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Abstract
Doubly stochastic matrix plays an essential role in several
areas such as statistics and machine learning. In this paper
we consider the optimal approximation of a square matrix
in the set of doubly stochastic matrices. A structured BFGS
method is proposed to solve the dual of the primal problem.
The resulting algorithm builds curvature information into the
diagonal components of the true Hessian, so that it takes only
additional linear cost to obtain the descent direction based
on the gradient information without having to explicitly store
the inverse Hessian approximation. The cost is substantially
fewer than quadratic complexity of the classical BFGS
algorithm. Meanwhile, a Newton-based line search method
is presented for finding a suitable step size, which in practice
uses the existing knowledge and takes only one iteration. The
global convergence of our algorithm is established. We verify
the advantages of our approach on both synthetic data and
real data sets. The experimental results demonstrate that our
algorithm outperforms the state-of-the-art solvers and enjoys
outstanding scalability.

Introduction
A square matrix X is called a doubly stochastic matrix if
it is nonnegative and the sums of entries in each row and
each column are equal to one respectively (Gagniuc 2017).
Denote the set of n × n doubly stochastic matrices by Dn
which is also known as Birkhoff polytope, i.e.,

Dn =
{
X ∈ Rn×n : X ≥ 0, Xe = e, X>e = e

}
where X ≥ 0 means each entry of X is nonnegative and e
is a column vector of ones. In this paper, we focus on the
matrix optimization problem

min
X

1

2
‖X −A‖2F , s.t. X ∈ Dn (1)

which approximate the data matrix A ∈ Rn×n by a dou-
bly stochastic matrix in the Frobenius norm. The problem
(1) belongs to the general class of matrix nearness problem
(Higham 1989), i.e., a problem of projecting a given matrix
onto the set of matrices that satisfy a certain property.

Doubly stochastic matrices have recently received much
attention in several areas such as statistics, machine learn-
ing and computer visions; see (Sinkhorn 1964; Zass and
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Shashua 2006; Yan, Shen, and Wang 2014; Wang, Nie,
and Huang 2016; Linderman et al. 2018; Birdal and Sim-
sekli 2019; Dallakyan and Pourahmadi 2021) and references
therein. Since stochastic matrix are often used to describe
the transitions of a Markov chain, the connection between
doubly stochastic matrix and the transition probability has
been discussed in (Seneta 2006; Boyd, Diaconis, and Xiao
2004; Boyd et al. 2009). Moreover, data clustering as one of
the most fundamental and important topics in machine learn-
ing (Hastie et al. 2009), has been extensively studied for a
long time. Recently, graph-based clustering methods which
reveal the pairwise relationship with an affinity matrix have
attracted great attention. These works (Yang, Corander, and
Oja 2016; Wang, Nie, and Huang 2016; Wang et al. 2022;
Ding et al. 2022) use the doubly stochastic matrix to nor-
malize the affinity matrix and improve the clustering perfor-
mance. Meanwhile, it is worth noting that in the attention-
based deep neural networks, if the attention matrix is doubly
stochastic, the model accuracy could achieve a significant
improvement in computer vision and natural language pro-
cessing tasks (Tay et al. 2020; Sander et al. 2022).

Since classical Birkhoff-von Neumann theorem (Birkhoff
1946; Von Neumann 1953) shows that the set Dn coincides
with the convex hull of the n× n permutation matrices, and
furthermore that the vertices of Dn are precisely the permu-
tation matrices, the polytope Dn has been frequently intro-
duced as a convex relaxation to the combinatorial problem
involving permutations (Fogel et al. 2013; Lim and Wright
2014), such as Bayesian networks (Dallakyan and Pourah-
madi 2021), graph matching problem (Zaslavskiy, Bach,
and Vert 2009) and quadratic assignment problem (Lawler
1963), etc.

In general, tackling the relaxation problem requires com-
puting the nearest doubly stochastic matrix. Therefore, it is
crucial to develop a fast solver for the problem (1), which
determines whether the problem involving doubly stochas-
tic matrix can be solved efficiently.

Related Works
It is straightforward to verify that the set of Dn is convex.
This implies that the primal problem (1) is a special case
of convex constrained quadratic optimization, which can be
solved using standard methods such as interior-point solvers
(Nocedal and Wright 2006). However, these methods scale
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poorly with the size of the problem. For instance, attempting
to use the state-of-the-art interior-point based commercial
solver Gurobi (Gurobi Optimization, LLC 2022) to tackle
the problem (1) will result in out-of-memory issues even for
medium-sized problems. Meanwhile, the problem (1) can be
viewed as a standard projection onto the intersection of two
convex sets, where one is generated by two equation con-
straints and the other is the nonnegative orthant. In (Zass and
Shashua 2006), the problem (1) with the positive semidefi-
nite inputA has been studied based on the alternating projec-
tion method (Escalante and Raydan 2011). In this case, each
projection sub-problem can be solved efficiently in closed
form. Nevertheless, as shown in (Rontsis and Goulart 2020)
classical alternating projection algorithm always converges
to a feasible point, but does not necessarily converge to the
optimal solution of the problem (1).

Another approach to tackle (1) is to solve its dual prob-
lem, and then recover the projection using the relationship
between the primal and dual. Recently, Hager and Zhang
(Hager and Zhang 2016) developed an algorithm for the
problem (1) based on the dual active set strategy (Hager
1992). The algorithm implementation called PPROJ was
also developed and the experimental results showed that
PPROJ is robust, accurate and fast. However, it should be
noted that PPROJ is not tailored for the problem (1), and
so it cannot take full advantage of the specific structure.
As the derived dual of the problem (1) is a convex opti-
mization problem with a smooth objective function, it can
be solved by employing the first-order methods. Jiang, Liu,
and Wen (2016) proposed a fast dual gradient method using
the Barzilai-Borwein (BB) step size (Barzilai and Borwein
1988) to handle the dual problem. Their method is named
dualBB which is often able to find a highly accurate solu-
tion faster than the commercial solver MOSEK (ApS 2019).
Very recently, Li, Sun, and Toh (2020) proposed an elabo-
rated semismooth Newton method to solve the dual prob-
lem. Although the numerical results in (Li, Sun, and Toh
2020) show the semismooth Newton method outperformed
its counterparts, including PPROJ and Gurobi etc., by a sig-
nificant margin, it is worth noting that a regularized param-
eter has to be embedded in the procedure for finding the
Newton direction due to the singularity of the Hessian ma-
trix. Meanwhile, Li, Sun, and Toh (2020) did not show the
comparison results between their Newton method and the
light-weighted dualBB.

Our Method
In our work, instead of rectifying the Hessian to be positive
definite by regularizing it with a unit matrix, we propose an
efficient quasi-Newton algorithm to deal with the dual prob-
lem. The key idea is to use a cheap Hessian approximation
which is built at each step based on the partial information
of the true Hessian. Even though Newton’s method enjoys
a fast rate of convergence theoretically, our algorithm takes
much lower cost at each iteration and thereby is more effi-
cient in practice. The main contributions of our work are as
follows:
• A structured BFGS algorithm is proposed for the matrix

nearness problem (1). By embedding curvature informa-

tion into the diagonal components of the Hessian, our
method requires the comparable cost to the first-order
gradient methods. This strategy results in a highly effi-
cient solver to the problem (1).
• To alleviate the pressure of computational cost, we intro-

duce a line search procedure based on Newton’s method
to choose an appropriate step size. In general, we do not
need to calculate the objective function value, but use the
existing gradient information to obtain the step size.
• Global convergence is established, and the experimental

results demonstrate that our structured BFGS algorithm
outperforms both dualBB and the semismooth Newton
method in terms of running time.

The rest of this paper is organized as follows. We first
derive the dual problem of the nearest doubly stochastic ma-
trix problem. Then we present our structured BFGS method
and establish its global convergence. Finally, we evaluate the
performance of our algorithm and report the numerical re-
sults on both synthetic and real-world data.

Problem Reformulation
As the primal problem (1) has n2 variables and n2+2n con-
straints, it is difficult to scale to large-scale problem when
tackling the original formulation directly. In this section, we
will derive the dual problem which is an unconstrained opti-
mization problem and has significantly fewer variables.

Introducing Lagrange multipliers α and β for the equality
constraints in the problem (1), while keeping the nonneg-
ative constraint X ≥ 0 intact, the Lagrange dual function
takes the form as

min
X≥0

L(X;α, β) =
1

2
‖X −A‖2F + α> (Xe− e)

+ β>
(
X>e− e

)
Applying the zero gradient condition with respect to the
(i, j)th variable Xi,j , and combining the KKT conditions
with the nonnegative constraint on Xi,j , we obtain the pri-
mal optimal

Xi,j = max (0, Ai,j − αi − βj) .

Substituting the expression Xi,j in the Lagrange function
and omitting the constant term, we can write the dual opti-
mization problem as

min
α,β
F(α, β) = 1

2
‖P+(A− αe> − eβ>)‖2F + 〈α+ β, e〉

(2)

where P+(·) denote the projection onto the nonnegative or-
thant.

Since the objective function in the unconstrained opti-
mization problem (2) is convex and smooth, any vector
x = [α> β>]> satisfying the first-order optimality condi-
tion

∇F(x) = 0 (3)
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is a global minimum of F . The gradient vector ∇F(x) can
be assembled from the partial derivatives with respect to the
variables α and β according to the following formula

∂F
∂α

= −P+

(
A− αe> − eβ>

)
e+ e,

∂F
∂β

= −P+

(
A− αe> − eβ>

)>
e+ e.

(4)

We note that the gradient ∇F(x) is Lipschitz continuous,
that is, there exists a constant L > 0 such that

‖∇F(x1)−∇F(x2)‖ ≤ L‖x1 − x2‖,

for all x1, x2 ∈ R2n.
While the dual variable x in (3) is of dimension 2n, it

requires O(n2) operations to compute the gradient at each
iteration as all elements in matrix A should be accessed.
Once we obtain the gradient information ∇F(x), with a
suitable line search strategy, gradient-based methods can be
employed to solve the dual problem (2). The iteration is
specified in the form

xk+1 = xk + λkdk, (5)

where the positive scalar λk is called the step size and dk is
the search direction. For instance, to ensure the convergence
of the classical BFGS algorithm, it is necessary to choose a
step size λk that satisfies the Wolfe conditions, i.e.,

F(xk + λkdk) ≤ F(xk) + c1λk∇F>k dk,
∇F(xk + λkdk)

>dk ≥ c2∇F>k dk,
(6)

with 0 < c1 < c2 < 1. It can be seen that function and
gradient evaluations are required in line search rules (6) for
the problem (2), while each evaluation is performed at the
cost of O(n2) operations.

Recently, a nonmontone line search with the BB step size
called dualBB is adopted in the dual gradient method (Jiang,
Liu, and Wen 2016). DualBB gives rise to efficient numer-
ical results to tackle the problem (2) and performs a line
search at a cost ofO(n) operations per iteration. However, it
inaccurately estimates the Hessian by the step size times the
identity matrix, which make the nonmonotonic behaviour
of the function value. On the other hand, Newton’s method
(Li, Sun, and Toh 2020) is arguably elaborate which enjoys
fast convergence rate under appropriate conditions. In the
problem (2), it happens that the Hessian is positive semidef-
inite at each iteration. In order to make the Newton’s method
well-defined, the Hessian must be rectified by adding a regu-
larized parameter, which will inevitably undermine the the-
oretical convergence rate. Meanwhile, Newton’s method is
confronted with heavy computational burden per iteration to
solve a linear system and find the Newton direction. In the
next section we will propose a structured BFGS algorithm
which exploits the curvature information based on the diag-
onal of the Hessian to solve the dual problem (2) at low cost
in computation and storage.

Structured BFGS Procedure for the Dual
Problem

Our Proposed Algorithm
The descent direction of the classic BFGS algorithm has the
form

dk = −Hk∇Fk, (7)

where the positive definite matrix Hk contains the in-
verse Hessian approximation. The fundamental idea of our
method is to update Hk with the diagonal component of the
true Hessian and the observed information when computing
the gradient.

It can be shown that the objective function F(α, β) is not
twice differentiable as its gradient∇F(α, β) is not differen-
tiable at {(α, β) | Ai,j − αi − βj = 0 for some i and j}. As
indicated in (Li, Sun, and Toh 2020) that∇F(α, β) is semis-
mooth (Mifflin 1977; Sun and Sun 2002) under the mild as-
sumption, and we obtain

∂2F(α, β) =
(

diag(Ie) I
I> diag(I>e)

)
,

where ∂2F(α, β) denotes the generalized Hessian of F at
(α, β), i.e., the Clarke subdifferential of ∇F at (α, β); ma-
trix I ∈ Rn×n is given by

Ii,j =
{
1, if Ai,j − αi − βj > 0,

0, otherwise,

for all i, j = 1, · · · , n.
It should be noted that the singularity of ∂2F(α, β) pre-

vents the direct employment of Newton’s method (Li, Sun,
and Toh 2020). Thus we propose a structured BFGS method
to circumvent this issue. We extract the diagonal compo-
nents from the generalized Hessian ∂2F(α, β), and define
a diagonal matrix Λ as

Λ =
[
diag

(
max

(
1,
[
e>I> e>I

]>))]−1
, (8)

where the max is applied in the component-wise sense and
we set the diagonal entries greater than zero to avoid the sin-
gularity. From the definition (8) we can immediately obtain
the following property about the positive matrix Λ.
Proposition 1 Let the positive diagonal matrix Λ as given
by (8). Then each diagonal element

1

n
≤ Λii ≤ 1, i = 1, · · · , n.

Now we are ready to derive our scheme. As BFGS method
is the most popular quasi-Newton algorithm (Nocedal and
Wright 2006), we follow the BFGS procedure to build cur-
vature information into the diagonal matrix Λ so that it ap-
proaches the inverse Hessian. To determine the updated ap-
proximation Hk+1 at iteration k, we first define

sk = xk+1 − xk, yk = ∇Fk+1 −∇Fk,
and then solve the following problem

min
H
‖H − Λk‖

s.t. H = H>, Hyk = sk.
(9)
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The unique solution Hk+1 to (9) is given by

Hk+1 =
(
I − ρksky>k

)
Λk
(
I − ρkyks>k

)
+ ρksks

>
k , (10)

where ρk = 1/(s>k yk) and I denotes the identity matrix.
The identity matrix is the square diagonal matrix with ones
on the main diagonal and zeros elsewhere. The following
proposition reveals a good property of the updated Hessian
approximation Hk+1.
Proposition 2 Suppose that Λk is positive definite. Then the
update formula (10) is well defined and Hk+1 is positive
definite if y>k sk > 0.

Proof: First, we have ρk > 0 if y>k sk > 0. Thus, (10) is well
defined. Given any nonzero vector z, we obtain that

z>Hk+1z = ẑ>Λkẑ + ρk(z
>sk)

2,

where ẑ = z − ρkyks>k z.
In the case of z>sk = 0, we have ẑ = z and z>Hk+1z ≥

‖z‖2/n > 0. Otherwise, the conclusion holds immediately
as two positive terms on the right-hand size.

Note that y>k sk > 0 is called the curvature condition in
standard BFGS algorithm, and it is guaranteed if the step
size λk satisfies the Wolfe conditions (6).

The above proposition shows that Hk+1 inherits the pos-
itive definiteness of Λk. Thus, dk in (7) is a descent direc-
tion at every iteration which forms the basis of our method
and guarantees the objective function in (2) can be reduced
along this direction. Moreover, in order to ensure the conver-
gence of our algorithm, it is necessary to verify the angle θk
between the descent direction dk and the negative gradient
−∇Fk stays uniformly bounded away from 90◦, that is,

cos θk =
−∇F>k dk
‖∇Fk‖‖dk‖

≥ 1/n. (11)

Our procedure is specified as Algorithm 1. The standard
BFGS algorithm and our method both combine two suc-
cessive iterates xk, xk+1 together with the corresponding
gradients ∇Fk,∇Fk+1, but they yield curvature informa-
tion in different ways. While the former uses the existing
knowledge to update the current Hessian approximation, our
method embeds the most recently observed information into
the diagonal matrix Λk of the true Hessian. It should be
noted that the approximation of the Hessian is usually dense
in the standard BFGS procedure, even when the true Hessian
is sparse. Thus, the BFGS algorithm requires at least O(n2)
arithmetic operations and O(n2) storage demands per itera-
tion. By contrast, our method allows approximate steps to be
calculated at lower cost in computation and storage as Λk in
(10) is a diagonal matrix. Since our method does not require
explicit knowledge of the inverse Hessian approximation, it
requires only O(n) operations to compute the search direc-
tion dk and update the matrix Hk+1, which is significantly
fewer than the cost O(n2) to evaluate F and ∇F .

Newton-based Line Search
A simple and popular strategy, i.e., backtracking line search,
is usually employed to find the step size. It begins with an
initial guess of step size, e.g., λ = 1.0, and decreases the

Algorithm 1: Structured BFGS Algorithm for the Dual Prob-
lem (2)

Require: Given starting point x0 = [α>0 β>0 ]>, set conver-
gence tolerance ε > 0, and k = 0

1: Compute the gradient ∇F(x0) and inverse diagonal
Hessian information Λ0 of D(α0, β0)

2: Set the inverse Hessian approximation H0 = Λ0

3: while ‖∇Fk‖ > ε do
4: Compute search direction dk = −Hk∇Fk
5: if cos θk < 1/n then
6: dk = −ΛkFk
7: end if
8: Choose the step size λk to satisfy the Wolfe condi-

tions (6) from Algorithm 2
9: Update xk+1 = xk + λkdk

10: Compute the gradient ∇Fk+1and the diagonal infor-
mation Λk+1 in the true Hessian

11: Set sk = xk+1 − xk, yk = ∇Fk+1 −∇Fk
12: Compute the inverse Hessian approximationHk+1 by

means of (10)
13: Set k = k + 1
14: end while
Ensure: xk

value repeatedly until some user-specified condition is sat-
isfied. In this procedure, additional evaluations of the objec-
tive functionF are required and each evaluation takesO(n2)
operations. In this subsection, we describe a Newton-based
line search for finding an appropriate step size to satisfy the
Wolfe conditions (6).

For updating αk to αk+1 and βk to βk+1 in the problem
(2), we need to solve the following univariate sub-problem

min
λ>0
D(λ) := 〈α+ λdα + β + λdβ , e〉+

1

2

∥∥∥P+

(
A− αe> − eβ> − λdαe> − λedβ>

)∥∥∥2
F
,

(12)

where dα denotes the first half of search direction d, and dβ
denotes the second half of d; we drop the subscript k from
the quantities αk, βk and dk for simplicity.

Although D(λ) is not twice differentiable, it is a semis-
mooth funtion. We can compute its first derivative and the
generalized second derivative as follows

D′(λ) = 〈dα + dβ , e〉+∑
(i,j)∈I(λ)

(
Ai,j − αi − βj − λdαi − λd

β
j

)(
−dαi − d

β
j

)
,

D′′(λ) =
∑

(i,j)∈I(λ)

(
dαi + dβj

)2
,

where

I(λ) = {(i, j) :Ai,j − αi − βj − λdαi − λd
β
j > 0,

i, j = 1, · · · , n}.

The Newton method to solve the problem (12) updates λ
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Algorithm 2: Newton-based Line Search Method for Solv-
ing the Sub-problem (12)

Require: Given the search direction d, and set the initial
step size λ = 0

1: while True do
2: Compute the derivatives D′(λ) and D′′(λ)
3: Update the step size λ via (13)
4: if λ satisfies the Wolfe conditions (6) then
5: break;
6: end if
7: end while

Ensure: λ

by the following way

λ← λ− D
′(λ)

D′′(λ)
(13)

until λ satisfies the Wolfe conditions (6). Algorithm 2 lists
the details of our line search procedure. Using the fact that
‖∇F‖ is greater than zero before Algorithm 1 terminates,
we can conclude that d 6= 0 and D′′(λ) > 0, which means
our Newton iteration (13) is well-defined.

While our line search procedure is an exact method that
can terminate in finite steps, solving the sub-problem (12)
exactly is too expensive and we need just an inexact solution.
Meanwhile, with the initialization of z to zero in (13), the
line search procedure in practice only takes one iteration to
satisfy the conditions. In particular,

λ← −D
′(0)

D′′(0)
= −∇F(xk)

>dk
D′′(0)

.

One advantage in this situation is that there is no need to
evaluate objective function value and gradient, we can use
the existing knowledge to get the step size which takes
O(2n+ nnz(I)) operations.

Convergence Analysis
In this section we present some convergence results of our
structured BFGS algorithm which is proposed in Algorithm
1. It is well known that the convergence of an optimization
algorithm cannot hold independently of the choice of dk.
We first show that our search directions are never too close
to orthogonality with the gradient.
Proposition 3 Let θk as the angle between the descent di-
rection dk and the negative gradient ∇F(xk). Then for all
the steps k we have cos θk ≥ 1/n > 0.
Proof: When it occurs that cos θk < 1/n in line 5 of Algo-
rithm 1, the search direction is replaced by dk = −Λk∇Fk.
Thus we obtain

cos θk =
∇F>k Λk∇Fk
‖∇Fk‖‖Λk∇Fk‖

≥ 1

n
.

The last inequality comes from Proposition 1.
The above proposition tells that cos θk is sufficiently pos-

itive which means dk is a definite descent direction. Before
establishing the global convergence of our Algorithm 1, we
introduce the following Zoutendijk’s result.

Lemma 4 (Theorem 3.2, (Nocedal and Wright 2006))
Suppose thatF is bounded below and thatF is continuously
differentiable. Assume also the gradient ∇F is Lipschitz
continuous and consider any iteration of the form (5),
where dk is a descent direction and λk satisfies the Wolfe
conditions (6). Then∑

k≥0

cos2 θk‖∇Fk‖2 <∞. (14)

From Proposition 3 and Lemma 4, the following Theorem 5
which shows the global convergence of Algorithm 1 can be
immediately obtained.

Theorem 5 Let x0 be a starting point. Then the sequence
{xk} generated by Algorithm 1 converges to the minimizer
x∗ of F(x), i.e.,∇F(x∗) = 0.

Experimental Results
In this section, we present numerical results of our pro-
posed structural BFGS (s-BFGS) algorithm for the matrix
optimization problem (1). In particular, we make the run-
ning time comparison against two state-of-the-art methods:
the dual gradient method called dualBB and the semismooth
Newton algorithm called SSNCG1. Since experimental re-
sults in (Jiang, Liu, and Wen 2016; Li, Sun, and Toh 2020)
have shown that dualBB and SSNCG1 outperformed all
other methods in terms of efficiency, the goal of our work
is to prove our superiority over the two methods.

For the fairness of experimental comparison, we terminate
three algorithms in the first two experiments with the same
stopping tolerance, i.e., ‖∇Fk‖ ≤ ε = 10−12. All the al-
gorithms have been implemented in MATLAB R2019b and
run on a 3.00-GHz Intel Core i9 Linux machine with 128GB
memory. Our code will be released publicly on the github1

for reproducing all the results of this section.

Numerical Results on the Synthetic Data
We investigate first the scalability of our Algorithm 1 on syn-
thetic data matrix. Namely, we randomly generate a data ma-
trix A ∈ Rn×n while varying n ∈ {103, 5× 103, 104, 1.5×
104, 2 × 104, 2.5 × 104}. All the data entries are sampled
from the standard normal distribution using the MATLAB
command: A = randn(n).

The iteration numbers and computation times for the three
algorithms to reach the same stopping criterion are demon-
strated in Figure 1. Since the dualBB is a non-monotonic
descent algorithm, the iteration numbers it requires is non-
monotonically increasing as the data size increases in Fig-
ure 1. We can observe that the time cost of all three methods
increases with the number of dimensions n. Although our
s-BFGS algorithm requires more iterations than Newton’s
method, it takes significantly less time due to its low com-
putational cost per iteration.

Figure 2 plots the gradient norm against the iteration
counts and computation time of three candidates. It can
be seen that Newton’s method exhibits super-linear con-
vergence behaviour when approaching the optimal solution,

1https://github.com/djchu/sbfgs4dsm
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Figure 1: Scalability comparison among the dual gradient-
type method dualBB, the semismooth Newton algorithm
SSNCG1 and our proposed s-BFGS method. Left: number
of iterations until convergence by dimension n. Right: run-
ning time by dimension n. Time is in seconds.

and it takes the least iterations among the three methods.
However, due to the low computational cost at each itera-
tion, our s-BFGS algorithm spends the least time than two
other counterparts. Meanwhile, since our s-BFGS method
exploits the second-order information, it has fewer iterations
than dualBB.

Numerical Results on the Real Data Sets
In this subsection, we test 6 instances of the given matricesA
which are derived from the real LIBSVM data sets at https://
www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/. Similarly
as in (Li, Sun, and Toh 2020), we normalize each data point
to have a unit l2-norm and use the following RBF kernel to
generate A, i.e.,

Ai,j = exp

(
−‖xi − xj‖2

σ2

)
, ∀1 ≤ i, j ≤ n, (15)

where we use the notation xi to denote the ith observation
in the data set and this should not cause any confusion with
the variable x in our Algorithm 1. We set σ = 1.0 in this
subsection.

Table 1 reports the numerical results obtained by dualBB,
Newton method and our s-BFGS. It can be seen that the ex-
perimental results are similar to the results on the synthetic
data. The Newton method requires the least number of iter-
ations, but it is at a disadvantage in the comparison of the
computation time. Meanwhile, our s-BFGS algorithm using
the second-order information not only has fewer iterations
than dualBB, but also spends the least time.

Data Set n dualBB SSNCG1 Our s-BFGS

gisette 6000 23.01(115) 24.85(13 ) 5.10(32)
mushrooms 8124 52.24(117) 44.09(13) 12.29(45)
a6a 11220 32.64(71) 98.57(15) 18.99(37)
a7a 16100 49.31(78) 200.34(15) 39.65(38)
rcv1.binary 20242 207.31(162) 846.32(22) 87.86(54)
a8a 22696 310.16(108) 388.41(15) 79.77(39)

Table 1: Running time (s) comparison on real data sets. The
integers in parentheses indicate the number of iterations.

Application to Spectral Clustering Problems
The goal of spectral clustering is to arrange unlabeled data to
clusters, where similar data points hopefully get assigned to
the same cluster. Here, the affinity matrix C consists of each
element Ci,j representing the degree of pairwise similarity
between samples xi and xj . In general, there are three cru-
cial steps that affect the performance of a spectral algorithm:
(i) the construction of the affinity matrix, (ii) the normaliza-
tion of the affinity matrix, and (iii) the particular clustering
algorithm.

Recently, Zass and Shashua (2006) suggested a Frobenius
norm normalization scheme which can be formulated as the
following optimization problem,

min
X

1

2
‖X −A‖2F , s.t. X ≥ 0, Xe = e, X = X>. (16)

While normalization (16) leads to superior clustering perfor-
mance over various standardized tests, it is indeed a special
case of the generic matrix nearness problem (1), as the latter
does not require the input matrix A is symmetric. It is not
difficult to verify that when A is symmetric, the optimal X
to the problem (1) is also symmetric, and X is also the so-
lution of the problem (16). In this subsection, we show that
our s-BFGS algorithm can efficiently solve the normaliza-
tion problem (16).

In order to solve the problem (16), Zass and Shashua de-
fined two sub-problems. The first considers equality con-
straints,

min
X

1

2
‖X −A‖2F , s.t. Xe = e, X = X>,

and the second deals with bound constraints,

min
X

1

2
‖X −A‖2F , s.t. X ≥ 0.

Since both of the above two sub-problems enjoy closed-form
solution, an alternating projection procedure is developed
and takes the following iterative form,

X̂k = Xk +
1

n

(
ee> −Xkee

> − ee>Xk

)
+

e>Xke

n2
ee>,

Xk+1 = P+(X̂k).
(17)

We should note that although the simple alternating pro-
jections (17) is only guaranteed to converge to a feasible
point for the problem (16), it is still a popular method for
solving the graph-based clustering tasks (Wang, Nie, and
Huang 2016; Wang et al. 2022). Since better clustering qual-
ity has been presented in (Zass and Shashua 2006), we just
compare the efficiency between our method and the alternat-
ing projection algorithm.

We follow the setting of alternating projection algorithm
(Zass and Shashua 2006) on six real data sets listed in Table
1. The RBF kernel (15) is used to create the affinity ma-
trix for all the data sets. To show the merits of our s-BFGS
algorithm, we consider the CPU time used in the relative pa-
rameter difference between parameter vectors in consecutive
iterations, that is,

‖Xk+1 −Xk‖F
‖Xk+1‖F

≤ 10−4.
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Figure 2: Typical convergence behaviours of dualBB, SSNCG1 and our s-BFGS. Each of the columns contains two plots with
the same dimension n. The top row presents the gradient norm ‖∇Fk‖ as a function of iteration counts k. The bottom row
focuses on the gradient norm vs. running time. The dotted line indicates the stopping tolerance ε. Time is in seconds.

Data Set σ = 2.0 σ = 4.0 σ = 6.0

Alt. Proj. s-BFGS Speedup Alt. Proj. s-BFGS Speedup Alt. Proj. s-BFGS Speedup

gisette 27.88 1.74 16.02 17.65 1.45 12.17 11.99 1.29 9.29
mushrooms 145.87 3.96 36.84 110.77 3.41 32.48 84.97 3.18 26.92
a6a 314.58 7.32 42.97 251.47 6.48 38.81 197.41 5.84 33.80
a7a 950.22 14.90 63.77 795.58 12.91 61.63 640.41 11.90 53.82
rcv1.binary 763.79 27.62 27.65 741.20 19.65 37.72 644.92 16.40 39.32
a8a 2713.31 30.61 88.64 2391.95 26.68 89.65 1963.08 24.83 79.06

Table 2: Running times (s) of solving the affinity matrix normalization problem (16) on real data sets.
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Figure 3: Convergence comparison of alternating projec-
tions and our s-BFGS on data set gisette.

Figure 3 shows that our s-BFGS algorithm enjoys much
faster convergence rate than the alternative projection al-
gorithm on the data set gisette with the kernel parameter

σ = 1.0.
Since the kernel parameters are typically tuned to achieve

the best clustering performance, we also report the accelera-
tion performance of our s-BFGS method with various σ for
RBF kernel as illustrated in Table 2.

Conclusions
In this paper we propose an efficient structured BFGS al-
gorithm for finding the optimal approximation to the input
data matrix over the Birkhoff polytope. By incorporating the
curvature information into the diagonal components of the
true Hessian, our algorithm takes only little additional cost
to produce the descent direction. We also develop a Newton-
based line search method to choose an appropriate step size
to satisfy the Wolfe conditions. Empirical results on both ar-
tificial data and real-world data sets show that our method
outperforms the state-of-the-art solvers. The application of
our algorithm to spectral clustering problem for normalizing
the affinity matrix illustrates the great potential in doubly
stochastic matrix related tasks.
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