , dS′)∥ ≥ γ/2 do

if S′ ̸= ∅ then
(Progress-contributing step)
(h, d) := (hS′ , dS′)
Find x ∈ X with y(x)(⟨x, hS′⟩+ dS′) ≤ 0.
Let (h′, d′) be the orthogonal projection of (0, 0)
onto [(h, d), y(x)(x, 1)] and S′ be defined by
(h′, d′).

else
Pick an arbitrary x ∈ X.
(h′, d′) := y(x)(x, 1)
Let S′ be defined by (h′, d′).

end if
if ∥(hS′ , dS′)∥ < γ/2 then

Report that X is not linearly γ-separable.
end if

end while
Return S′.

communicated in (Dantzig 1992). As input, it takes X and a
state S defined as follows:

Definition 1 A state S is an empty state (denoted as ∅) or
a pair (hS , dS), where hS ∈ H and dS ∈ R, defining a
halfspace which we denote by HS . For S = ∅, we set H∅ =
H. That is, H∅ is the entire space.

A state S ̸= ∅ is compatible with X if (hS , dS) is a con-
vex combination of a finite subset of {y(x)(x, 1) : x ∈ X}.
Given a state S compatible with X, the LP algorithm re-
turns another state S′ compatible with X. The final state S′

reached by the LP algorithm with the input (S,X, γ) will be
denoted by LP(S,X). Here we omit γ because it is always
the same.

The algorithm works in the product space H × R where
the inner product is defined as ⟨(h1, d1), (h2, d2)⟩ =
⟨h1, h2⟩H + d1d2. Here, ⟨·, ·⟩H refers to the inner product
in the original space H. The norm in the product space is
induced by its inner product.

In the while-loop of the LP algorithm there is a step which
we will call a progress-contributing step. This name is mo-
tivated by the fact that, whenever the LP algorithm reaches
such a step, it updates (h′, d′) so that ∥(h′, d′)∥−2 increases
by a guaranteed value. Since ∥(h′, d′)∥−2 is upper bounded
by some fixed value depending on γ, this allows us to es-
timate the number of iterations of the LP algorithm (i.e.,
the number of iterations of its while-loop); here, we adapt
the analysis of the progress of the algorithm proposed in
(Chubanov 2015) for the finite-dimensional case. The re-
spective statements are formulated in the following lemma:

Lemma 1 The following statements are true with respect to
the LP algorithm:

(a) At a progress-contributing step, the inverse squared

7204

Figure 1: Iteration of the LP algorithm.

length of (h, d) increases by at least that of y(x)(x, 1) :
∥(h′, d′)∥−2 ≥ ∥(h, d)∥−2 + ∥y(x)(x, 1)∥−2. (2)

(b) The following property is invariant during the course of
Algorithm 1, provided that X is linearly γ-separable:

∥(h′, d′)∥ ≥ γ/2 (3)
(c) If Algorithm 1 reports that X is not linearly γ-separable,

this decision is correct.
(d) The number of iterations performed by the LP algorithm

is bounded by O(γ−2).
(e) If X is linearly γ-separable, then the algorithm returns a

state S′ such that the associated halfpsace HS′ correctly
separates X− and X+.

Proof. (a) This follows from the reciprocal Pythagorean the-
orem, which holds also for Hilbert spaces. Since x corre-
sponds to a violated inequality of P (X), we have

⟨(h, d), y(x)(x, 1)⟩ = y(x)(⟨x, h⟩+ d) ≤ 0.

Therefore, the triangle with vertices (h, d), (0, 0), and
y(x)(x, 1) contains a right triangle with the right angle
at (0, 0) and whose the other two vertices are y(x)(x, 1)
(one of the vertices of the previous triangle) and some
(h′′, d′′) ∈ [(h, d), y(x)(x, 1)], i.e., a point on the side op-
posite to (0, 0), of the previous triangle. Both triangles share
the same height, which is the segment joining (0, 0) and
its orthogonal projection (h′, d′) on [(h, d), y(x)(x, 1)]. See
Figure 1 for an illustration.

(b) Since the projection onto a line segment is a convex
combination of the endpoints of the segment, at each itera-
tion (h′, d′) belongs to the convex hull of {y(x)(x, 1) : x ∈
X}, which means that there exists c : X −→ [0, 1] such that

(h′, d′) =

(∑
x∈X

c(x)y(x)x,
∑
x∈X

c(x)y(x)

)
,
∑
x∈X

c(x) = 1.

Since X is linearly γ-separable (by the assumption of (b))
and is contained in the unit ball centered at 0, there exists a
solution (h∗, d∗) of P (X) with ∥h∗∥ = 1 and |d∗| ≤ 1 such
that y(x)(⟨x, h∗⟩+ d∗) ≥ γ for all x ∈ X. It follows that

γ =
∑
x∈X

c(x)γ ≤
∑
x∈X

c(x)y(x)(⟨x, h∗⟩+ d∗)

= ⟨(h′, d′), (h∗, d∗)⟩ ≤ ∥(h′, d′)∥∥(h∗, d∗)∥.
Since ∥(h∗, d∗)∥ ≤ 2 and (h∗, d∗) is feasible, and ∥x∥ ≤ 1
for all x ∈ X , this implies (3).

(c) follows from (b) and (d) follows from (a) and (b).
(e) In this case, the algorithm stops only when a feasible

solution of P (X) is found.

Polyhedral Separation in Hilbert Spaces
From the theory of support vector machines, it follows that
one can always find a suitable kernel such that the under-
lying data are linearly separable when represented in the
respective RKHS. For this purpose, we can take, e.g., a
radial-basis-function kernel. Such kernels are called univer-
sal kernels. So the case of linear separable classes is gen-
eral enough. However, in many situations we would prefer a
given kernel or it may be computationally infeasible to find
one leading to linear separation, in a given class of kernels.
This motivates us to study the case when X− and X+ can
be separated by a polyhedron. Another important aspect of
polyhedral separation is the mentioned realizability in a suit-
able RKHS by an explicit choice of a kernel being a function
of a given kernel.

Given a set X ⊂ X , the major difficulty of the polyhedral
classification problem is related to a correct representation
of X− as a union of t sets X−

i , i ∈ [t], in the sense that
there exists a γ-separating polyhedron defined by some half-
spaces Hi, i ∈ [t], such that X−

i ∩Hi = ∅. If we knew such
a representation, we would solve the problem by simply ap-
plying Algorithm 1 t times. Unfortunately, the NP-hardness
of proper learning even in the case t = 2 suggests that no
polynomial algorithm exists for finding a correct representa-
tion of this type, unless P = NP.

At this stage we need to fix a hypothetical ”ground-truth”
polyhedron which we will need for theoretical purposes.
That is, let us fix a γ-separating t-polyhedron F ∗ which
correctly classifies the entire instance space X . Polyhedron
F ∗ contains X+ and is not intersected with X−. Let F ∗ be
defined by halfspaces Hi, i ∈ [t]. Then X+ ⊂ Hi for all
i ∈ [t]. On the other hand, X− can be represented as a union
of some of its subsets X−

i , i ∈ [t], such that Hi ∩ X−
i = ∅

for each i ∈ [t]. Each set X+ ∪ X−
i is linearly γ-separated

by the respective halfspace Hi.
From the above construction, only the union (where the

subsets may overlap with each other)

X− = X1 ∪ . . . ∪ Xt

is assumed to be fixed. We will use this notation through-
out this section. (The notation for halfspaces Hi is not fixed
and may further have a different meaning depending on the
context.)

There can be many ground-truth polyhedra with the above
properties; we only assume that at least one exists. It should
be stressed again that we need this hypothetical representa-
tion only for the theoretical analysis of the algorithm.

Definition 2 A set A is called i-correct if A− ⊂ X−
i . (Note

that A can be i-correct for different i.)

Further, by a t-partition of a set X̃ we mean a tuple
(X̃1, . . . , X̃t) of its subsets whose union is X̃. In this defi-
nition, a set in the tuple is allowed to be empty.

Let Fi, i ∈ [t], be some families of sets in H. Consider
the following condition:

Condition 1 There exists a t-partition (X̃1, . . . , X̃t) of X̃
such that for each i ∈ [t] with X̃i ̸= ∅ there exists Hi ∈ Fi

such that Hi ∩ X̃i = ∅.

7205

Algorithm 2: Separation algorithm
Input: X, t and γ.
Output: A consistent t-polyhedron if there exists a γ-
separating t-polyhedron.
A := {X+}
S(X+, 0) := ∅ (initial state at the root of the search tree)
while no polyhedron found do
k := k + 1
Find out if there are A1, . . . , At′ ∈ A with t′ ≤ t such
that F = ∩p∈[t′]HS(Ap,k−1) correctly classifies X.
if there is such F then

Return F
end if
(Branching step)
Set S(A, k) := S(A, k − 1) for all A ∈ A.
for all (A, x) ∈ A×X− do

if x ∈ HS(A,k−1) then
S(A ∪ {x}, k) := LP(S(A, k − 1), A ∪ {x})
if the LP algorithm does not report that A ∪ {x}
is not linearly γ-separable then

Add A ∪ {x} to A.
end if

end if
end for

end while

Relatively to polyhedral separation, Condition 1 has the
following implication, when each element of Fi is a halfs-
pace or the entire space H: If Condition 1 is satisfied, then
there exist sets Hi ∈ Fi, i ∈ [t], whose intersection does not
contain any of the sets X̃i. In the context of polyhedral sepa-
ration of a given sample X, we will be interested in the case
where each of the sets of the families Fi contains X+ and
X̃ is the set X− of negative instances. Then, if Condition 1
is satisfied, the respective intersection ∩i∈[t]Hi yields a t′-
polyhedron, with t′ ≤ t, consistently partitioning X. (We
have t′ ≤ t because Hi can be H according to our construc-
tion).

At each of its iterations, our separation algorithm (Algo-
rithm 2) tries to construct a consistent t′-polyhedron with
t′ ≤ t. In the case of success, it returns the polyhedron
found in this way, otherwise Condition 1 is not satisfied for
some suitably chosen families Fi (implicit in the algorithm,
but used later for the theoretical analysis) and the algorithm
continues. The logic of the algorithm is motivated by the
following lemma which holds when Condition 1 is not sat-
isfied:

Lemma 2 If Condition 1 is not satisfied for X̃, then for each
t-partition (X̃1, . . . , X̃t) of X̃ there exists j ∈ [t] with X̃j ̸=
∅ such that

∀H ∈ Fj : H ∩ X̃j ̸= ∅. (4)

Proof. The lemma is obtained directly by negating Condi-
tion 1.

For the analysis of Algorithm 2, we introduce the notion
of the search tree. Each level of the search tree corresponds
to an iteration of the main loop of the algorithm, where a

certain set family A is considered. The family A at the end
of the kth iteration corresponds to the set of nodes forming
the kth level of the search tree. Each node of the search tree
is encoded by a pair (A, k) where A is contained in A at
the end of iteration k, i.e., k is the level, of the search tree,
containing (A, k). The nodes of the neighboring levels can
be connected by arcs. There is an arc from (A, k − 1) to
(A′, k) if and only if A = A′ or A′ = A+ {x} for some x.

When the algorithm decides whether a new node of the
form (A∪{x}, k) is to be added to the search tree, based on
a node (A, k − 1) at the previous level, it solves the respec-
tive problem P (A∪{x}). Then, (A∪{x}, k) appears in the
search tree if the LP algorithm finds a halfspace consistently
partitioning A ∪ {x} (i.e., if the LP algorithm does not re-
port that A∪{x} is not linearly γ-separable). The algorithm
stores the states S(A, k) reached by the LP algorithm at the
respective nodes of the search tree. Informally, our algorithm
works as follows:
• Given a sample X, the algorithm tries to construct a sepa-

rating polyhedron defined by no more than t inequalities.
To ”assemble” such a polyhedron, it tries to find a suit-
able combination of halfspaces associated with the states
stored at the current level.

• At each iteration, it expands the search tree by adding a
new level. The nodes of the previous level stay in the new
one. At the branching step, for each node (A, k − 1), the
algorithm generates a new node (A ∪ {x}, k), provided
that x is not separated by the halfspace HS(A,k−1) asso-
ciated with the parent node (A, k−1). The LP algorithm
is then applied to the problem P (A ∪ {x}) starting with
the state S(A, k−1) that has been previously reached for
the parent node. Since HS(A,k−1) does not consistently
separate x, it follows that the LP algorithm makes at least
one progress-contributing step. We will use this property
in the analysis of the running time of the algorithm.

• The search tree has the property that the state associated
with a node (A, k) is compatible with the states associ-
ated with the other nodes of the subtree rooted at (A, k).
This makes it possible to trace the progress of the LP al-
gorithm along each path of the search tree. For this pur-
pose, we introduce the notion of a progress-contributing
arc, which is one corresponding to a transition via the LP
algorithm from a state to another one with at least one
progress-contributing step of the LP algorithm.

An example of a search tree constructed by Algorithm 2
is illustrated in Figure 2.

Recall that each nonempty state S consists of an associ-
ated pair (hS , dS) defining a halfspace HS . When reaching
another state S′ ̸= S from S, the LP algorithm makes at least
one progress-contributing step that increases ∥(hS , dS)∥−2

by a certain guaranteed value (1/4) following from inequal-
ity (2) of Lemma 1. So it is natural to introduce the following
potential function π defined at each node of the search tree:

π(A, k) :=

{
∥(hS(A,k), dS(A,k))∥−2, if S(A, k) ̸= ∅,
0, otherwise.

We call an arc ((A, k − 1), (A′, k)) progress-contributing if
π(A′, k) ≥ π(A, k − 1) + 1/4.

7206

Figure 2: Search tree: solid arcs are progress-contributing;
for each parent node, if more than one arc during the branch-
ing step, then one of them is not progress-contributing and
the others should be progress-contributing.

This inequality takes place if and only if the LP algo-
rithm makes at least one progress-contributing step when
starting with S(A, k − 1) to solve the problem P (A′). If
A′ = A, then S(A′, k) := S(A, k − 1). Therefore, for
each arc ((A, k − 1), (A′, k)) of the search tree, π(A′, k) ≥
π(A, k− 1). That is, π is non-decreasing along each path of
the search tree.

On the other hand, the LP algorithm implies that

π(A, k) ≤ 4γ−2.

Therefore, the number of progress-contributing arcs on each
path of the search tree is bounded by O(γ−2).

Lemma 3 At the end of iteration k, |A| is bounded by

((m+ 1)k)O(γ−2), (5)

where m = |X|.
Proof. Since each path of the search tree contains no more
than O(γ−2) progress-contributing arcs, it follows that each
path from the root to the kth level of the tree can be uniquely
encoded by a k-vector whose components take integer val-
ues from 0 to m and whose number of nonzero components
is bounded by O(γ−2). The (5) is an upper bound on the
total number of such k-vectors. At the same time, this is an
upper bound on the number of nodes at the kth level of the
search tree, i.e., on |A| at the end of the kth iteration.

Now we come back to the notion of i-correctness (Defini-
tion 2) and extend it to the notion of i-correctness of a path:
Further, we say that a path in the search tree is i-correct if A
is i-correct for each node (A, k) on this path.

Lemma 4 If (A, k) is a node of the search tree and A is
i-correct, then the path connecting the root and (A, k) is i-
correct.

Proof. The path from the root has the form

(A0, 0) = (X+, 0), (A1, 1), . . . , (Ak, k) = (A, k).

Observe that Al ⊆ Al+1, l = 0, . . . , k − 1. This means that
if some Al is not i-correct then Ak is not i-correct because
Al is contained in Ak, which contradicts the assumption that
A is i-correct.

Theorem 1 If there is a consistent γ-separating t-
polyhedron, then the running time of Algorithm 2 is bounded
by

mO(tγ−2⌈logm(γ−1)⌉). (6)
Proof. Consider iteration k. Let X̃ = X−. Consider a t-
partition (X̃1, . . . , X̃t) of X̃ such that each nonempty X̃i

is i-correct. For each i ∈ [t] with X̃i ̸= ∅, let Fi be the
family of all halfspaces associated with states S(A, k − 1)

corresponding to i-correct sets A in A. For each i with X̃i =
∅, let Fi = {H}.

Let Ai denote the family of all i-correct sets in A. Note
that the family Ai is not empty for each i ∈ [t] because it at
least contains X+.

Assume that the algorithm does not find a consistent t′-
polyhedron with t′ ≤ t at the current iteration. Then no
consistent t-polyhedron can be assembled from the fami-
lies Fi, i ∈ [t]. It follows that Condition 1 is not satisfied.
Then Lemma 2 implies that there exists j ∈ [t] such that
X̃j ∩HS(A,k−1) ̸= ∅ for all j-correct sets A ∈ A. This im-
plies that, for each A ∈ Aj , the current iteration k should
construct a progress-contributing arc connecting (A, k − 1)

with (A′, k) where A′ = A ∪ {x}, x ∈ X̃j . That is, A′ is
also j-correct. Denote this j by jk, where k is the number of
the current iteration.

Now let us consider the sequence of indices j1, j2, . . .
over all iterations of the algorithm. Consider the subse-
quence of indices equal to some r ∈ [t] : jk1 = r, jk2 =
r, Here, k1, k2, . . . are the respective levels of the search
tree. For each ks, the previous level ks − 1 in the search tree
contains a node (A, ks − 1) where A is r-correct. Lemma 4
implies that the path from the root to (A, ks−1) is r-correct.
Our construction implies that each r-correct path from the
root to level ks − 1 is connected with level ks by a set of
arcs where at least one arc is progress-contributing and has
the form ((A, ks − 1), (A′, ks)) where A′ is r-correct, for
each s. It follows that there exists an r-correct path, over
all levels of the search tree, which contains at least as many
progress-contributing arcs as the number of elements of the
subsequence.

Assume that the number of iterations is infinite or exceeds
4tγ−2. Then, for some l, the subsequence of indices equal
to l contains more than 4γ−2 elements. This implies a con-
tradiction because in this case the search tree should contain
an l-correct path with more than 4γ−2 progress-contributing
arcs. Therefore, the number of iterations is not greater than
4tγ−2. When the algorithm stops, it returns a consistent t′-
polyhedron with t′ ≤ t because this is the only condition
when it can stop.

The number of elementary operations needed for the LP
algorithm whenever it is called from Algorithm 2 is bounded
by O(mγ−2) where the sample size m = |X| appears be-
cause, at each of its iterations, the LP algorithm needs to find
a violated constraint of a problem of the form P (A ∪ {x}),
where (A ∪ {x}) ⊆ X. At each iteration, the time needed
to construct F or make sure that none exists is bounded
by O(|A|t). Since the number of iterations of Algorithm
2 is bounded by O(tγ−2), Lemma 3 implies that |A| is
bounded by (5) with k replaced by tγ−2. Replacing γ−2 by

7207

Algorithm 3: Improper-separation algorithm
Input: X and γ.
Output: A polyhedron consistent with X if there exists a
γ-separating polyhedron.
A := {X+}
S(X+, 0) := ∅ (initial state at the root of the search tree)
while no polyhedron found do
k := k + 1
F := ∩A∈AHS(A,k−1)

if F correctly separates X− and X+ then
Return F

end if
Pick an arbitrary x ∈ X incorrectly classified by F.
(x ∈ X− because X+ ⊂ F.
(Branching step)
Set S(A, k) := S(A, k − 1) for all A ∈ A.
for all A ∈ A do
S(A ∪ {x}, k) := LP(S(A, k − 1), A ∪ {x})
if the LP algorithm does not report that A ∪ {x} is
not linearly γ-separable then

Add A ∪ {x} to A.
end if

end for
end while

mlogm(γ−2) and rearranging the terms, we get the complex-
ity bound (6).

Now we formulate another algorithm based on similar
ideas. In contrast to Algorithm 2, it constructs F as the inter-
section of all halfspaces available at the current iteration. If
F is not consistent with the given sample X, then it chooses
an arbitrary element x of X to which F assigns a false label.
Since all the halfspaces contain X+, it follows that x ∈ X−.
Since x ∈ F, it follows that x ∈ HS(A,k−1) for all A ∈ A
at the beginning of the current iteration. This observation al-
lows us to prove that the previous bound on the number of
iterations of Algorithm 2 is also valid for Algorithm 3.

Theorem 2 If there exists a γ-separating t-polyhedron cor-
rectly classifying the instance space, then Algorithm 3 finds
a consistent polyhedron in time

O
(
m · (2tγ−2)4γ

−2
)

(7)

The number of halfspaces defining the polyhedron is
bounded by

O((8tγ−2)4γ
−2

). (8)

Proof. The number of iterations is bounded by the same
value as that for Algorithm 2. This can be proved by the
same argument as that we have used in the proof of Theorem
1. The only difference is how polyhedron F is constructed
and what conclusions are made if no polyhedron F is found;
in Algorithm 3, we simply check if the polyhedron F, built
as the intersection of halfspaces associated with all states
reached at the previous level, gives us a consistent polyhe-
dron. If it doesn’t, then each arc ((A, k−1), (A∪{x}, k)) is
progress-contributing because x ∈ X− is contained in each

of the halfspaces HS(A,k−1), which means that the LP algo-
rithm makes at least one progress-contributing step during
the transition from S(A, k − 1) to S(A ∪ {x}, k). Now we
can derive an upper bound 4tγ−2 on the number of iterations
in the way identical to that used in the proof of Theorem 1.
To estimate |A| at the end of each iteration, we use (5) where
k should be replaced by 4tγ−2 and m + 1 by 2 because
the search tree constructed by Algorithm 3 is binary, which
means that the paths can be encoded by binary vectors.

Remark. If none consistent γ-separating t-polyhedron ex-
ists, then the number of iterations of both algorithms will be
infinite. If such a polyhedron exists, the number of iterations
of both algorithms is bounded by 4tγ−2. So we can add a
step verifying whether k ≤ 4tγ−2. If this is not the case,
then no consistent γ-separating t-polyhedron exists.

PAC Polyhedral Classification
If H is finite-dimensional, the VC dimension of the
t-polyhedron returned by Algorithm 2 is bounded by
O(dt log t). To obtain the VC dimension of the polyhedron
returned by Algorithm 3, the t in the above estimate should
be replaced by the respective bound (8). Thus, we come to
the following corollary:
Corollary 1 Let H be a space of dimension d < ∞. Then
the following statements are true:
• Algorithm 2 constructs a PAC polyhedron in time
mO(tγ−2) from a concept class whose VC dimension D
is bounded by O(dt log t).

• Algorithm 3 constructs a PAC polyhedron in time (7)
from a concept class with VC dimension D bounded by
O((γ−2 + log t)(tγ−2)4γ

−2

).

The above PAC learning is then possible with a sample
complexity of O(ε−1(D + log(δ−1)), where D is the re-
spective VC dimension.

For the infinite-dimensional case, we prove the following:
Corollary 2 Let H be an RKHS with a continuous kernel K.
Let X be the image of a compact set Ω in Rs under the fea-
ture map φ of the RKHS. Both Algorithm 2 and Algorithm 3
can be implemented so as to produce PAC polyhedra under
the same assumptions as before. The sample complexity is
polyhomially bounded in the dimension s of the space con-
taining Ω, γ−1, and t.

Proof. The main idea is to use the well-known discretization
trick which consists in replacing Ω by a finite set Ω# with
a sufficiently small step size. Then the algorithms are mod-
ified by replacing elements x of H occurring in the course
of the algorithms by their approximations from the image
φ(Ω#). Of course, φ is not computed explicitly because we
only need K to compute inner products. For more details,
see (Chubanov 2023).

Summary
We propose an algorithm for PAC learning in Hilbert spaces,
such as RKHS’s. The algorithm learns polyhedral concepts,
which makes it universally applicable because a suitable ker-
nel can always be explicitly chosen so that polyhedral con-
cepts become realizable in the respective RKHS.

7208

References
Anthony, M. 2004. Generalization Error Bounds for Thresh-
old Decision Lists. Journal of Machine Learning Research,
5: 189–217.
Anthony, M.; and Ratsaby, J. 2012. Robust cutpoints in the
logical analysis of numerical data. Discrete Applied Mathe-
matics, 160(4-5): 355–364.
Bennett, K. P.; and Bredensteiner, E. J. 2000. Duality and
Geometry in SVM Classifiers. In ICML, 57–64.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. K. 1987. Occam’s Razor. Inf. Process. Lett., 24(6): 377–
380.
Blumer, A.; Ehrenfeucht, A.; Haussler, D.; and Warmuth,
M. K. 1989. Learnability and the Vapnik-Chervonenkis di-
mension. J. ACM, 36(4): 929–965.
Chattopadhyay, A.; Mahajan, M.; Mande, N. S.; and
Saurabh, N. 2019. Lower Bounds for Linear Decision Lists.
CoRR, abs/1901.05911.
Chubanov, S. 2015. A polynomial projection algorithm for
linear feasibility problems. Mathematical Programming,
153: 687–713.
Chubanov, S. 2023. On the complexity of PAC learning in
Hilbert spaces. arXiv:2303.02047.
Dantzig, G. 1992. An ϵ-precise feasible solution to a linear
program with a convexity constraint in 1/ϵ2 iterations inde-
pendent of problem size. Tech. rep. SOL 92-5.
Der, R.; and Lee, D. 2007. Large-Margin Classification in
Banach Spaces. In Proceedings of the 11th International
Conference on Artificial Intelligence and Statistics, AISTATS
2007, 91–98.
Gottlieb, L.; Kaufman, E.; Kontorovich, A.; and Nivasch,
G. 2018. Learning convex polytopes with margin. In Ad-
vances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems
2018, 5711–5721.
Gottlieb, L.-A.; Kaufman, E.; Kontorovich, A.; and Nivasch,
G. 2022. Learning Convex Polyhedra With Margin. IEEE
Transactions on Information Theory, 68: 1976–1984.
Jeroslow, R. G. 1975. On defining sets of vertices of the hy-
percube by linear inequalities. Discrete Mathematics, 11(2):
119–124.
Kantchelian, A.; Tschantz, M. C.; Huang, L.; Bartlett, P. L.;
Joseph, A. D.; and Tygar, J. D. 2014. Large-Margin Convex
Polytope Machine. In Proceedings of the Neural Informa-
tion Processing Systems conference, 2014, 3248–3256.
Klivans, A. R.; O’Donnell, R.; and Servedio, R. A. 2008.
Learning Geometric Concepts via Gaussian Surface Area.
In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, 541–550.
Long, P. M.; and Servedio, R. A. 2006. Attribute-efficient
learning of decision lists and linear threshold functions un-
der unconcentrated distributions. In Proceedings of the 20th
Annual Conference on Neural Information Processing Sys-
tems, 2006, 921–928.

Mangasarian, O.; Setiono, R.; and Wolberg, W. H. 1990. Pat-
tern Recognition Via Linear Programming: Theory And Ap-
plication To Medical Diagnosis.
Mangasarian, O. L. 1968. Multisurface method of pattern
separation. IEEE Trans. Information Theory, 14(6): 801–
807.
Manwani, N.; and Sastry, P. S. 2010. Learning Polyhedral
Classifiers Using Logistic Function. In ACML, volume 13
of JMLR Proceedings, 17–30. JMLR.org.
Mavroforakis, M. E.; and Theodoridis, S. 2006. A geometric
approach to Support Vector Machine (SVM) classification.
IEEE Trans. Neural Networks, 17(3): 671–682.
Megiddo, N. 1996. On the complexity of polyhedral sepa-
rability. Technical Report RJ 5252, IBM Almaden Research
Center.
Rossi, F.; and Villa, N. 2006. Support vector machine for
functional data classification. Neurocomputing, 69(7-9):
730–742.
Vempala, S. S. 2010. A Random-Sampling-Based Algo-
rithm for Learning Intersections of Halfspaces. J. ACM,
57(6).

7209

