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Abstract

Learning models that are robust to distribution shifts is a key
concern in the context of their real-life applicability. Invariant
Risk Minimization (IRM) is a popular framework that aims
to learn robust models from multiple environments. The suc-
cess of IRM requires an important assumption: the underly-
ing causal mechanisms/features remain invariant across envi-
ronments. When not satisfied, we show that IRM can over-
constrain the predictor and to remedy this, we propose a re-
laxation via partial invariance. In this work, we theoretically
highlight the sub-optimality of IRM and then demonstrate
how learning from a partition of training domains can help
improve invariant models. Several experiments, conducted
both in linear settings as well as with deep neural networks
on tasks over both language and image data, allow us to ver-
ify our conclusions.

1 Introduction
Standard machine learning models trained using classical
Empirical Risk Minimization (ERM) can be expected to
generalize well to unseen data drawn from the same distri-
bution as the training data (Vapnik 2013). However, distri-
bution shifts during test time (when data is from different
sources or under different conditions) can severely degrade
model performance (Beery, V. Horn, and Perona 2018; Lake
et al. 2017; Marcus 2018). The errors can often be attributed
to the model picking up statistically informative but spurious
correlations, which in turn limits their real-life applications
since in practice, the use-case almost always differs from
the training data. Thus, several lines of research explore al-
ternate learning objectives for training robust models.
One particular line of research stems from the Invariant
Causal Prediction framework (Peters, Bühlmann, and Mein-
shausen 2015), where the goal is to learn causal mecha-
nisms that work well under interventions; our work focuses
on the similarly inspired Invariant Risk Minimization (IRM)
framework, which aims to learn a predictor that relies only
on features that are invariant across all training environ-
ments. The underlying motivation for invariance is rooted
in its strong links with causality (Pearl 2009), with the intu-
ition being that by invariance can help the model distinguish
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the causal features from domain-specific spurious features,
which it can then discard for better generalization.
A standard assumption in such invariance-based objectives
is that of sufficiency (Ahuja et al. 2020b): there exists a pre-
dictor, relying solely on the invariant features, which can
achieve Bayes optimal risk in all environments. While fairly
general, this assumption may not be satisfied for certain
classes of distribution shifts. For instance, consider a pre-
diction task with concept drift, wherein the relationship of
the ‘causal’ features (features that are causally responsible
to the label) with the label changes across training environ-
ments. Here, a predictor relying solely on invariant features
ends up being over-constrained, since it is incentivized to
discard non-invariant but informative causal features that are
needed for Bayes optimality. Such situations are ubiquitous
in practice, for instance in language tasks in which linguis-
tic features can have different connotations within different
communities (Gallacher 2021; Mani, Varshney, and Pent-
land 2021) or in tasks with distribution shifts across time
(Luu et al. 2021). Additionally, even when a sufficient rep-
resentation exists theoretically, it may not be accessible due
to shortcomings in the optimization of the learning objec-
tive. However, these factors are seldom accounted for when
considering the application of IRM (or other invariant learn-
ing objectives) for a given use-case (Peyrard et al. 2021;
Adragna et al. 2020). Thus, it is important to develop a char-
acterization for the same.
To address this gap in literature, we present a first study to
characterize the behaviour of IRM under explicit concept
drifts. Then, we take a step further and propose a relaxation
for IRM via the Partial Invariance (P-IRM) framework. We
find that our framework increases the flexibility of invari-
ant models by allowing learning of features that are locally
invariant within a partition of the training environments.
This flexibility is accompanied with an inherent trade-off;
the cost of finding the right partition, in an information-
agnostic setting, grows exponentially in the number of envi-
ronments. However, for certain classes of problems, includ-
ing the language tasks alluded to previously, readily avail-
able meta-information often allows us to easily infer the ‘op-
timal’ training partition for a given use-case. Notice that in
doing so, we move away from the OoD minimax regime,
and instead focus on improving generalization conditioned
on availabity of this meta-information. In this work, we be-
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gin by presenting a theoretical characterization of IRM un-
der concept shifts. Next, we formally quantify the notion
of meta-information and assuming access to it, we theoreti-
cally and empirically demonstrate how the notion of Partial
Invariance can help improve the performance of invariant
models. The rest paper is organized as follows: we begin
with a literature review in Sec. 2, and motivate P-IRM and
present our main results in Sec. 3. We report our empirical
evaluations in Sec. 4 and wrap up with some concluding re-
marks in Sec. 5.

2 Related Work
Many approaches aim to learn deep invariant feature repre-
sentations: some focus on domain adaptation by finding a
representation whose distribution is invariant across source
and target distributions (Ben-David et al. 2010; Zhang,
Gong, and Schoelkopf 2015), while others focus on condi-
tional domain-invariance (Gong et al. 2016; Li et al. 2018).
However, there is evidence that domain adaption approaches
are insufficient when the test distribution may lie outside
the convex hull of training distributions (Lee and Raginsky
2018; Duchi, Glynn, and Namkoong 2021; Mohri, Sivek,
and Suresh 2019). Other approaches include Bayesian Deep
Learning (Neal 1996), which tries to account for model un-
certainty during test-time, and Robust Optimization (Ben-
Tal, El Ghaoui, and Nemirovski 2009), which aims to gen-
eralize well to distributions close to training.
Our work focuses particularly on the IRM framework (Ar-
jovsky et al. 2019), which relates to domain generaliza-
tion wherein access to the test distribution is not assumed.
IRM is rooted in the theory of causality (Schölkopf et al.
2012) and proposes invariance for achieving OoD general-
ization (Peters, Bühlmann, and Meinshausen 2016; Heinze-
Deml, Peters, and Meinshausen 2018). In (Ahuja et al.
2020a), the authors reformulate IRM via a game-theoretic
approach, wherein the invariant representation corresponds
to the Nash equilibrium of a game. While the IRM frame-
work assumes only the invariance of the conditional expec-
tation of the label given the representation, some follow-ups
rely on stronger invariance assumptions (Xie et al. 2021;
Mahajan, Tople, and Sharma 2021). As mentioned before,
this line of work assumes sufficiency of invariant features
whereas we specifically focus on distribution shifts when
sufficiency is violated.
Several follow-up works attempt to characterize IRM’s per-
formance under different settings and model assumptions.
It has been noted that carefully tuned ERM can often out-
perform state-of-the-art domain generalization approaches,
including IRM, across multiple benchmarks (Gulrajani and
Lopez-Paz 2020). The failure of IRM may stem from the
gap between the proposed framework and its practical “lin-
ear” version (IRMv1), which fails to capture natural invari-
ances (Kamath Pritish and Srebro 2021). Indeed, the authors
of (Rosenfeld, Ravikumar, and Risteski 2020) demonstrate
that a near-optimal solution to the IRMv1 objective, which
matches IRM on training environments, does no better than
ERM on environments that differ significantly from training.
Following these deficiencies, several works propose alter-
nate objectives for achieving invariance (Krueger et al. 2021;

Bellot and van der Schaar 2020; Jin, Barzilay, and Jaakkola
2020; Ahuja et al. 2021; Shui, Wang, and Gagné 2021).
However, unlike previous works that aim to improve the in-
variance learning objective, we question whether invariance
as a constraint can be improved upon for better performance.
To that end, our notion of partial invariance generalizes not
only IRM, but all similar invariance learning objectives. The
use of meta-information for invariant learning has been pro-
posed in (Lin, Zhu, and Cui 2022). However, unlike parti-
tioning, the focus therein is to artificially generate environ-
ment membership for samples when not available a priori.
Finally, a related idea appears in (Yu et al. 2022), which pro-
poses applying different invariance penalty weights for dif-
ferent domains, but with the goal of addressing data quality
variance across domains.

3 Theory
In this section, we present the notion of partial invariance.
Notation: We use upper-case boldface U to denote ma-
trix/tensor/vector valued random variables, and lowercase
boldface u to denote scalar valued random variables. We use
upper-case U to denote matrices/vectors/tensors and lower-
case u to denote scalars.

3.1 Invariant Risk Minimization
The IRM setup assumes access to datasets of the form
De := {Xe

i , y
e
i }

ne
i=1 collected from multiple training en-

vironments e ∈ Etr. The samples in dataset De are i.i.d.
from the environment’s joint distribution, P (Xe,ye). The
task is to estimate a map f : X → Y or alternatively,
the conditional distribution P (Y |X), so that it performs
well across unseen environments Eall ⊃ Etr. Formally, the
IRM framework aims to minimize the Out-of-Distribution
(OoD) risk: ROoD(f) = maxe∈Eall

Re(f), where Re(f) :=
EXe,ye [ℓ(f(Xe),ye)] is the expected risk in environment
e. The predictor f is parametrized as w ◦ Φ, wherein Φ :
X → Z represents the learned representation and w : Z →
Y is a linear predictor over said representation. The IRM
learning objective is posed as a constrained optimization
problem:

min
Φ,w

∑
e∈Eobs

Re(w ◦ Φ) (IRM)

s.t. w ∈ argmin
w̃

Re′(w̃ ◦ Φ) ∀ e′ ∈ Etr. (1)

To avoid the inner optimization, the minimization constraint
is replaced by a more tractable gradient penalty:

min
Φ,w

∑
e∈Eobs

Re(w ◦ Φ) (IRMgc)

s.t. w ∈ {w̃ : ∥∇wR
e′(w ◦ Φ)∥ = 0 ∀ e′ ∈ Etr}, (2)

where IRMgc is shorthand for the gradient constrained IRM.
In practice, this constraint is enforced via a regularizer λ:

min
Φ

∑
e∈Eobs

Re(Φ) + λ∥∇w,w=1.0R
e(Φ)∥, (IRMv1)

where the implicit overparametrization in having a sepa-
rate classifier and representation map is removed by fixing
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a dummy classifier w = 1.0. Thus, Φ becomes the entire
invariant predictor and the strictness of the gradient norm
penalty, which enforces invariance, is via λ. Note that when
λ =∞, IRMv1 is equivalent to IRMgc, which in turn is the
first order approximation for the true IRM objective.
An intrinsic assumption in the IRM learning setup for prov-
ing minimax optimality is the ideal scenario of sufficiency
i.e. there exists a Φ that is invariant across all e ∈ Etr and
is sufficient i.e ye ⊥ Xe| Φ(Xe) ∀e ∈ Eall (Ahuja et al.
2020b). However if sufficiency is violated for an environ-
ment, one would expect the IRM model, which relies solely
on invariant features, to be sub-optimal for that environment
(compared to a model that utilizes non-invariant features
along with invariant ones). Such a situation may arise un-
der concept drift, wherein the the conditional expectation of
the label ye given “causal” features may change across en-
vironments. Thus, in practice, if an invariant Φ that is also
sufficient for environments does not exist for the desired use-
case, we expect the performance of IRM (or related frame-
works) to degrade. We illustrate this with a simple example.
Example 1 We adapt the generative model from (Arjovsky
et al. 2019): the goal is to predict target y using X =
[x1, x2, x3], in environment e such that e ∈ Eall can affect
the distribution of X as well as the conditional distribution
of y given X via a deterministic map c(e) : Eall → {−1, 1}:

x1 ← N(0, σ(e)2),x2 ← N(0, σ(e)2),

c(e) ∈ {1,−1}, ϵ ∼ N(0, σ(e)2)

y ← x1 + c(e)x2 + ϵ, ϵ ⊥ x1, ϵ ⊥ x2

x3 ← y +N(0, 1), σ(e)2 ∈ [0, σ2
MAX ].

We estimate y as ŷ = α1x1 + α2x2 + α3x3. Within
the IRM framework, the only feasible representation Φ
(upto scaling) that yields invariant predictors across all e is
Φ([x1,x2,x3]) = [x1, 0, 0], with corresponding regression
coefficients [1, 0, 0]. Although this minimizes the OoD error
for arbitrary e, it does so by discarding the non-invariant but
informative x2. However, if our predictor is privy to some
knowledge of c(e), we could first partition the set of train-
ing environments Etr into two partitions, such that environ-
ments within a partition have the same c(e) value. Then, ap-
plying IRM within each partition yields models with better
performance that can exploit x2 as an invariant feature in
the partition. Note that this partial notion of invariance still
retains the ability to discard spurious/non-causal x3. Addi-
tionally with partitioning, we can improve generalization if
information about c(eunseen) is available, by choosing the
right model/partition for prediction. Next, we study the con-
ditions under which partitioning can improve upon IRM per-
formance and we refer to this method as P-IRM.

3.2 Model
For our analysis, we consider a simple regression task to
succinctly capture our intuition about the conditions under
which partitioning is feasible. To begin with, we assume ac-
cess to the underlying causal features and instead, focus on
understanding the nature of the IRM solution set under dis-
tribution shifts. In the next part, we extend this analysis to

study learning under partial invariance.
We consider the following generative model: we observe
samples (Xe

i , y
e
i )in environment e and the goal is to predict

yei from Xe
i . Xe

i ’s are samples corresponding to the random
variable Xe ∼ P (Xe), as described below:

Xe = [xe
1,x

e
2, . . . ,x

e
c]

⊤ ∼ P (Xe),

where each xe
i denotes an individual feature. To simplify our

initial analysis, we assume that the individual features are
independent of each other and are normalized i.e. E[Xe] =

0 and E[XeXe⊤] = I ∀ e. The target ye for given Xe can
be characterized as:

ye = ⟨W e,Xe⟩+ ϵy ,

W e = [we
1, w

e
2, . . . , w

e
c ] ∈ Rc, ϵy ∼ N(0, σ2

y(e)).
(3)

where weights W e encode the conditional distribution of ob-
serving label ye given Xe in environment e and are fixed for
that environment, and ⟨·, ·⟩ denotes the standard inner prod-
uct in Rc. For a given feature xe

i in environment e, the corre-
sponding feature weight we

i is independently and uniformly
sampled from set Ai for each environment e. Once sampled
however, these weights remain fixed for that environment.
Additionally |A1| = 1, so that feature weight we

1 is fixed
and thus xe

1 is invariant for all e:

W e = [we
1,w

e
2, . . . ,w

e
c ],

where wi
e ∼ Unif({Ai}) ∀ i ∈ {1, 2, . . . , c},
|A1| = 1, |Ai| > 1 ∀ i > 1.

(4)

We make note of some important aspects. As per our model,
xe
1 is the only truly invariant feature since E[ye|xe

1] =
winv.x

e
1, is fixed for all e, where A1 = {winv} is a sin-

gleton, and winv denotes the invariant feature weight. Ad-
ditionally, the cardinality of set Ai, |Ai| defines an implicit
notion of the variance of feature xi, with a higher cardinal-
ity indicating that the feature weight is more likely to change
across environments and is thus, less invariant.
With our generative model in place, we next consider the
task of predicting ye given Xe, under the mean squared
loss. Recall that the IRM framework considers predictors of
the form w ◦ Φ, where the transformation Φ extracts a suit-
able representation and w is the linear predictor acting on
that representation. Due to the implicit overparametrization,
we fix w = 1.0 to a scalar value as proposed in (Arjovsky
et al. 2019) and analyze the corresponding IRM solutions
with Φ ∈ Rc. For simplicity, we ignore finite sample ef-
fects and consider the objective in (IRMv1) when λ = ∞,
or equivalently, the gradient penalty constraint in (2) which
ideally approximates the true IRM objective. Additionally,
we assume the following for training environments Etr.
Assumption 1 (Sufficiency for IRM). Assume ∃ an envi-
ronment e ∈ Etr for which the truly invariant predictor
is sufficient, i.e. the corresponding feature weights satisfy
we

1 = winv and we
i = 0 ∀ i ∈ {2, . . . , c}.

In other words, we assume existence of a training envi-
ronment in which the invariant predictor that only recovers
the invariant feature xe

1 achieves optimal MSE risk, which
is a standard assumption in related literature (Ahuja et al.
2020b).
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Lemma 1. As per above parametrization (with w = 1.0),
under Assumption 1, the values for Φ that satisfies the IRM
solution constraints in (2) is a singleton and the value of the
corresponding predictor equates to Φ = [winv, 0, 0 . . . , 0],
the predictor only recovers the invariant feature.
The proof of the lemma is included in the Appendix and re-
lies on showing that any predictor which assigns non-zero
weights to any of non-invariant features would violate the
gradient penalty constraints. More importantly, the previous
lemma roughly says that any non-invariant feature will be
discarded by the IRM predictor. Note that while this is a de-
sirable property for minimax optimality, we ask whether we
can do better given additional contextual information.
We formalize the notion of contextual information explicitly
by defining an oracle ω(e) = 1[∥W eref −W e∥0 ≤ δ], that
provides us a notion of distance between environments, from
a fixed reference environment eref . Alternatively, it identi-
fies whether environment e is close to eref .
Remark 1: The choice of the ℓ0 metric for the oracle suits
our combinatorial setting, since we do make any assump-
tions on the individual elements in the feature weight sets
(i.e. Ai’s).
Next we characterize our objective to utilize this informa-
tion. Suppose we know that our test environment shares the
feature weight with the reference environment for a given
feature xe

i . Then we can define the goal of minimizing the
risk w.r.t. to the predictor f , conditioned on this information:

Rcond(f) = E
e s.t. weref

i =we
i
Re(f),

where the expectation is over the draw of environments as
per the uniform sampling. We note that a predictor that ac-
counts for the prior condition (reference feature) will im-
prove performance (i.e. with a lower MSE risk Rcond), as
compared to the truly invariant predictor in the previous
lemma. However, to obtain the required feature as a feasi-
ble solution via IRM constraints, we need to first isolate a
subset of training environments Epartition ⊆ Etr such that
within this set, we

i is invariant and secondly, that we avoid
learning the rest of the non-invariant features to avoid fea-
ture weight mismatches in unseen environments. It turns out
that with access to the oracle and under certain mild condi-
tions, we can ensure exactly that in our uniform distribution
shift model. Before stating the result, we require a similar
sufficiency assumption for the partially invariant predictor.
Assumption 2 (Sufficiency for P-IRM). Assume ∃ an en-
vironment e ∈ Etr for which the partially invariant predic-
tor is sufficient, i.e. the corresponding feature weights satisfy
we

1 = winv , we
i = w

eref
i and we

j = 0 ∀ j ∈ {2, . . . , c}\{i}.
Theorem 1. Under the model (4), under Assumption 2, with
access to oracle ω(e) = 1[∥W eref − W e∥0 ≤ δ] and
δ < (c − 2)/2, isolate Epartition := {e ∈ Etr|ω(e) =
1} ∪ {eref} ⊆ Etr. Next, let |Ai| = k, where Ai is the set
corresponding to the feature weight weref

i of interest. Then,
if the sets {Aj}∀ j ∈ {2, . . . , c} \ {i} satisfy |Aj | > αk
for some α > 1, we have with probability greater or equal
to ( p

p+1 )
|Epartition|, where p ≥ (c−1−δ)α

δ , the IRM solution
over set Epartition will recover the feature of interest weref

i .

The proof, available in the Appendix, relies on showing that
within the partition that satisfies the oracle condition, the
probability of successfully isolating the required feature is
high. Then the result follows as a consequence of Lemma 1.
In words, the theorem says that if we can identify a parti-
tion in which the environments are not too different, then
with high probability, the IRM solution will recover fea-
tures which do not vary too much (i.e. non-invariant but still
close to invariant). Note that in case of erroneous partition-
ing, the solution set allowed by the non-convex penalty be-
comes harder to characterize due to the presence of other
feature weights besides the reference. Nevertheless, if the
conditions are such that probability of that happening is suf-
ficiently low, we can safely assume that partitioning will
achieve a better expected risk. Additionally, it suggests that
P-IRM becomes feasible as the oracle becomes more precise
and the feature of interest is close to invariant.
Remark 2: While P-IRM does improve upon the IRM so-
lution, both variants are likely to be outperformed by ERM
in this setting. However, we point out that this is a simpli-
fied setting wherein access to causal features is assumed. In
more general settings when the causal features need to be
inferred from complex data, ERM may be susceptible in-
variance to confounders/anti-causal variables and thus, we
require invariance as a means to make the solution robust.

3.3 Partitioning and Partial Invariance
Next, we study P-IRM in a general setup, using previous
results to characterize the required number of training en-
vironments as in IRM. As before, we assume access to the
oracle, ω to identify the partition, i.e. Epartition ⊆ Etr.
Learning Setup: We consider the same causal mechanism
for regression task (xe, ye) from before. The goal is to
find a partition using the oracle such that a feature of in-
terest corresponding to the reference environment, w

eref
i

is retained. Note that since we want to retain only the in-
variant features denoted as Xinv

e = [xe
1,x

e
i ], and dis-

card the non-invariant (or non-partially invariant) features,
we encapsulate them into the noise term as ϵ̃y = ϵy +
(Xe

{1···c}\{1,i})
⊤W e

{1···c}\{1,i}. Then, notice that we still
have ϵ̃y ⊥ Xinv

e and that E[ϵ̃y] = 0, due to feature in-
dependence and centering assumptions. Next, we consider a
realistic learning setup where we observe a scrambled ver-
sion X̃e of the true causal features Xe:
ye = (Xinv

e)⊤Winv
e + ϵ̃y, ϵ̃y ⊥Xinv

e, E[ϵ̃y] = 0

X̃e = S(Xe,X′e).
(5)

Here, Xe = [Xinv
e,Xe

{1···c}\{1,i}] ∈ Rc denote the causal

features with respect to the label, X′e ∈ Rq , X̃e =
S(xe,de) ∈ Rd with S ∈ Rd×(c+q). The variable X′e may
be arbitrarily correlated with Xinv

e, ϵ̃y or the label ye and is
intended to represent the spurious correlations in data. How-
ever, we require S to be such that ∃S̃ s.t. S̃(S(Xe,X′e)) =
Xinv

e i.e. an inverse map such that the recovery of the de-
sired features is feasible.
Next, we define γ = 1

k
√
2n

exp(−nD(δ/n∥1/αk)), where
as before, δ is the oracle distance parameter, k is the car-
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dinality of the set Ai, |Ai|, α is as defined in Theorem 1,
n = c − 2 and D(m∥n) denotes KL divergence between
Bern(m) and Bern(n). Intuitively, γ estimates the lower
bound on the probability of sampling an environment under
the generative model that satisfies the oracle condition of
close distance to the reference environment. Then we have
the following sample complexity on the number of required
environments.
Theorem 2 (Informal). Assume we observe (X̃e,ye) as
per (5), with environments e ∈ Etr sampled as per (4)
and let Epartition := {e ∈ Etr|ω(e) = 1} ∪ eref ⊆. Let
Φ ∈ Rd×d have rank r > 0. Then sampling |Etr| > 1

γ (d −
r+d/r) log(1/ϵ) ensures partition cardinality |Epartition| >
d − r + d/r with probability > 1 − ϵ. Furthermore, if
e ∈ Epartition lie in linear general position of degree r
(Assumption 3 in Appendix), then with probability greater
than or equal to ( p

p+1 )
|Epartition|, where p ≥ (c−1−δ)α

δ , the
oracle identifies Epartition such that the predictor w ◦ Φ
learnt via IRM within that partition recovers the desired fea-
tures/weights and corresponding prediction (Xe

inv)
⊤W e

inv ,
∀e ∈ Eall which satisfy we

i = w
eref
i .

The proof along with the formal statement is included in the
Appendix and follows from our previous results by apply-
ing concentration bounds on the draw of environments, and
subsequently using prior generalization results for IRM. In
words, Theorem 2 states that if the obtained partition is ac-
curate, is of sufficient cardinality and is sufficiently diverse,
then Φ recovers the partially invariant features. However,
notice that the required number of environments grows in-
versely with γ, meaning that we need stronger priors (i.e.
sample environments close to the reference) to obtain feasi-
ble sample complexities in the number of required environ-
ments.

3.4 Partial Invariance in Practice
Next, we state the P-IRM objective more formally. We first
assume a distance metric d between environments (known
directly or via contextual information). Then, our goal is to
identify a subset of training environments Epartition ⊆ Etr
such that its average distance w.r.t. a reference environment
eref roughly satisfies:

1

|Epartition|
∑

e∈Epartition

d(e, eref ) <
1

|Etr|
∑
e∈Etr

d(e, eref ).

Thus, the predictor is trained on a subset of observed en-
vironments. However, discarding environments is not data-
efficient and can lead to lower fidelity and worse general-
ization, especially in high-complexity models. To avoid this,
we introduce the notion of conditional invariance as an al-
ternative. Formally, consider the set of observed training en-
vironments Etr and a subset corresponding to the partition
Epartition (chosen suitably via d), satisfying Epartition ⊆
Etr. We propose the following two variants of P-IRM:

min
Φ,w

∑
e∈E1

Re(w ◦ Φ) s.t. w ∈ argmin
w̃

Re′(w̃ ◦ Φ) ∀ e′ ∈ E2,

if E1 = E2 = Epartition, (P-IRM (Partitioning))
if E1 = Etr & E2 = Epartition (P-IRM (Conditioning))

where the empirical risk minimization objective is over envi-
ronments in E1 and the IRM invariance constraint is applied
on environments in E2. For P-IRM (Conditioning), note that
while the model uses data from all environments, the in-
variance penalty is applied only to environments within the
chosen partition, which mitigates the issue of having fewer
data samples. Intuitively, it serves as a relaxation of the IRM
objective to allow for partially invariant features. Next, we
qualitatively discuss some potential issues in the application
of P-IRM. Firstly, fulfilling the requirements as per Theo-
rem 2, for the required worst case number of environments
is infeasible. Fortunately, in practice, IRM can pick up the
required invariances from just two environments and we ex-
pect P-IRM to overcome that issue as well.
Next, we revisit the idea of the distance oracle. While a
precise characterization of the distance between causal fea-
tures of different domains is essentially unobtainable in
practice, certain situations allow for inferring the nature of
the distribution shift via available contextual information
which, while often discarded by practictioners, can serve as
an effective pseudo-metric for the same. For instance, au-
thors of (Luu et al. 2021) pointed out that temporal mis-
alignments of distributions in language tasks leads to perfor-
mance degradation, noting that degradation increases with
an increase in the time duration between test and train en-
vironments. Thus, learning from only the recent past could
yield a larger and more relevant set of invariant features for
a use-case on future data.

4 Experiments
We start with a basic sanity check via a synthetic experiment,
as an extension of the example presented earlier to visual-
ize how IRM can end up suppressing non-invariant causal
features, leading to performance degradation. We then eval-
uate the efficacy of the P-IRM framework (both partition-
ing or conditioning) on four tasks: a regression task for
housing price prediction, an image classification task on the
MetaShift dataset (Liang and Zou 2022), an entity recog-
nition task for scientific texts on the SciERC dataset (Luan
et al. 2018) dataset, and a text classification task for predic-
tion of venues of scientific papers. Within image classifica-
tion, we consider two sub-tasks: Domain Generalization and
Sub-population shifts. We defer the synthetic experiment on
IRM, along with the text classification and Sub-population
shift tasks to the Appendix.
For baselines besides IRM, we evaluate the results for stan-
dard ERM as well Information Bottleneck IRM (IB IRM)
(Ahuja et al. 2021). In addition, we include experiments in
the image and language tasks to empirically characterize the
effect of partitioning on ERM and IB IRM, which we dub
as P-ERM and P-IB IRM respectively.
An underlying thread for our experiments is the availability
to meta-information that allows us to estimate a notion of
distance or similarity between environments, which P-IRM
can then exploit to construct the required partitions. Specifi-
cally, in both housing price prediction and entity recognition
task, our environments are partitioned across time and due to
distribution shifts, we expect environments closer in time to
have higher similarity. Similarly in MetaShift, meta-labels
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for each image is made available within the data-set, that
allows an explicit notion of the distance between training
and testing environments. In all our experiments we employ
the train-domain validation strategy(Gulrajani and Lopez-
Paz 2020) for hyper-parameter tuning. The code is available
at https://github.com/IbtihalFerwana/pirm and other imple-
mentation details are deferred to Appendix.

4.1 Linear Regression
We consider a regression task to predict house prices based
on house features 1, built across years [1910-2010]. Each
data point consists of 79 predictive features (for instance,
number of bedrooms or house area) and a corresponding tar-
get, which is the house price. As pre-processing, we drop
all non-numerical features, samples with missing values and
normalize each feature and price labels to zero mean, unit
variance with the samples, {Xi, yi}i ∈ (R32 × R).
Experiment Setup To adapt this task to OoD prediction,
following (Lin, Zhu, and Cui 2022), we manually split the
training data-set into 10-year segments and use the house
year built as a meta-data for partitioning, with the intuition
being that factors affecting house prices change over time.
For prediction, we consider a linear regression model for the
task. Since the IRM framework w ◦ Φ is inherently over-
parametrized, we fix w = 1.0 ∈ R and we consider Φ ∈ R32

(prediction (Φ⊤X)) with the Adam optimizer (Kingma and
Ba 2015). We consider 6 training environments correspond-
ing to years [1910-1970], while the test samples draw from 4
OoD environments [1970-2010]. We expect partitions closer
to the test set to yield better predictors.
Results We report the test MSE error (both average and
worst group) over the set of testing OoD environments, av-
eraged over 5 random seeds in Table 1. We find that P-IRM
significantly improves the average and worst group OoD er-
ror over IRM. Partitioning also benefits ERM, showing more
evidence of a distribution shift over time, evidence presented
in the Appendix. Finally, note that for the two variants for
P-IRM, partitioning performs much better where we have
more samples than parameters.

Model Training Avg. MSE Worst Group MSE

ERM 1910-1970 0.475 (0.000) 1.037 (0.000)
ERM 1930-1970 0.431 (0.000) 0.963 (0.000)
IRM 1910-1970 0.522 (0.015) 1.129 (0.038)

P-IRM (partitioned) 1930-1970 0.427 (0.009) 0.873 (0.024)
P-IRM (conditioned) 1930-1970 0.490 (0.014) 1.035 (0.034)

Table 1: House Prices Shifts, partitioning demonstrates im-
provement for both ERM and IRM, test set is 4 OoD envi-
ronments consisting of houses built between 1970-2010.

4.2 Image Classification
We evaluate P-IRM on a binary image classification task on
the MetaShift dataset (Liang and Zou 2022).

1House Prices Dataset: https://www.kaggle.com/c/house-
prices-advanced-regression-techniques

Dataset In MetaShift dataset, each image is associated with
a set of tags that describe the image context (e.g., cat on a
rug, cat beside a chair). Thus, for each given tag (e.g. rug,
chair), there is an associated set of images and these sets
can overlap if an image has multiple tags. This structure nat-
urally induces a graph, with each image context Ci denotes
a node (or community) in the graph. This graph is weighted
and the weights between nodes is determined by the num-
ber of images that are shared between the communities. The
weights between each pair of communities, Ci and Cj , es-
timate the similarity between two communities and are cal-
culated using the Szymkiewicz-Simpson coefficient, which
yields the corresponding adjacency matrix G:

G(i, j) =
|Ci∩Cj |

min(|Ci|,|Cj |) (6)

Having access to such an undirected weighted graph over
sets of images thus allows us to derive an implicit notion of
distance between the corresponding communities.
Notion of Distance To introduce partitioning, we develop a
notion of distance, which then allows us to quantify the re-
latedness between training and testing environments. These
environments are assumed to be sets of communities. To es-
timate the distance d between any two given nodes/com-
munities, given that our data is structured as a weighted
graph, we can make use of the spectral embeddings (Belkin
and Niyogi 2001). Spectral embeddings are based on graph
Laplacian connectivity (Ng, Jordan, and Weiss 2001). The
graph Laplacian L is calculated by L = Ddiag −G, where
Ddiag is a diagonal degree matrix of the graph G. The corre-
sponding eigenvectors of L, u1, . . . ,uk, computed and nor-
malized to form the matrix U , are the corresponding embed-
dings for the graph. Once we calculate the spectral embed-
dings, we measure d between communities as the euclidean
distance between the corresponding spectral embeddings of
each community node. With our notion of distance, we can
partition the graph based on distances between sets of com-
munities and identify subsets of training communities which
are closer to the test environment.
Experiment Setup For all our experiments, we consider the
same set of training communities as in (Liang and Zou
2022), which are split into two environments in the IRM
setting. To introduce partitioning, we assume distances d be-
tween the training environments and the test communities
is known/can be estimated via the meta-labels. For learn-
ing the P-IRM model, we consider the training environment
for IRM which is closer to the test set on average, and split
it into two sub-environments. Note that under this split, P-
IRM has access to roughly only half the training samples
compared to IRM. To remedy this, we consider additional
data splits wherein we add samples from communities in the
other IRM training environment, that are close to the test set.
These additional samples amount to a percentage p of sam-
ples in that environment, allowing P-IRM access to a slightly
larger portion of the training set. Following (Liang and Zou
2022), we fix the test community to be dog(shelf) and vary
distance d between dog train vs test communities. The cat
training set remains unchanged.
Results For all experiments, we report the binary classi-

fication accuracy averaged over 3 seeds, with the random-

7180



d = 0.17 d = 0.54 d = 0.81 d = 0.92 Avg. Performance

ERM 0.777(0.078) 0.560(0.179) 0.493(0.119) 0.667(0.114) 0.62425
P-ERM (p = 0) 0.823(0.045) 0.790(0.086) 0.387(0.074) 0.663(0.192) 0.66575

P-ERM (p = 10) 0.820(0.098) 0.770(0.057) 0.493(0.141) 0.663(0.128) 0.6865

IRM 0.757(0.231) 0.477(0.172) 0.757(0.110) 0.687(0.309) 0.6695
P-IRM (p = 0) 0.960(0.050) 0.817(0.045) 0.487(0.083) 0.650(0.142) 0.7285

P-IRM (p = 10) 0.710(0.107) 0.813(0.147) 0.727(0.087) 0.690(0.184) 0.735

IB IRM 0.647(0.197) 0.740(0.171) 0.750(0.155) 0.303(0.241) 0.61
P-IB IRM (p = 0) 0.663(0.242) 0.643(0.137) 0.437(0.289) 0.617(0.059) 0.59

P-IB IRM (p = 10) 0.690(0.340) 0.790(0.070) 0.377(0.214) 0.837(0.160) 0.6735

Table 2: Domaing Generalization in Metashift. Training environments are d away from testing community dog(shelf), with
additional samples up to percentage p ∈ {0, 10} for partitioned models. Results for p = 25 are in Table 5 (in Appendix)

.

ness solely arising from the learning algorithm. We com-
pare the performance of P-IRM against IRM, as well other
benchmarks and their corresponding partitioned versions in
table 2. In most experiments, especially those with higher
deviation between the training and testing data, models with
partitioning tend to perform better.

4.3 Named Entity Recognition (NER)
Distributional shifts are common in language tasks, given
that societal changes are known to influence language us-
age over time. These changes are also reflected in word em-
beddings (words vectors to represent language) (Garg et al.
2018). Within this context, we explore effects of partitioning
(Lazaridou et al. 2021; Luu et al. 2021).
Experiment Setup We consider the SciERC (Luan et al.
2018) dataset, which consists of CS publications from
1980 to 2016. The specific task is Named Entity Recog-
nition, a multi-class classification task, that labels each
scientific mention in a sentence into six possible cate-
gories (Task, Method, Evaluation Metric, Material, Other-
Scientific-Term, or Generic).The training set comprises of
years from 1980-2009 and we test the model on data ob-
tained between 2010-2016, with an intention to study dis-
tribution shift over time. For creating the training environ-
ments, we split training years into smaller intervals, 1990-
2009, 2000-2009 and 2005-2009, such that each interval has
roughly the same number of samples. For partitioning, we
consider contiguous partitions of time intervals, based on
the intuition that vocabularies in text have higher overlap
when closer in time (Gururangan et al. 2020). For building
the model, we train a classifier over the BERT pretrained
language model (Devlin et al. 2019). Due to high sample
complexity, we also consider the conditioned P-IRM method
that makes use of all training environments.
Results We report the classification accuracy, averaged over
3 seeds in table 3. We find that both variants of P-IRM
indeed improve performance over IRM. Additionally, we
find that leveraging more training data using conditioned P-
IRM leads to marginally better predictors, when compared
against standard partitioning. Comparisons against IB IRM
as well as ERM demonstrate that partitioning can improve
efficacy of other learning algorithms as well.

Model # envs Training Accuracy (2010-2016)

ERM 4 1980-2009 0.800 (0.012)
P-ERM 3 1990-2009 0.804 (0.020)
P-ERM 2 2000-2009 0.804 (0.016)

IRM 4 1980-2009 0.795 (0.005)
P-IRM (partitioned) 3 1990-2009 0.795 (0.017)
P-IRM (partitioned) 2 2000-2009 0.807 (0.005)
P-IRM (conditioned) 3 1990-2009 0.812 (0.008)
P-IRM (conditioned) 2 2000-2009 0.807 (0.015)

IB IRM 4 1980-2009 0.800 (0.010)
P-IB IRM (partitioned) 3 1990-2009 0.800 (0.015)
P-IB IRM (partitioned) 2 2000-2009 0.794 (0.015)
P-IB IRM (conditioned) 3 1990-2009 0.807 (0.008)
P-IB IRM (conditioned) 2 2000-2009 0.805 (0.020)

Table 3: Language Shifts in SciERC dataset. Partitioning im-
proves performance, with (1990-2009) consistently optimal
across all learning algorithms.

5 Discussion

In this work, we propose partial invariance, as a relaxation of
IRM objective, which allows us to explore a subtle trade-off
in invariant models, namely accessing more domains at the
cost of a smaller permissible invariant feature set. We then
verify, with experiments across multiple domains, that when
feasible, partitioning can indeed improve upon IRM as well
as other learning frameworks.
We note that the proposed framework is naturally limited
by the available information about training/deployment do-
mains. While distribution shifts across time allows for par-
titions to be contiguous time intervals, finding appropriate
partitions is non-trivial under complex shift topologies. In
that sense, our work is the first step towards understanding
the need for training domain selection in invariant learning.
Thus, developing general heuristics for identifying the right
partition is an important direction of future work. Second,
we note that the conditional variant of P-IRM provides tan-
gible gains in low data regimes, and it is of interest to study
the nature of the accessible feature set as well as the associ-
ated sample complexities.
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