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Abstract

The instrumental variable (IV) approach is a widely used way
to estimate the causal effects of a treatment on an outcome of
interest from observational data with latent confounders. A
standard IV is expected to be related to the treatment variable
and independent of all other variables in the system. However,
it is challenging to search for a standard IV from data directly
due to the strict conditions. The conditional IV (CIV) method
has been proposed to allow a variable to be an instrument con-
ditioning on a set of variables, allowing a wider choice of pos-
sible IVs and enabling broader practical applications of the IV
approach. Nevertheless, there is not a data-driven method to
discover a CIV and its conditioning set directly from data. To
fill this gap, in this paper, we propose to learn the represen-
tations of the information of a CIV and its conditioning set
from data with latent confounders for average causal effect
estimation. By taking advantage of deep generative models,
we develop a novel data-driven approach for simultaneously
learning the representation of a CIV from measured variables
and generating the representation of its conditioning set given
measured variables. Extensive experiments on synthetic and
real-world datasets show that our method outperforms the ex-
isting IV methods.

Introduction
Estimating the causal effect of a treatment (a.k.a., interven-
tion, exposure, or action) on an outcome of interest, is a fun-
damental area of research (Pearl 2009; Pearl and Macken-
zie 2018). Randomised controlled trials (RCTs) are consid-
ered the gold standard for causal effect estimation. However,
RCTs are often difficult or impossible to conduct due to ethi-
cal issues and/or high costs (Imbens and Rubin 2015). Thus,
it is important to estimate causal effects from observational
data. For the case when there are no latent or unmeasured
confounders1 (i.e., the unconfoundedness assumption (Im-
bens and Rubin 2015) holds), many methods have been de-
veloped for causal effects estimation from data (Yao et al.
2021; Guo et al. 2020). In contrast, for the more realistic and
challenging case when there are latent confounders in data,
only a handful of data-driven methods have been developed.

*These authors contributed equally.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A confounder is a variable that causally affects both the treat-
ment and the outcome.

Two types of approaches, the instrumental variable (IV)
approach (Hernán and Robins 2006) and the proxy ap-
proach (Kuroki and Pearl 2014; Miao, Geng, and Tchet-
gen Tchetgen 2018) can be used for estimating causal effects
from data with latent confounders. The proxy approach re-
lies on the assumption that the measured variables are noisy
measurements of the latent confounders. However, recent
work (Rissanen and Marttinen 2021) has shown that it is
difficult to recover a blocking set (i.e., a set that satisfies
the back-door criterion (Pearl 2009)) for removing the con-
founding bias of the latent confounders even though there
exists a rich set of proxy variables. Instead, the IV approach
aims to avoid the spurious associations caused by latent con-
founders with the aid of a valid IV. In this work, we explore
the direction of the IV approach.

The traditional IV approach requires a standard IV (de-
noted as S here) which satisfies the following three condi-
tions (Hernán and Robins 2006): (i) S is correlated with the
treatment T (a.k.a., relevance condition), (ii) S affects the
outcome Y only through the treatment T (a.k.a., exclusion
restriction), and (iii) there is no confounding bias between
S and Y (a.k.a., unconfounded instrument). However, the
last two conditions are too strict to be satisfied in practice.
A conditional IV (CIV, see Definition 1 for its formal defi-
nition), which requires some measured variables as its con-
ditioning set, has more relaxed conditions than a standard
IV (Brito and Pearl 2002). Hence in this paper, we focus on
data-driven methods based on CIVs.

It is challenging to determine a CIV and its conditioning
set directly from observational data with latent confounders
since a CIV and its conditioning set are not distinguishable
by statistical tests due to latent confounders (Spirtes et al.
2000; Pearl 2009). The example in Fig. 1 illustrates the chal-
lenge. The causal directed acyclic graph (DAG) in Fig. 1
shows an underlying data generation mechanism, where T
and Y are the treatment and outcome variables respectively,
UC is a latent confounder, and S is a valid CIV for which
WS is the conditioning set. In a dataset generated from this
mechanism, it is impossible to distinguish the roles of S (as
a CIV) and WS (as the conditioning set of S).

Recently, the deep generative model based on varia-
tional autoencoder (VAE) (Kingma and Welling 2014; Sohn,
Yan, and Lee 2015) has achieved many successes in ar-
eas such as causal representation learning (Schölkopf et al.
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Figure 1: An exemplar causal DAG shows the indistinguish
ability between a CIV and its conditioning set in the data
with a latent confounder UC . T and Y are treatment and
outcome variables. S and WS are a CIV and its condition-
ing set, and they are indistinguishable in the data since both
are dependent on T and Y and conditional dependent on Y
given T . Dashed edges indicate that UC cannot be measured.
As from the DAG, we know that in the dataset generated,
both S and WS are associated with T , given any other ob-
served variable(s). Moreover, while S is associated with Y
given any other observed variable(s), WS is also associated
with Y given any other observed variable(s) due to the un-
measured confounder UC .

2021; Schölkopf 2022) and individual causal effect esti-
mation (Hassanpour and Greiner 2019; Zhang, Liu, and Li
2021). In this work, we will leverage the strength of VAE to
address the challenge of discovering CIVs and their condi-
tioning sets from data with latent confounders.

For a treatment T and outcome Y , and a set of mea-
sured pretreatment variables X, and given the assumption
that there exists at least one CIV in X, we propose the causal
representation learning scheme (as shown in Fig. 2) to learn
the representation ZT of X and generate the latent repre-
sentation ZC conditioning on X respectively, and we prove
that the obtained ZT is a valid CIV conditioning on ZC.
We then develop a VAE-based method, named CIV.VAE
(Conditional IV approach based on VAE model) to conduct
causal representation learning to obtain ZT and ZC for un-
biased average causal effect estimation.

The contributions of this work are summarised as follows.

• We propose to tackle the problem of discovering a CIV
and its conditioning set from data in the presence of la-
tent confounders with causal representation learning. As
far as we know, this is the first work using a data-driven
approach and causal representation learning for identify-
ing CIVs and their conditioning sets.

• We develop a novel VAE based method, CIV.VAE, to
learn the representation of CIVs and generate the rep-
resentation of their conditioning sets for causal effect es-
timation from data in the presence of latent confounders.

• Extensive experiments on a wide range of synthetic and
real-world datasets show that the causal effects esti-
mated using the CIVs and conditioning sets obtained by
CIV.VAE have the smallest estimation error compared
with the state-of-the-art causal effect estimators.

The rest of the paper is organised as follows. We firstly
introduce background knowledge in Preliminary. Secondly,
the details of our proposed CIV.VAE method is presented.
Thirdly, we discuss the experimental setup, datasets and ex-

perimental results. Fourthly, we review the related works.
Finally, we conclude our work.

Preliminary
In this section, we briefly introduce some important nota-
tions, definitions and assumptions used in the paper.

Notations & Definitions
We use uppercase and lowercase letters to represent vari-
ables and their values, respectively. Bold-faced uppercase
and lowercase letters are used to indicate a set of variables
and a value assignment of the set, respectively.

Let T be a binary treatment variable (T = 1 for treated
and T = 0 for control) and Y be the outcome of interest. Let
G = (V,E) be a DAG with nodes V = X ∪U ∪ {T, Y }
and directed edges E. X is the set of measured pretreatment
variables, and U = UC ∪U′ is the set of unmeasured con-
founders, where UC denotes the latent confounders between
the pair T and Y , and U′ represents the latent confounders
between other variable pairs. In a causal DAG G = (V,E),
an edge (directed) represents the causal relationship between
two nodes. For example, Xi → Xj in G indicates that Xi

is a cause of Xj , and Xj is an effect of Xi. In a DAG G,
a path between Xi and Xj consists of a sequence of dis-
tinct nodes ⟨Xi, . . . , Xj⟩with every pair of successive nodes
being adjacent. More definitions regarding graphical causal
modelling such as d-separation, collider, Markov property
and faithfulness can be found in the supplement.

In this work, we would like to query the average causal
effect (ACE) of treatment variable T on outcome variable
Y , referred to as ACE(T, Y ), from a dataset containing a
set of pretreatment variables X, treatment T and outcome
Y , and assuming that X contains at least one CIV and its
conditioning set and there exists a set of latent confounders
UC affecting both T and Y and UC ̸= ∅. There may exist
other latent confounders (denoted as U′) which affect pairs
of variables other than (T, Y ), and U′ can be an ∅.

Conditional Instrumental Variable (CIV)
The IV approach is a powerful method for removing the
confounding bias caused by the latent confounders affecting
both treatment and outcome. As discussed in the Introduc-
tion, the last two conditions of a standard IV are too strict to
be satisfied in real-world applications. In contrast, a condi-
tional IV (CIV) , as defined below, has more relaxed condi-
tions than a standard IV (Brito and Pearl 2002; Pearl 2009).
Definition 1 (Conditional IV (Pearl 2009)). Given a DAG
G = (V,E) with V = X∪U∪{T, Y }, a variable S is said
to be a CIV w.r.t., T → Y if there exists a set of measured
variables W ⊆ X \ {S} and W ̸= ∅ such that (i) S ⊥̸⊥d
T |W, (ii) S ⊥⊥d Y |W in GT , where GT is a manipulated
DAG obtained by removing T → Y from G, and (iii) ∀W ∈
W, W is not a descendant of Y .

In the above definition, ⊥̸⊥d and⊥⊥d indicate d-connection
and d-separation respectively in a DAG (Pearl 2009). Defi-
nition 1 can be easily generalised to a set of CIVs S with
the corresponding conditioning set W. Under the pretreat-
ment assumption (i.e. all variables in X are pretreatment
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Figure 2: A causal graph representing the proposed causal
representation learning scheme for discovering CIVs and
their conditioning sets. T , Y , X, and UC are the treatment,
the outcome, the set of measured pretreatment variables,
and latent confounders between T and Y , respectively. The
two grey circles denote the representation ZT containing the
CIV information in X and ZC holding the information of the
conditioning set of ZT generated given X.

variables), condition (iii) is always satisfied, so we only
need to test conditions (i) and (ii). Given X ∈ X, if a set
W ⊆ X \ {X} is found to block all paths between X and
Y ; and given W, X and T are still dependent, then W in-
strumentalises X to be a CIV. Note that finding such a W
from a causal DAG is proved to be NP-complete even with
the pretreatment assumption (Van der Zander, Liśkiewicz,
and Textor 2015).

In this work, we utilise the two stage least squares
method (Angrist and Imbens 1995) as the ACE estima-
tor. In a linear system, once we have a valid CIV S and
its conditioning set W, ACE(T, Y ) can be estimated by
σs∗y∗w/σs∗t∗w, where σs∗y∗w and σs∗t∗W are the estimated
causal effect of S on Y conditioning on W and the causal
effect of S on T conditioning on W, respectively.

The Proposed CIV.VAE Model
The Causal Representation Learning Scheme for
CIV Discovery
In this work, we aim to simultaneously learn the latent rep-
resentation ZT of X and generate the latent representation
ZC given X. Here ZT contains the instrumental informa-
tion that only influences T but not Y , and ZC denotes the
representation of the confounders that affect both T and Y .
We assume that Fig. 2 is the underlying generative model
(i.e., the underlying causal DAG) and it shows our proposed
causal representation learning scheme. Specifically, a set of
pretreatment variables X are generated from ZT and ZT

captures the information of S in Fig. 1. The latent confound-
ing representation ZC is generated based on X and captures
the information of X \ S in Fig. 1.

If the two disjoint representations ZT and ZC can be in-
ferred from data with latent confounders, the following pro-
posed theorem guarantees that ZT is a valid CIV with ZC

being its conditioning set. Using ZT and ZC, we can ob-
tain unbiased causal effect estimation from data with latent
confounders.

Theorem 1. Given a causal DAG G=(X ∪U ∪ {T, Y },E)
where X is the set of pretreatment variables. T and Y

are the treatment and outcome respectively, and there ex-
ists T → Y . U = UC ∪U′ is the set of latent confounders
between T and Y (denoted as UC) and latent confounders
between measured variables in X (denoted as U′), and E
is the set of edges between the variables. Suppose that there
exists a set of CIVs S ⊂ X with |S| ≥ 1 and its conditioning
set W ⊆ X \ S with |W| ≥ 1. If the latent representa-
tions ZT and ZC as shown in Fig. 2 can be learned from
data, then ZT is a CIV conditioning on ZC for estimating
the causal effect of T on Y .

Proof. We prove that the two representations ZT and ZC

satisfy the three conditions of Definition 1 based on the
causal DAG shown in Fig. 2. The conditions |S| ≥ 1 and
|W| ≥ 1 are to ensure that there exists at least a pair of CIV
and its conditioning set in X. In G, (1) ZT is a set of parents
of the treatment T , so ZT ⊥̸⊥dT |ZC and the first condition of
Definition 1 is satisfied; (2) the spurious association between
ZT and Y are caused by these paths, ZT → X→ ZC → Y ,
ZT → T ← UC → Y , ZT → T ← ZC → Y and
ZT → X → ZC → T ← UC → Y in the manipulated
DAG GT . The first path is blocked by ZC and the other three
paths are blocked by ∅ since these paths contain a collider T ,
i.e., ZT ⊥⊥d Y |ZC in GT and the second condition of Defini-
tion 1 holds; (3) ZC is generated based on X and X contains
only pretreatment variables, so ZC is not a descendant of Y ,
i.e., the third condition of Definition 1 holds. Hence, the two
representations ZT and ZC satisfy Definition 1, i.e., ZC in-
strumentalises ZT such that ZT is a valid CIV for estimating
the causal effect of T on Y .

Theorem 1 permits us to develop a data-driven method
based on deep generative models (Kingma, Welling et al.
2019) to learn the representations of a CIV and its con-
ditioning set directly from observational data. In the next
subsection, we introduce our proposed data-driven method,
CIV.VAE for learning the two representations ZT and ZC.

VAE-based Representation Learning of ZT and ZC

Fig. 3 shows the CIV.VAE architecture we have developed
for learning the latent representations of the CIV ZT and its
conditioning set ZC. CIV.VAE comprises an inference net-
work and a generative network as shown in Fig. 3(a) and
Fig. 3(b) respectively. CIV.VAE utilises the inference net-
work and the generative network to approximate the pos-
terior distributions of p(ZT |X) and p(ZC|X) for the two
latent representations ZT and ZC which indicate the latent
CIV representation and the representation of its conditioning
set, respectively.

In the inference network, two separate encoders q(ZT |X)
and q(ZC|X) are utilised as variational posteriors over
the latent representations. In the generative model, these
latent representations are utilised by a single decoder
p(X|ZT ,ZC) for the reconstruction of X. Based on the
standard VAE framework in literature (Kingma and Welling
2014; Kingma, Welling et al. 2019), the prior distribution of
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(a) Inference Network (b) Generative Network

Figure 3: The proposed CIV.VAE architecture which consists of the inference network and the generative network for learning
the latent representations of CIV ZT and its conditioning set ZC. A grey box denotes the drawing of samples from the respective
distribution, a white box indicates the parameterised deterministic neural network transitions, and a circle indicates switching
paths according to the value of T . In the inference network, the dashed arrows indicate the two auxiliary predictors q(T |ZT ,ZC)
and q(Y |T,ZC).

p(ZT ) is sampled from a Gaussian distribution as follows:

p(ZT ) =

DZT∏
i=1

N (ZTi
|0, 1). (1)

where DZT
is the dimension of ZT .

Specifically, in the inference model, the variational ap-
proximations of the posterior distributions are as follows:

q(ZT |X) =

DZT∏
i=1

N (µ = µ̂ZTi
, σ2 = σ̂2

ZTi
);

q(ZC|X) =

DZC∏
i=1

N (µ = µ̂ZCi
, σ2 = σ̂2

ZCi
)

(2)

where µ̂ZT
, µ̂ZC

and σ̂2
ZT

, σ̂2
ZC

are the means and variances
of the Gaussian distributions parameterised by neural net-
works. DZC

is the dimension of ZC.
In the generative model, according to the conditional vari-

ational autoencoder (CVAE) network (Sohn, Yan, and Lee
2015), we use Monte Carlo (MC) sampling to obtain ZC

conditioning on the set of pretreatment variables X:

ZC ∽ p(ZC|X) (3)

The generative models for T and X are described as:

p(T |ZT ,ZC) = Bern(σ(g1(ZT ,ZC)));

p(X|ZT ,ZC) =

DX∏
i=1

p(Xi|ZT ,ZC),
(4)

where g1(·) is the function parameterised by neural networks
and σ(·) is the logistic function.

For continuous Y , in the generative model, it is modelled
as a Gaussian distribution with its mean and variance param-
eterised it by the mutually exclusive neural networks that de-
fines p(Y |T = 0,ZC) and p(Y |T = 1,ZC), respectively.
Specifically, the model is defined as:

p(Y |T,ZC) = N (µ = µ̂Y , σ
2 = σ̂2

Y ),

µ̂Y = T · g2(ZC) + (1− T ) · g3(ZC),

σ̂2
Y = T · g4(ZC) + (1− T ) · g5(ZC).

(5)

where g2(·), g3(·), g4(·) and g5(·) are the functions parame-
terised by neural networks. For binary Y , we model it with
a Bernoulli distribution. The specific model is:

p(Y |T,ZC) = Bern(σ(g6(T,ZC))). (6)
where g6(·) is a function parameterised by neural networks.
For inference, the parameters can be optimised by maximis-
ing the evidence lower bound (ELBO):

M = Eq[log p(X|ZT ,ZC)]−DKL[q(ZT |X)||p(ZT )]

−DKL[q(ZC|X)||p(ZC|X)].
(7)

Note that the decoder (generative network) p(ZC|X) con-
ditioning on X is used to encourage as much information
as possible from X is captured in the CIV.VAE method. To
improve the learning of the latent representations ZT and
ZC) and enable that the treatment T can be predicted from
the two representations and the outcome Y can be predicted
from ZC and T , we add two auxiliary predictors to the vari-
ational ELBO in Eq.(7) as designed by the works (Louizos
et al. 2017; Zhang, Liu, and Li 2021). Consequently, the pro-
posed objective function of CIV.VAE is expressed as:

LCIV.V AE = −M+ αEq[log q(T |ZT ,ZC)]

+ βEq[log q(Y |T,ZC)],
(8)
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where α and β are the weights for the auxiliary predictors.
For calculating ACE(W,Y ), we draw ZT and ZC from

the trained CIV.VAE method, and utilise both learned la-
tent representations ZT and ZC in the Instrumental Variable
(CIV) method (Angrist and Imbens 1995) as described in
the “Conditional Instrumental Variable (CIV)” subsection,
where s and w are replaced by ZT and ZC respectively.

The main advantage of CIV.VAE is that it simultaneously
learns the latent CIV representation ZT and the latent repre-
sentation of the conditioning set ZC for ZT without speci-
fying a CIV and its conditioning set by domain knowledge,
and it provides a practical solution to the challenge (de-
scribed in the Introduction) of distinguishing a CIV and its
conditioning set from data with latent confounders. Hence,
CIV.VAE is expected to have wider applications. CIV.VAE
only relies on two practical assumptions, the pretreatment
variable assumption and the existence of at least one CIV
and its conditioning set in X.

The main difference between CIV.VAE and the two other
VAE-based causal effect estimators, CEVAE (Louizos et al.
2017) and TEDVAE (Zhang, Liu, and Li 2021) is that
CIV.VAE builds on conditioning VAE for learning ZT as the
CIV and ZC as its conditioning set that blocks the confound-
ing bias between ZT and Y , whereas CEVAE and TEDVAE
are to recover the set that blocks the confounding bias be-
tween T and Y . Moreover, CIV.VAE method belongs to the
IV approach, while CEVAE and TEDVAE methods are con-
founding adjustment methods.

Experiments
In this section, we evaluate the performance of CIV.VAE
for the task of estimating the average causal effect of T
on Y . The experiments are divided into two parts: evalu-
ation with simulated data and evaluation with real-world
data. For the first part, we use the causal DAG in Fig. 1
in the supplement to generate synthetic datasets with latent
confounders. For the second part, we use three real-world
datasets, Schoolingreturns (Card 1993), 401k (Wooldridge
2010) and Sachs (Sachs, Perez et al. 2005), which have ref-
erence causal effect values available in literature. The three
datasets are widely used in the evaluation of IV-based meth-
ods (Abadie 2003; Wooldridge 2010; Silva and Shimizu
2017). Note that Schoolingreturns and 401k each have a
nominated CIV for the causal effect estimation, but the cor-
responding conditioning set is unknown, and there is not a
nominated IV in Sachs. Our CIV.VAE method do not use
a known CIV, instead we learn the representations of CIVs
and their conditioning sets.

Experiment Setup
We compare CIV.VAE with three types of causal effect es-
timators: (1) IV-based estimators with a given IV, (2) IV-
based estimators without a given IV and (3) VAE-based
causal effect estimators. Five of the IV-based estimators,
TSLS (two-stage least squares) regression (Angrist and Im-
bens 1995), FIVR (the causal random forest method for IV
regression) (Athey, Tibshirani, and Wager 2019), the deepIV
(a deep learning based IV estimator) (Hartford, Lewis et al.

2017), OrthoIV (orthogonal machine learning based IV es-
timator) (Syrgkanis, Lei et al. 2019) and DMLIV (double
machine learning based IV estimator) (Chernozhukov et al.
2018), each of which needs a given IV; whereas the other
IV-based estimators, IV.Tetrad (Silva and Shimizu 2017) and
sisVIVE (some invalid some valid IV estimator) (Kang et al.
2016) do not need a given IV. The two VAE-based causal ef-
fect estimators are CEVAE (causal effect variational autoen-
coder) (Louizos et al. 2017) and TEDVAE (treatment effect
by disentangled variational autoencoder) (Zhang, Liu, and
Li 2021). We choose the two VAE-based estimators as our
baseline because CIV.VAE also builds on the VAE model.

Evaluation Metrics. For synthetic datasets with the true
causal effect ACE(T, Y ), the absolute error: εACE =∣∣∣ ˆACE(T, Y )−ACE(T, Y )

∣∣∣ is used to evaluate the perfor-
mance of all estimators. For multiple replications, we report
the average results with STD (standard deviation). For the
three real-world datasets, all estimators are evaluated against
the reference causal effect values in the literature.

Implementation Details. We use Python and the libraries
including pytorch (Paszke, Gross et al. 2019), pyro (Bing-
ham, Chen et al. 2019) and scikit-learn (Pedregosa et al.
2011) to implement our CIV.VAE method. We provide the
details of our CIV.VAE implementation and the parameters
setting in the supplement. TSLS is implemented by using
the functions glm and ivglm in the R packages stats and iv-
tools (Sjolander and Martinussen 2019) respectively. FIVR
is coded by employing the function instrumental forest in
the R package grf (Athey, Tibshirani, and Wager 2019). The
program of DeepIV is retrieved from the authors’ GitHub 2.
The implementations of OrthoIV and DMLIV are from the
Python package encoml. IV.Tetrad is obtained from the au-
thors’ site 3. The implementation of CEVAE is obtained
from the Python library pyro (Bingham, Chen et al. 2019)
and the implementation of TEDVAE is downloaded from the
authors’ GitHub 4.

Evaluation with Simulated Data
We use the causal DAG provided in Fig. 1 in the supple-
ment to generate a set of synthetic datasets with a range of
sample sizes: 2k, 4k, 6k, 8k, 10k and 20k. The set of X is
{S,X1, X2, X3, X4, X5} and the set U (latent confounders)
consists of {U,U1, U2, U3, U4} where T ← U → Y and
U′ = {U1, U2, U3, U4}. The true ACE(T, Y ) of all syn-
thetic datasets is 2. Due to page limitation, more details of
the data generation process are provided in the supplement.

To avoid the bias brought by data generation, 30 synthetic
datasets for each sample size are generated in our experi-
ments. We utilise the CIV S in the underlying causal DAG
as a standard IV for TSLS. Moreover, the CIV S and the set
X \ {S} in the underlying causal DAG are the true CIV
and the corresponding conditioning set, respectively, and
they both are taken as input for the four estimators, FIVR,

2https://github.com/jhartford/DeepIV
3http://www.homepages.ucl.ac.uk/∼ucgtrbd/code/iv discovery
4https://github.com/WeijiaZhang24/TEDVAE
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Samples
Methods 2k 4k 6k 8k 10k 20k

Known IV

TSLS 11.12±1.74 11.12±1.38 10.87±0.83 11.08±0.94 11.34±0.82 11.06±0.55
FIVR 1.58±0.97 1.10±0.61 0.64±0.50 0.62±0.37 0.63±0.42 0.33±0.21

DeepIV 1.64±0.19 1.47±0.21 1.53±0.21 1.53±0.23 1.43±0.32 1.33±0.22
OrthIV 3.57±2.90 1.91±1.19 1.29±1.49 1.51±1.25 1.29±0.93 0.71±0.52
DMLIV 3.53±2.63 2.11±1.70 1.19±1.33 1.49±1.32 1.12±0.85 0.71±0.58

Unknown IV sisVIVE 1.37±0.79 1.61±0.97 1.70±1.01 1.39±0.61 1.56±0.81 2.08±0.89
IV.Tetrad 2.89±3.77 2.15±3.45 2.73±3.92 2.86±3.90 2.12±3.60 2.90±3.98

VAE-based CEVAE 1.34±0.23 1.14±0.25 1.23±0.29 1.17±0.36 1.17±0.39 1.13±0.58
TEDVAE 1.68±0.27 1.65±0.18 1.70±0.14 1.68±0.11 1.70±0.10 1.70±0.09

CIV.VAE 1.94±1.45 0.95±0.42 0.42±0.34 0.33±0.20 0.26±0.19 0.22±0.17

Table 1: The table summarises the estimated errors εACE (Mean±STD) over 30 synthetic datasets in each sample size. The
lowest estimated errors are marked in boldface. Note that CIV.VAE relies on the least domain knowledge among all estimators
and obtain the smallest εACE among all methods compared.

DeepIV, OrthIV and DMLIV. The estimation errors of all
estimators on all synthetic datasets are reported in Table 1.

Results. From Table 1, we see that CIV.VAE obtains the
smallest εACE across almost all datasets compared with the
other estimators. Note that CIV.VAE relies on the least do-
main knowledge, i.e. does not require a specific IV (whereas
TSLS, FIVR, DeepIV, OrthIV and DMLIV do) or the con-
ditioning set (whereas IV.Tetrad does), or a rich set of IVs
(whereas sisVIVE does) or a rich set of proxy variables
(whereas CEVAE does) or the unconfoundedness assump-
tion (whereas TEDVAE does).

There are five other observations from Table 1: (1) the
baseline IV estimator, TSLS, has the largest estimation er-
rors because the confounding bias between S and Y caused
by confounders and latent confounders is not blocked at
all even though it uses the CIV S as its known IV. (2)
FIVR obtains the best performance in the first type of IV-
based methods, i.e., TSLS, DeepIV, OrthIV and DMLIV,
but has larger estimation errors than CIV.VAE. (3) two IV-
based estimators without needing a given IV, sisVIVE and
IV.Tetrad obtain constant estimation errors with little varia-
tion across all synthetic datasets and have larger estimation
errors than CIV.VAE. (4) the two VAE-based causal effect
estimators in the third type of comparison methods, CEVAE
and TEDVAE obtain smaller estimation errors than the sec-
ond type of methods, but both have larger estimation errors
than CIV.VAE. (5) As the sample size increases, CIV.VAE
consistently gets the lowest bias compared with all causal
effect estimators except for the 2k sample size. This indi-
cates that CIV.VAE requires relatively large sample size to
learn the two representations ZT and ZC such that their dis-
tributions are close to the true distributions.

Therefore, the experimental results on synthetic datasets
show that CIV.VAE has the capability to learn high quality
CIV and conditioning set representations for causal effect
estimation from data with latent confounders.

Experiments on Real-world Datasets
In this section, we conduct experiments on three bench-
mark real-world datasets, Schoolingreturns (Card 1993),

401(k) (Verbeek 2008) and Sachs (Sachs, Perez et al. 2005)
for which the empirical causal effects available and widely
accepted. Note that the first two datasets each have a known
IV based on domain knowledge, but Sachs does not have a
known IV. The detailed descriptions of the three real-world
datasets are introduced in the supplement.

Schoolingreturns. This dataset consists of 3,010 records
and 19 variables. The treatment variable is the education
level of a person. The outcome variable is raw wages in 1976
(in cents per hour). The goal of collecting this dataset is to
study the causal effect of the education level on wages. In
the work (Card 1993), nearcollege (geographical proximity
to a college) is nominated as the known IV, and the esti-
mated ACE(T, Y ) = 0.1329 with 95% confidence interval
(0.0484, 0.2175) from the works (Verbeek 2008) as the ref-
erence causal effect.

401(k). The dataset contains 9,275 individuals and 11
variables. The dataset is from the survey of income and pro-
gram participation (SIPP) (Verbeek 2008). The treatment is
p401k (a binary indicated variable of participation in 401
(k)), and the outcome is pira (a binary indicated variable,
pira = 1 denotes participation in IRA). e401k (a binary in-
dicated variable of eligibility for 401 (k)) is used as an IV,
ACE(T, Y ) = 0.0712 with 95% confidence interval (0.047,
0.095) (Verbeek 2008) as the reference causal effect.

Sachs. The dataset contains 853 samples and 11 vari-
ables (Sachs, Perez et al. 2005). The treatment is Erk (the
manipulation of concentration levels of a molecule). The
outcome is the concentration of Akt. Note that there is
not a nominated IV. In this work, we take the reported
ACE(T, Y ) = 1.4301 with 95% confidence interval (0.05,
3.23) in the work (Silva and Shimizu 2017) (i.e., IV.Tetrad’s
estimated causal effect) as the reference causal effect.

Results. All results on the three datasets are reported
in Table 2. From the results in Table 2, we see that (1)
the causal effects estimated by CIV.VAE are within the
95% confidence interval of their empirical results, and on
Sachs, the estimated causal effect by CIV.VAE is the clos-
est to IV.Tetrad’s result; (2) the estimated causal effects by
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Estimators TSLS FIVR DeepIV OrthIV DMLIV sisVIVE IV.Tetrad CEVAE TEDVAE CIV.VAE
Schoolingreturns 0.5042 1.1513 -0.0444 1.3189 1.2806 0.0254 0.0643 0.0956 -0.1082 0.1034

401(k) 0.1500 0.0746 - 0.1502 0.1503 1.5172 1.2484 0.0384 0.0283 0.0752
Sachs - - - - - 0.4356 1.4301 0.2542 0.2553 1.5133

Table 2: The estimated causal effects of all estimators on the three real-world datasets. We highlight the estimated causal effects
within the 95% confidence interval on Schoolingreturns and 401(k). ‘-’ is used for the corresponding IV-based estimator on
Sachs because there is not a known IV. Note that DeepIV cannot work on 401(k) and is also marked as ‘-’.

IV.Tetrad and CEVAE on Schoolingreturns, and the estima-
tion by FIVR on 401(k) are in the 95% empirical interval,
but not on all three datasets. The other compared estimators
do not perform well on both datasets with empirical inter-
vals. (3) There is not a known IV on Sachs, so IV-based es-
timators requiring a given IV do not work on this dataset.
Note that the estimated average causal effects by CIV.VAE,
sisVIVE, CEVAE and TEDVAE are in the empirical interval
and they work well on Sachs.

The experiments on the three real-world datasets further
confirm that CIV.VAE is able to infer the conditional IV rep-
resentation ZT and the corresponding conditioning repre-
sentation ZC from data in the presence of latent confounders
for unbiased average causal effect estimation.

In a word, CIV.VAE, without knowing a CIV and the cor-
responding conditioning set, performs better than the state-
of-the-art IV-based and two VAE-based estimators on the
three real-world datasets.

Limitations. CIV.VAE relies on the assumptions of the
pretreatment variables and the existence of at least one CIV,
and it also relies on that VAE correctly identifies the la-
tent variables. However, work by (Khemakhem et al. 2020)
shows that identifying latent variables is not guaranteed by
VAE. This means that, when some of the assumptions are
not satisfied or VAE identifiability, CIV.VAE may provide
an unreliable conclusion. To avoid the potential negative im-
pact, it is better to choose other causal effect estimators to
cross check or conducting a sensitive analysis (Imbens and
Rubin 2015; Hartford et al. 2021). Furthermore, the identi-
fiable VAE framework (a.k.a. iVAE) in (Khemakhem et al.
2020) provides some ideas for improving the identifiability
of the VAE-based model, and it can be used to improve the
reliability of CIV.VAE.

Related Work
We review the work closely related to our proposed method,
including IV-based methods requiring a given IV and data-
driven IV estimators without a known IV.

IV-based Estimators Requiring a Given IV. Several IV-
based causal effect estimators have been proposed for aver-
age causal effect estimation when there is a known IV, such
as causal random forest based IV regression (FIVR) (Athey,
Tibshirani, and Wager 2019), generalised method of mo-
ments based IV estimator (GMM) (Bennett, Kallus, and
Schnabel 2019), deep ensemble method based IV approach
(DeepIV) (Hartford, Lewis et al. 2017) and kernel IV re-
gression (KIV) (Singh, Sahani, and Gretton 2019). Different

from these IV-based estimators, CIV.VAE does not require a
given IV and the conditioning set by domain knowledge.

Data-driven IV-based Estimators without a Known IV.
In most real-world applications, there is not a known IV. A
few data-driven IV estimators have been developed for dis-
covering a valid IV (Yuan, Wu et al. 2022) or a synthesising
IV (Burgess and Thompson 2013) or eliminating the influ-
ence of invalid IVs by using statistical strategies (Kang et al.
2016; Guo, Kang et al. 2018; Hartford et al. 2021). For in-
stance, the tetrad constraint is utilised by IV.Tetrad (Silva
and Shimizu 2017) to validate the validity of a pair of CIVs
for estimating causal effects from data in presence of latent
confounders. However, it requires that there exists at least
a pair of CIVs and assumes that the set of all the remained
variables is the conditioning set. Kuang et al., (Kuang, Sala
et al. 2020) proposed the Ivy method to synthesise an IV
by combining a set of IV candidates for determining all in-
valid IVs or dependencies. The sisVIVE method (Kang et al.
2016) was developed to estimate causal effects when the ma-
jority assumption holds (i.e., at least a half of the covariates
are valid IVs). Under the majority assumption, the ModeIV
estimator (Hartford et al. 2021) is developed by employing
a deep learning based IV estimator (Hartford, Lewis et al.
2017). Unlike this type of data-driven IV-based estimators,
CIV.VAE takes the advantages of deep generative model to
learn the latent IV representation and the conditioning set
representation from data.

Conclusion

Latent confounders are a crucial challenge for causal infer-
ence in practice. IV-based approach provides an effective
way to circumvent the latent confounding problem. How-
ever, for data-driven causal inference, standard IV is not
feasible due to the strict conditions. CIVs shed light on
data-driven IV-based causal inference, but in many cases
it is impossible to distinguish a CIV and its conditioning
set from data using traditional methods. In this paper, by
leveraging the VAE model, we have designed the CIV.VAE
method to learn the representations of a CIV and its condi-
tioning set from data with latent confounders. We have con-
ducted extensive experiments on synthetic and three real-
world datasets, and the experimental results demonstrate the
capability and the validity of our proposed CIV.VAE model
against the state-of-the-art estimators in causal effect esti-
mation with data containing latent confounders.
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