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Abstract

Graph self-supervised learning (SSL) has been vastly em-
ployed to learn representations from unlabeled graphs. Ex-
isting methods can be roughly divided into predictive learn-
ing and contrastive learning, where the latter one attracts
more research attention with better empirical performance.
We argue that, however, predictive models weaponed with
powerful decoder could achieve comparable or even bet-
ter representation power than contrastive models. In this
work, we propose a Wiener Graph Deconvolutional Network
(WGDN), an augmentation-adaptive decoder empowered by
graph wiener filter to perform information reconstruction.
Theoretical analysis proves the superior reconstruction ability
of graph wiener filter. Extensive experimental results on var-
ious datasets demonstrate the effectiveness of our approach.

Introduction
Self-Supervised Learning (SSL), which extracts informative
knowledge through well-designed pretext tasks from unla-
beled data, has been extended to graph data recently due to
its great success in computer vision (CV) (He et al. 2020)
and natural language processing (NLP) (Devlin et al. 2019).
With regard to the objectives of pretext tasks, graph SSL
can be divided into two major categories: predictive SSL
and contrastive SSL (Liu et al. 2022). Predictive models
learn informative properties generated from graph freely via
prediction tasks, while contrastive models are trained on
the mutual information between different views augmented
from the original graph. As the dominant technique, con-
trastive SSL has achieved state-of-the-art performance em-
pirically (Xu et al. 2021; Thakoor et al. 2022; Lee, Lee, and
Park 2022) for graph representation learning. In contrast, the
development of predictive SSL has lagged behind over the
past few years.

Graph reconstruction is a natural self-supervision, and
thus most methods in predictive SSL employ graph autoen-
coder (GAE) as their backbones (Wang et al. 2017; Hu et al.
2020b; Li et al. 2020b). The work of GraphMAE (Hou et al.
2022) re-validates the potentials of reconstruction paradigm.
Despite recent advancements, the importance of graph
decoder has been largely ignored. Most existing works
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Figure 1: Comparison of different variants of GALA against
latent Gaussian augmentation with magnitude β.

leverage trivial decoders, such as multi-layer perceptron
(MLP) (Kipf and Welling 2016; Pan et al. 2018; You et al.
2020b), which under-exploit graph topology information,
and thus may lead to the degradation in learning capability.
Vanilla graph neural networks (GNNs), such as GCN (Kipf
and Welling 2017), are inappropriate for decoding due to
their Laplacian-smooth essence. To overcome such inherent
limitation of GCN, GALA (Park et al. 2019) adopts spec-
tral counterpart of GCN to facilitate the learning, but may
take the risk of unstable learning due to its poor resilience to
data augmentation (See Figure 1). GAT (Veličković et al.
2018) is employed as decoder in recent works including
GATE (Salehi and Davulcu 2020) and GraphMAE (Hou
et al. 2022). Although attention mechanism enhances model
flexibility, recent work (Balcilar et al. 2021) shows GAT acts
like a low-pass filter and cannot well reconstruct the graph
spectrum. As an inverse to GCN (Kipf and Welling 2017),
graph deconvolutional network (GDN) could be expected
to further boost the performance of reconstruction (Li
et al. 2021), which may substantially benefit the context of
representation learning. We present a summary of differ-
ent decoders of predictive graph SSL in Table 1. Given the
aforementioned observations, a natural question comes up,
that is, can we improve predictive SSL by a framework with
powerful decoder?

Typically, a powerful decoder should at least remain ef-
fective against augmentations. Motivated by recent advance-
ment of wiener in deep image reconstruction (Dong, Roth,
and Schiele 2020), we introduce the classical deconvolu-
tional technique, wiener filter, into GDN, which is the theo-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7131



Model Decoder Feature Structure Deconv. Augmentation Spectral SpaceLoss Loss Decoder Adaption Kernel

VGAE (Kipf and Welling 2016) DP - CE ✗ ✗ ✗ O(N2)
ARVGA (Pan et al. 2018) DP - CE ✗ ✗ ✗ O(N2)
MGAE (Wang et al. 2017) MLP MSE - ✗ ✗ ✗ O(N)
AttrMask (Hu et al. 2020b) MLP CE - ✗ ✗ ✗ O(N)
GALA (Park et al. 2019) GNN MSE - ✓ ✗ ✗ O(N)

GraphMAE (Hou et al. 2022) GNN SCE - ✗ ✓ ✗ O(N)

WGDN GNN MSE - ✓ ✓ ✓ O(N)

Table 1: Technical components comparison within predictive SSL approaches. DP: Non-parametric Dot Product. CE: Cross-
Entropy Error. MSE: Mean Square Error. SCE: Scaled-Cosine Error.

retical optimum for restoring augmented signals with respect
to mean square error (MSE). We propose a GAE frame-
work (Li et al. 2020b), named Wiener Graph Deconvolu-
tional Network (WGDN), which utilizes graph wiener filter
to facilitate representation learning with graph spectral ker-
nels. We first derive the graph wiener filter and prove its su-
periority in theory. We observe that, however, directly using
the explicit graph wiener filter induces low scalability due
to indispensable eigen-decomposition and may not be ap-
plicable to large-scale datasets. Therefore, we adopt average
graph spectral energy and Remez polynomial (Pachon and
Trefethen 2009) for fast approximation.

We evaluate the learned representation quality on two
downstream tasks: node classification and graph classifica-
tion. Empirically, our proposed WGDN achieves better re-
sults over a wide range of state-of-the-art benchmarks of
graph SSL with efficient computational cost. Particularly,
WGDN yields up to 1.4% higher accuracy than runner-
up model, and requires around 30% less memory overhead
against the most efficient contrastive counterpart.

Related Work
Graph self-supervised learning. According to recent sur-
veys (Liu et al. 2022; Xie et al. 2022), works in graph SSL
can be classified into two categories: contrastive learning
and predictive learning. Contrastive SSL attracts more at-
tention currently due to the state-of-the-art performance on
representation learning. Early efforts focus on the design of
negative sampling and augmentation schemes, such as cor-
ruptions in DGI (Veličković et al. 2019), graph diffusion
in MVGRL (Hassani and Khasahmadi 2020) and masking
in GRACE (Zhu et al. 2020) and GCA (Zhu et al. 2021).
Recent works have attempted for negative-sample-free con-
trastive SSL. For example, BGRL (Thakoor et al. 2022)
adapts BYOL (Grill et al. 2020) for graph representation
learning, CCA-SSG (Zhang et al. 2021) conducts feature
decorrelation, and AFGRL (Lee, Lee, and Park 2022) ob-
tains positive pairs via latent space clustering. Despite their
advancement, intricate architecture designs are required.

As for predictive learning, predicting node features and
neighborhood context is a traditional pretext task with graph
autoencoder (GAE). For instance, VGAE (Kipf and Welling
2016) and ARVGA (Pan et al. 2018) learn missing edges

prediction by structural reconstruction. Moreover, one rep-
resentative manner (You et al. 2020b) follows the perturb-
then-learn strategy to predict the corrupted information,
such as attribute masking (Hu et al. 2020b) and feature
corruption (Wang et al. 2017). Recently, GraphMAE (Hou
et al. 2022) implements a masking strategy and scaled cosine
error for feature reconstruction and achieves great success
to match state-of-the-art contrastive SSL approaches. How-
ever, it ignores the potential benefit leveraging graph spectral
theory. In this work, we propose an augmentation-adaptive
GAE framework that unleashes the power of graph spectral
propagation.

Graph deconvolutional network. Regarding graph de-
convolution, early research (Yang and Segarra 2018)
formulates the deconvolution as a pre-processing step.
GALA (Park et al. 2019) performs Laplacian sharpening to
recover information. Recent work (Zhang et al. 2020) em-
ploys GCN (Kipf and Welling 2017) to reconstruct node fea-
tures from the latent representations. All these works, how-
ever, neglect the influence of augmentation. Another GDN
framework (Li et al. 2021) is designed via a combination
of inverse filters in spectral domain and denoising layers in
wavelet domain, which is sub-optimal regarding signal re-
construction. Wiener filtering, as an alternative, executes an
optimal trade-off between signal recovering and denoising.
It has been introduced to deconvolutional networks (Dong,
Roth, and Schiele 2020; Son and Lee 2017) for image de-
blurring. However, its effectiveness on graph structure has
not been well investigated yet.

Preliminaries
Under a generic self-supervised graph representation learn-
ing setup, we are given an attributed graph G = (V,A,X)
consisting of: (1) V = {v1, v2, ..., vN} is the set of nodes;
(2) A ∈ RN×N is the adjacency matrix where Aij ∈ {0, 1}
represents whether an undirected edge exists between vi
and vj ; and (3) X ∈ RN×D denotes the feature matrix.
Our objective is to learn an autoencoder with encoder E :

(RN×N ,RN×D) 7→ RN×D′
and decoder D : RN×D′ 7→

RN×D to produce node embedding, or graph embedding
upon a pooling function. H = E(A,X) ∈ RN×D′

rep-
resents the learned embedding in low dimensional space,
which can be used for various downstream tasks.
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Figure 2: The autoencoder framework of WGDN for graph SSL. Given the augmented latent representations, graph wiener filter
is approximated via estimating spectral energy and augmentations adaptively. With such, WGDN permits the stable feature
reconstruction from the augmented latent space for representation learning.

Graph convolution. Convolutional operation in graph can
be interpreted as a special form of Laplacian smoothing on
nodes. From the spectral perspective, graph convolution on
a signal x ∈ RN with a filter gc is defined as

h = gc ∗ x = Udiag(gc(λ1), ..., gc(λN ))UTx

= Ugc(Λ)UTx = gc(L)x,
(1)

where {λi}Ni=1 and U represent the eigenvalues and
eigenvectors of normalized Laplacian matrix L = I −
D− 1

2AD− 1
2 = UΛUT respectively. D denotes the De-

gree matrix. ∗ denotes convolutional operator. We consider
(1) GCN (Kipf and Welling 2017), it is a low-pass filter in
spectral domain with gc(λi) = 1 − λi shown by (Wu et al.
2019); (2) GDC (Klicpera, Weißenberger, and Günnemann
2019) and Heatts (Li et al. 2020a), both use heat ker-
nel gc(λi) = e−tλi ; (3) APPNP (Gasteiger, Bojchevski,
and Günnemann 2019), it leverages personalized pagerank
(PPR) kernel gc(λi) =

α
1−(1−α)(1−λi)

.

Graph deconvolution. As an inverse to convolution,
graph deconvolution aims to recover the input attributes
given the smoothed node representation. From the spectral
perspective, graph deconvolution on a smoothed representa-
tion h ∈ RN with filter gd is defined as

x̂ = gd ∗ h = Udiag(gd(λ1), ..., gd(λN ))UTh

= Ugd(Λ)UTh = gd(L)h.
(2)

A trivial selection of gd is the inverse function of gc, e.g.,
gd(λi) =

1
1−λi

for GCN (Li et al. 2021), gd(λi) = etλi for

heat kernel, or gd(λi) =
1−(1−α)(1−λi)

α for PPR kernel.

The Proposed Framework
In this section, we first extend classical wiener filter to graph
domain and demonstrate its superiority in reconstructing

graph features. Then, we propose Wiener Graph Deconvo-
lutional Network (WGDN), an efficient and augmentation-
adaptive framework empowered by graph wiener filter.

Wiener Filter on Graph
In this work, we follow the settings in previous papers (Jin
and Zhang 2019; Cheung and Yeung 2021) and introduce
additive latent augmentations in model training due to its
flexible statistical characteristics, such as unbiasedness and
covariance-preserving (Zhang et al. 2022). Combining with
the graph convolution in Eq. 1, augmented representation ĥ
in graph is similarly defined as

ĥ = Ugc(Λ)UTx+ ϵ, (3)

where x ∈ RN denotes input features and ϵ ∈ RN is as-
sumed to be any i.i.d. random augmentation with E[ϵi] = 0
and VAR[ϵi] = σ2. In contrast to the isolated data aug-
mentations in graph topology and features, ϵ indirectly rep-
resents joint augmentations to both (Jin and Zhang 2019).
Naturally, feature recovered by graph deconvolution is for-
mulated by

x̂ = Ugd(Λ)gc(Λ)UTx+Ugd(Λ)UT ϵ. (4)

Proposition 1. Let x̂inv be recovered features by inverse
filter gd(λi) = g−1

c (λi) = ginv(λi). For common low-
pass filters satisfying gc : [0, 2] 7→ [−1, 1], such as GCN,
Heat and PPR, the reconstruction MSE is dominated by
amplified augmentation MSE(x̂inv) = E∥x− x̂inv∥22 =∑N

i=1
σ2

g2
c(λi)

.

The proof is trivial and illustrated in Appendix A for
details. Based on Proposition 1, feature reconstruction be-
comes unstable and even ineffective if augmentation exists.
To well utilize the power of augmentation, our goal is to
stabilize the reconstruction paradigm, which resembles the
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classical restoration problems. In signal deconvolution, clas-
sical wiener filter (Wiener 1964) is able to produce a statis-
tically optimal estimation of the real signals from the aug-
mented ones with respect to MSE. With this regard, we are
encouraged to extend wiener filter to graph domain (Per-
raudin and Vandergheynst 2017). Assuming the augmenta-
tion to be independent from input features, graph wiener fil-
ter can be similarly defined by projecting MSE into graph
spectral domain

MSE(x̂)

= E∥x̂− x∥22 = E
∥∥UT x̂−UTx

∥∥2
2

=
N∑
i=1

(gd(λi)gc(λi)− 1)2E[x∗2
i ] + g2d(λi)E[ϵ∗2i ]

=
N∑
i=1

S(λi, x
∗
i , σ, gc, gd),

(5)

where x∗ = UTx = {x∗
1, x

∗
2, ..., x

∗
N} and ϵ∗ = UT ϵ =

{ϵ∗1, ϵ∗2, ..., ϵ∗N} represent graph spectral projection of the in-
put and augmentation respectively. We denote E[x∗2

i ] and
S(λi, x

∗
i , σ, gc, gd) as the spectral energy and spectral recon-

struction error of spectrum λi. Considering the convexity of
Eq. 5, MSE is minimized by setting the derivative with re-
spect to gd(λi) to zero and thus we obtain the graph wiener
filter gw(λi) as

gw(λi) =
gc(λi)

g2c (λi) + σ2/E[x∗2
i ]

, (6)

where σ2 = VAR[ϵ∗i ] = E[ϵ∗2i ] and σ2/E[x∗2
i ] is denoted

as the Augmentation-to-Energy Ratio (AER) of particular
spectrum λi, which represents the relative magnitude of aug-
mentation.
Proposition 2. Let x̂w be recovered features by gw(λi),
where gw(λi) is a graph wiener filter, then the reconstruc-
tion MSE and variance of x̂w are less than x̂inv .

Please refer to Appendix B for details. Proposition 2
shows graph wiener filter has better reconstruction prop-
erty than inverse filter, which promotes the resilience to la-
tent augmentations and permits stable model training. We
observe that, in Eq. 2 and 6, eigen-decomposition is indis-
pensable in computations of spectral energy and deconvo-
lutional filter. However, in terms of scalability, an important
issue for large-scale graphs is to avoid eigen-decomposition.
Note that

∑N
i=1 E[x∗2

i ] =
∑N

i=1 E[x2
i ] due to orthogonal

transformation, we propose the modified graph wiener fil-
ter ḡw,γ with average spectral energy x̄∗2

γ = γ · x̄∗2 =

γ · 1
N

∑N
i=1 E[x∗2

i ] as

ḡw,γ(λi) =
gc(λi)

g2c (λi) + σ2/x̄∗2
γ

, (7)

where γ is a hyper-parameter to adjust AER. As a natural
extension of Proposition 2, ḡw,γ owns the following propo-
sition.
Proposition 3. Let x̂w,γ be the recovered features by modi-
fied graph wiener filter ḡw,γ(λi), then the variance of x̂w,γ

is less than x̂inv . In addition, S(λi, x
∗
i , σ, gc, ḡw,γ1) ≤

S(λi, x
∗
i , σ, gc, ḡw,γ2

) ≤ S(λi, x
∗
i , σ, gc, ginv) if E[x∗2

i ] ≤
x̄∗2
γ1

≤ x̄∗2
γ2

.
Please refer to Appendix C for details. Proposition 3

demonstrates that ḡw,γ attends to spectral reconstructions
over different ranges of spectra, depending on the selection
of γ. The graph wiener kernel Dγ = Uḡw,γ(Λ)UT can also
be reformatted as matrix multiplication

Dγ = U(g2c (Λ) +
σ2

x̄∗2
γ

I)−1gc(Λ)UT . (8)

Note that gc can be arbitrary function and support of λi

is restricted to [0, 2], we adopt Remez polynomial (Pachon
and Trefethen 2009) to approximate ḡw,γ(λi), which miti-
gates the need of eigen-decomposition and matrix inversion
in Eq. 8.
Definition 1 (Remez Polynomial Approximation). Given
an arbitrary continuous function ζ(t) on t ∈ [a, b], the Re-
mez polynomial approximation for ζ(t) is defined as

pK(t) :=
K∑

k=0

ckt
k, (9)

where coefficients c0, . . . , cK and leveled error e are ob-
tained by resolving linear system

ζ(tj) = pK(tj) + (−1)je, (10)

where {tj}K+1
j=0 are interpolation points within [a, b].

Lemma 1. If interpolation points {tj}K+1
j=0 are Chebyshev

nodes, the interpolation error |ζ(t)− pK(t)| of Remez poly-
nomial pK(t) is minimized.

The proof is trivial and illustrated in detail as Corollary
8.11 in (Burden, Faires, and Burden 2015). Following Def-
inition 1, the K th order Remez approximation of Dγ is for-
mulated as

Dγ = UpK(Λ)UT =
K∑

k=0

ck,γL
k, (11)

where Dγ is approximated adaptively in each epoch.

Wiener Graph Deconvolutional Network
Graph encoder. To incorporate both graph features X and
structure A in a unified framework, we employ M layers of
graph convolution neural network as our graph encoder. For
m = 0, ...,M − 1,

H(m+1) = ϕ(gc(L)H
(m)W(m)), (12)

where H(0) = X, ϕ is the activation function such as
PReLU and gc(λi) = 1 − λi as GCN (Kipf and Welling
2017), gc(λi) = e−tλi as heat kernel or gc(λi) =

α
1−(1−α)(1−λi)

as PPR kernel.

Representation augmentation. For simplicity, Gaussian
noise is employed as latent augmentations to the node em-
bedding generated by the last layer encoder

Ĥ(M) = H(M) + βE, (13)
where E = {ϵ1, ..., ϵN}, ϵi ∼ N(0, σ2

P I), σ2
P =

VAR[H(M)] and β is a hyper-parameter to adjust the mag-
nitude of augmentations.
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Graph wiener decoder. The decoder aims to recover orig-
inal features given the augmented representation Ĥ. Our
previous analysis demonstrates the superiority of wiener ker-
nel to permit reconstruction-based representation learning
with augmented latent space. Considering the properties of
spectral reconstruction error from Proposition 3, we sym-
metrically adopt M layers of graph deconvolution as the
decoder, where each layer consists of q channels of graph
wiener kernels. For m = 1, ...,M and i = 1, ..., q,

Z
(m−1)
i = ϕ(D(m)

γi
Ĥ(m)W

(m)
i ),

Ĥ(m−1) = AGG([Z
(m−1)
1 , ...,Z(m−1)

q ]),
(14)

where X̂ = Ĥ(0) and AGG(·) is aggregation function such
as summation. Note that the actual value of x̄∗2 and σ2 of
D

(m)
γi are unknown, we estimate x̄∗2 following its defini-

tion and leverage neighboring information for σ2 estimation.
Further details are presented in Appendix D.

Optimization and inference. Our model is optimized fol-
lowing the convention of reconstruction-based SSL, which
is simply summarized as

L = ||X− X̂||F . (15)
For downstream applications, we treat the fully trained
H(M) as the final node embedding. For graph-level tasks,
we adopt a non-parametric graph pooling (readout) func-
tion R, e.g. MaxPooling, to generate graph representation
hg = R(H(M)).

Complexity analysis. The most intensive computational
cost of our proposed method is kernel approximation in
Eq. 11. Note that kernel approximation is a simple K th order
polynomial of graph convolution. By sparse-dense matrix
multiplication, graph convolution can be efficiently imple-
mented, which take O(K|E|) (Kipf and Welling 2017) for a
graph with |E| edges.

Experiments
In this section, we investigate the benefit of our proposed
approach by addressing the following questions:

Q1. Does WGDN outperform self-supervised and semi-
supervised counterparts?

Q2. Do the key components of WGDN contribute to rep-
resentation learning?

Q3. Can WGDN be more efficient than competitive base-
lines?

Q4. How do the hyper-parameters impact the perfor-
mance of our proposed model?

Experimental Setup
Datasets. We conduct experiments on both node-level
and graph-level representation learning tasks with bench-
mark datasets across different scales and domains, in-
cluding PubMed (Sen et al. 2008), Amazon Computers,
Photo (Shchur et al. 2018), Coauthor CS, Physics (Shchur
et al. 2018), and IMDB-B, IMDB-M, PROTEINS, COL-
LAB, DD, NCI1 from TUDataset (Morris et al. 2020). De-
tailed statistics are presented in Table 8 and Table 9 of Ap-
pendix F.

Baselines. We compare WGDN against representative
models from the following five different categories: (1) tra-
ditional models including Node2Vec (Grover and Leskovec
2016), Graph2Vec (Narayanan et al. 2017), DeepWalk (Per-
ozzi, Al-Rfou, and Skiena 2014), (2) graph kernel models
including Weisfeiler-Lehman sub-tree kernel (WL) (Sher-
vashidze et al. 2011), deep graph kernel (DGK) (Yanardag
and Vishwanathan 2015), (3) predictive SSL models includ-
ing GAE (Kipf and Welling 2016), GALA (Park et al. 2019),
GDN (Li et al. 2021), GraphMAE (Hou et al. 2022), (4) con-
trastive SSL models including DGI (Veličković et al. 2019),
MVGRL (Hassani and Khasahmadi 2020), GRACE (Zhu
et al. 2020), GCA (Zhu et al. 2021), BGRL (Thakoor
et al. 2022), AFGRL (Lee, Lee, and Park 2022), CCA-
SSG (Zhang et al. 2021), InfoGraph (Sun et al. 2019),
GraphCL (You et al. 2020a), JOAO (You et al. 2021), Sim-
GRACE (Xia et al. 2022), InfoGCL (Xu et al. 2021) and (5)
semi-supervised models including GCN (Kipf and Welling
2017), GAT (Veličković et al. 2018) and GIN (Xu et al.
2019).

Evaluation protocol. We closely follow the evaluation
protocol in recent SSL researches. For node classification,
the node embedding is fed into a logistic regression classi-
fier (Veličković et al. 2019). We run 20 trials with different
seeds and report the mean classification accuracy with stan-
dard deviation. For graph classification, we feed the graph
representation into a linear SVM, and report the mean 10-
fold cross-validation accuracy with standard deviation after
5 runs (Xu et al. 2021). Please refer to Appendix F.1 for fur-
ther details.

Experiment settings. We use the official implementations
for all baselines in node classification and follow the sug-
gested hyper-parameter settings, whereas graph classifica-
tion results are obtained from original papers if available.
For spectral filter, we consider heat kernel gc(λi) = e−tλi

with diffusion time t = 1 and PPR kernel gc(λi) =
α

1−(1−α)(1−λi)
with teleport probability α = 0.2. In node

classification training, we use the public split for PubMed
and follow 10/10/80% random split for the rest. Further de-
tails of model configurations (e.g., hyper-parameters selec-
tion) can be found in Appendix F.2.

Performance Comparison (Q1)
The node classification performances are reported in Ta-
ble 2. We find that WGDN outperforms the predictive SSL
methods by a large margin over all datasets. For fair com-
parisons, we report the best results of recent methods using
diffusion kernels (denoted with ∗). WGDN performs com-
petitively with contrastive SSL methods, achieving state-of-
the-art performances across all datasets. For instance, our
model WGDN is able to improve by a margin up to 0.9%
on accuracy over the most outstanding contrastive counter-
part CCA-SSG on PubMed. Moreover, when compared to
semi-supervised models, WGDN consistently generates bet-
ter performance than both GCN and GAT.

Table 3 lists the graph classification performance across
various methods. We observe that our approach achieves
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Model PubMed Computers Photo CS Physics

Self-supervised

Node2Vec 66.6 ± 0.9 84.39 ± 0.08 89.67 ± 0.12 85.08 ± 0.03 91.19 ± 0.04
DeepWalk + Feat. 74.3 ± 0.9 86.28 ± 0.07 90.05 ± 0.08 87.70 ± 0.04 94.90 ± 0.09

GAE 72.1 ± 0.5 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.07
GALA 75.9 ± 0.4 87.61 ± 0.06 91.27 ± 0.12 92.48 ± 0.07 95.23 ± 0.04
GDN 76.4 ± 0.2 87.67 ± 0.17 92.84 ± 0.07 92.93 ± 0.18 95.22 ± 0.05

DGI 76.8 ± 0.6 83.95 ± 0.47 91.61 ± 0.22 92.15 ± 0.63 94.51 ± 0.52
MVGRL 80.1 ± 0.7 87.52 ± 0.11 91.74 ± 0.07 92.11 ± 0.12 95.33 ± 0.03
GRACE 80.5 ± 0.4 86.25 ± 0.25 92.15 ± 0.24 92.93 ± 0.01 95.26 ± 0.02

GCA 80.2 ± 0.4 88.94 ± 0.15 92.53 ± 0.16 93.10 ± 0.01 95.73 ± 0.03
BGRL∗ 79.8 ± 0.4 89.70 ± 0.15 93.37 ± 0.21 93.51 ± 0.10 95.28 ± 0.06

AFGRL∗ 79.9 ± 0.3 89.58 ± 0.45 93.61 ± 0.20 93.56 ± 0.15 95.74 ± 0.10
CCA-SSG∗ 81.0 ± 0.3 88.15 ± 0.35 93.25 ± 0.21 93.31 ± 0.16 95.59 ± 0.07

WGDN 81.9 ± 0.4 89.72 ± 0.48 93.89 ± 0.31 93.67 ± 0.14 95.76 ± 0.11

Supervised GCN 79.1 ± 0.3 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
GAT 79.0 ± 0.3 86.93 ± 0.29 92.56 ± 0.35 92.31 ± 0.24 95.47 ± 0.15

Table 2: Node classification accuracy of all compared methods. The best and runner up models in self-supervised learning are
highlighted in boldface and underlined.

Model IMDB-B IMDB-M PROTEINS COLLAB DD NCI1

Self-supervised

WL 72.30 ± 3.44 46.95 ± 0.46 72.92 ± 0.56 79.02 ± 1.77 79.43 ± 0.55 80.01 ± 0.50
DGK 66.96 ± 0.56 44.55 ± 0.52 73.30 ± 0.82 73.09 ± 0.25 - 80.31 ± 0.46

Graph2Vec 71.10 ± 0.54 50.44 ± 0.87 73.30 ± 2.05 - - 73.22 ± 1.81
MVGRL 74.20 ± 0.70 51.20 ± 0.50 - - - -

InfoGraph 73.03 ± 0.87 49.69 ± 0.53 74.44 ± 0.31 70.65 ± 1.13 72.85 ± 1.78 76.20 ± 1.06
GraphCL 71.14 ± 0.44 48.58 ± 0.67 74.39 ± 0.45 71.36 ± 1.15 78.62 ± 0.40 77.87 ± 0.41

JOAO 70.21 ± 3.08 49.20 ± 0.77 74.55 ± 0.41 69.50 ± 0.36 77.32 ± 0.54 78.07 ± 0.47
SimGRACE 71.30 ± 0.77 - 75.35 ± 0.09 71.72 ± 0.82 77.44 ± 1.11 79.12 ± 0.44

InfoGCL 75.10 ± 0.90 51.40 ± 0.80 - 80.00 ± 1.30 - 80.20 ± 0.60
GraphMAE 75.52 ± 0.66 51.63 ± 0.52 75.30 ± 0.39 80.32 ± 0.46 78.86 ± 0.35 80.40 ± 0.30

WGDN 75.76 ± 0.20 51.77 ± 0.55 76.53 ± 0.38 81.76 ± 0.24 79.54 ± 0.51 80.70 ± 0.39

Supervised GCN 74.0 ± 3.4 51.9 ± 3.8 76.0 ± 3.2 79.0 ± 1.8 75.9 ± 2.5 80.2 ± 2.0
GIN 75.1 ± 5.1 52.3 ± 2.8 76.2 ± 2.8 80.2 ± 1.9 75.3 ± 2.9 82.7 ± 1.7

Table 3: Graph classification accuracy of all compared methods.

state-of-the-art results compared to existing SSL baselines
in all datasets. Besides, WGDN outperforms the best ker-
nel methods up to a large margin. Even when compared to
semi-supervised models, our model achieves the best results
in 4 out of 6 datasets and the gaps for the rest are relatively
minor.

In brief, our model consistently achieves comparable per-
formance with the cutting-edge SSL and semi-supervised
methods across node-level and graph-level tasks. Particu-
larly, the significant improvements demonstrate the effec-
tiveness of WGDN in boosting the learning capability under
GAE framework.

Effectiveness of Key Components (Q2)
To validate the benefit of introducing graph wiener decoder,
we conduct ablation studies on node and graph classifica-
tion tasks with five datasets that exhibit distinct character-

istics (e.g., citation, social and bioinformatics). For clarity,
WGDN-A and WGDN-W are denoted as the models re-
moving augmentation or substituting graph wiener decoder
with inverse decoder. WGDN-AW is the plain model with-
out both components. Specifically, heat kernel is selected
as the backbone of encoder for node-level datasets, and we
adopt PPR kernel for graph-level datasets.

The results are illustrated in Figure 3, from which we
make several observations. (1) WGDN-W may underper-
form WGDN-AW. This observation validates that deter-
ministic inverse decoder is ill-adapted to augmented latent
space and may lead to degraded learning quality, which
is consistent with our theoretical analysis. (2) Compared
with WGDN-AW, WGDN-A improves model performance
across all datasets, which suggests that graph wiener de-
coder is able to benefit representation learning even with-
out augmentation. (3) The performance of WGDN is signif-
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Figure 3: Ablation study of graph wiener decoder. Complete
model consistently boosts model performance across differ-
ent datasets.

icantly higher than other counterparts. For instance, WGDN
has a relative improvement up to 6% over WGDN-AW on
PubMed. It can be concluded that the graph wiener de-
coder allows the model to generate more semantic embed-
ding from the augmented latent space.

Efficiency Analysis (Q3)
To evaluate the computational efficiency, we compare the
training speed and GPU overhead of WGDN against BGRL
and GraphMAE on datasets of different scales, including
Computers and OGBN-Arxiv (Hu et al. 2020a). For fair
comparisons, we set the embedding size of all models as
512 and follow their suggested hyper-parameters settings.
It is evident from Table 4 that the memory requirement of
WGDN is significantly reduced up to 30% compared to
BGRL, the most efficient contrastive benchmark. In addi-
tion, as WGDN is a GAE framework without computation-
ally expensive add-on, its computational cost is shown to
be comparable to GraphMAE. Considering that memory is
usually the bottleneck in graph-based applications, WGDN
demonstrates a practical advantage when limited resources
are available.

Dataset Model Steps/Second Memory

Computers
BGRL 17.27 3.01 GB

GraphMAE 19.47 2.03 GB
WGDN 19.62 2.20 GB

OGBN-Arxiv
BGRL 2.52 9.74 GB

GraphMAE 3.13 8.01 GB
WGDN 3.16 7.35 GB

Table 4: Comparison of computational efficiency on bench-
mark datasets.

Hyper-Parameter Analysis (Q4)
Magnitude of augmentation β. It is expected that intro-
ducing adequate augmentation enriches the sample distribu-
tion in the latent space, which contributes to learning more
expressive representations. Figure 4 shows that the classifi-
cation accuracy generally reaches the peak and drops gradu-
ally when the augmentation size β increases, which aligns

Figure 4: Downstream tasks performance versus varied aug-
mentation magnitude β in training.

Filter GCN Heat PPR

PubMed 80.2 (0.019) 81.9 (0.011) 81.4 (0.013)
Computers 89.03 (0.417) 89.72 (0.375) 89.59 (0.405)

CS 92.48 (0.263) 93.67 (0.241) 92.75 (0.245)

IMDB-B 75.46 (0.102) 75.71 (0.098) 75.76 (0.093)
DD 79.29 (0.118) 79.36 (0.104) 79.54 (0.074)

Table 5: Performance and training loss of WGDN with dif-
ferent convolution filter gc.

with our intuition. We also observe that the optimal aug-
mentation magnitudes are relatively smaller for node-level
datasets, which may be related to the semantics level of
graph features. Input features of graph-level datasets are
less informative and latent distribution may still preserve
with stronger augmentations. Besides, the stable trend fur-
ther verifies that graph wiener decoder is well adapted to
augmentation in representation learning.

Convolution filter gc. Table 5 shows the influence of
different convolution filters. It is observed that diffusion-
based WGDN outperforms its trivial version with GCN filter
across different applications. Specifically, heat kernel gen-
erates better results in node classification and PPR kernel
is more suitable for graph-level tasks. We conjecture that
sparse feature information may be better compressed via
propagation with PPR kernel. In addition, we also find that
training loss of diffusion models is consistently lower. Both
phenomena indicate that the superior information aggrega-
tion and powerful reconstruction of diffusion filters jointly
contribute to learning a more semantic representation.

Conclusion and Future Work
In this paper, we propose Wiener Graph Deconvolutional
Network (WGDN), a predictive self-supervised learning
framework for graph-structured data. We introduce graph
wiener filter and theoretically validate its superior recon-
struction ability to facilitate reconstruction-based represen-
tation learning. By leveraging graph wiener decoder, our
model can efficiently learn graph embedding with augmen-
tation. Extensive experimental results on various datasets
demonstrate that WGDN achieves competitive performance
over a wide range of self-supervised and semi-supervised
counterparts.
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