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Abstract

The pre-trained language models, e.g., ELMo and BERT,
have recently achieved promising performance improvement
in a wide range of NLP tasks, because they can output strong
contextualized embedded features of words. Inspired by their
great success, in this paper we aim to fine-tune them to ef-
fectively handle the text clustering task, i.e., a classic and
fundamental challenge in machine learning. Accordingly, we
propose a novel BERT-based method, namely Text Cluster-
ing with Dual Word-level Augmentation (TC-DWA). To be
specific, we formulate a self-training objective and enhance it
with a dual word-level augmentation technique. First, we sup-
pose that each text contains several most informative words,
called anchor words, supporting the full text semantics. We
use the embedded features of anchor words as augmented
features, which are selected by ranking the norm-based atten-
tion weights of words. Second, we formulate an expectation
form of word augmentation, which is equivalent to generating
infinite augmented features, and further suggest a tractable
approximation of Taylor expansion for efficient optimiza-
tion. To evaluate the effectiveness of TC-DWA, we conduct
extensive experiments on several benchmark text datasets.
The results demonstrate that TC-DWA consistently outper-
forms the state-of-the-art baseline methods. Code available:
https://github.com/BoCheng-96/TC-DWA.

Introduction
Text Clustering (TC) is a classic and fundamental challenge
in the machine learning community with a wide spectrum of
real applications. The basic goal of TC, as its name suggests,
is to partition a collection of unlabeled texts into a number
of clusters (i.e., text subsets), so that the texts in each cluster
share coherent semantic topics, often proximity according
to some certain distance measures. During the past decades,
many clustering methods, e.g., k-means, Gaussian Mixture
Model (GMM), and spectral clustering, have been long es-
tablished. However, they may tend to be less effective for
text data, primarily because the high-dimensional sparse na-
ture of text features results in difficulties of accurately mea-
suring the distances between texts.

The deep representation learning techniques aim to trans-
form the original features to better dense embedded features
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with deep neural networks in unsupervised manner (Zhang
et al. 2020). Due to unsupervised nature of deep represen-
tation learning, it is naturally to integrate the representa-
tion techniques with clustering objectives, leading to a new
topic of deep clustering (Wu et al. 2019; Yang et al. 2019;
Niu et al. 2020; Gansbeke et al. 2020; Tsai, Li, and Zhu
2021; Huang and Gong 2021). For instance, it solves for the
embedded features and cluster memberships jointly under
the auto-encoder (Xie, Girshick, and Farhadi 2016) or self-
training paradigms (Chang et al. 2017). Thanks to the ef-
fectiveness of dense embedded features, the emerging deep
clustering methods have empirically achieved clear perfor-
mance gain comparing against the conventional methods
(Tsai, Li, and Zhu 2021; Huang and Gong 2021).

In parallel with deep clustering, the pre-trained language
models such as ELMo (Peters et al. 2018) and BERT (De-
vlin et al. 2019) can enjoy strong contextualized embedded
features for text data by capturing high-order, long-range de-
pendency in texts, and meanwhile they are often pre-trained
on large-scale text corpora, enabling to capture generic lin-
guistic knowledge for texts (Petroni et al. 2019). Directly
fine-tuning them can bring promising performance improve-
ment to many text-specific tasks, ranging from supervised
(Chalkidis et al. 2019; Yang et al. 2022), semi-supervised
(Li, Li, and Ouyang 2021), to weakly supervised learning
tasks (Meng et al. 2020; Ouyang et al. 2022).

To achieve stronger embedded features for texts, there
are dozens of studies further fine-tune the language models
with contrastive learning in unsupervised manner (Yan et al.
2021; Gao, Yao, and Chen 2021). With this spirit, the re-
cent deep TC method SCCL (Zhang et al. 2021) fine-tunes
the language model by integrating the clustering objective
with contrastive learning, and can achieve promising im-
provements compared with SOTA deep clustering methods
on benchmark text datasets. Since one basic idea of con-
trastive learning is to push the embedded features of aug-
mented samples of the same text closer, we regard that how
to generate high-quality augmented samples efficiently is
the key problem of SCCL to some extent. However, the text
augmentation techniques used in SCCL, i.e., word insertion,
word substitution, and back translation, may generate noisy
augmented samples and be costly, potentially hindering the
further performance improvement for the TC task.

To remedy those problems, we propose a novel deep
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TC method based on the language model BERT, namely
Text Clustering with Dual Word-level Augmentation (TC-
DWA). Basically, BERT can output strong contextualized
embedded word features, and the [CLS] token is a spe-
cial word treated as the embedded feature of the text. For
each text, we directly apply the embedded features of other
words with dominant attention weights as its augmented fea-
tures. Specifically in TC-DWA, we formulate a self-training
objective using the [CLS] features of texts, where the pre-
diction is treated as the cluster membership. We then sug-
gest a dual word-level augmentation technique to enhance
the objective. First, we suppose that each text contains sev-
eral most informative words, called anchor words, support-
ing the full text semantics. We select anchor words by rank-
ing the norm-based attention weights of words (Kobayashi
et al. 2020), and make an indirect consistent constraint be-
tween predictive cluster memberships of anchor words and
the [CLS] token. Second, inspired by the linear character-
istic of deep embedded features (Bengio et al. 2013), we
can draw augmented embedded features around the [CLS]
and anchor word features. We formulate a robust expectation
form, which is equivalent to generating infinite augmented
features, and further suggest a tractable approximation of
Taylor expansion for efficient optimization. We conduct ex-
tensive experiments on benchmark text datasets, where the
results show the superior performance of TC-DWA compared
against the existing baselines. The ablation studies indicate
the effectiveness of the augmentation techniques.

To sum up, the contributions of this paper are listed as
follows:

• We propose a novel BERT-based TC method named TC-
DWA under the self-training manner.

• We propose a dual word-level augmentation technique to
enhance the self-training objective.

• We conduct extensive experiments to empirically show
the superior performance of TC-DWA

Related Work
Text Clustering
During the past decades, the traditional clustering meth-
ods, such as k-means, GMM, and spectral clustering, have
been long investigated for TC tasks. However, the high-
dimensional sparse nature of text features makes them less
effective due to the difficulties of accurately measuring the
text distances. Recently, deep clustering methods have re-
ceived widespread attention, because they have the ability to
jointly learn strong embedded features of texts and cluster-
ing assignments with deep neural networks. One branch of
deep clustering is built on the auto-encoder paradigm (Xie,
Girshick, and Farhadi 2016; Bo et al. 2020), which com-
bines the reconstruction loss of auto-encoder and the specific
loss of cluster memberships. Another branch is based on the
self-training paradigm such as the techniques with pseudo-
semi-supervised manner (Gupta et al. 2020) and contrastive
learning (Zhang et al. 2021). In contrast to those meth-
ods, our TC-DWA enjoys the strong contextualized embed-
ded features of texts with language models, and further ap-

plies a dual word-level augmentation technique to enhance
the model.

Language Model
The pre-trained language models have attracted much more
attention from the community, where the representatives in-
clude auto-regressive models such as (Peters et al. 2018)
and auto-encoder models (Devlin et al. 2019; Lewis et al.
2020; Fedus, Zoph, and Shazeer 2021). Typically, they
are pre-trained on large-scale collections of texts, so as
to learn background linguistic knowledge from texts. On
the other hand, they can capture contextualized dependency
in texts, enabling to output strong word features. Due to
those benefits, directly fine-tuning the language models has
been proven to gain promising improvement to many basic
tasks, ranging from supervised (Chalkidis et al. 2019; Yang
et al. 2022), semi-supervised (Li, Li, and Ouyang 2021), to
weakly supervised learning tasks (Meng et al. 2020; Ouyang
et al. 2022). In this work, we fine-tune BERT with a self-
training objective to effectively handle the unsupervised TC.

Data Augmentation
Data augmentation refers to the technique that increases the
diversity of training data without further collecting new in-
stances (Feng et al. 2021). Commonly, it has been widely
explored in computer vision, where a number of basic data
augmentation operations, e.g., random flipping, rotation, and
mirroring, can be directly applied to generate augmented
images (He et al. 2016). The automatic data augmentation
methods are further developed to select better operation poli-
cies (Cubuk et al. 2019). In parallel with those studies, there
are also recent data augmentation techniques for texts. The
token-level random perturbation operations include random
insertion, swap, and deletion (Wei and Zou 2019), and they
have been proven to improve the performance on text classi-
fication (Xie et al. 2020). The back translation method (Sen-
nrich, Haddow, and Birch 2016) first translates the texts into
another language and then back into the original language,
so as to generate augmented texts. Seq2seq and language
models have also been used for data augmentation (Thakur
et al. 2021; Gangal et al. 2021). Besides, there are also sev-
eral generic data augmentation techniques such as ISDA
(Wang et al. 2019). In this work, we focus on the TC task,
and suggest the dual word-level augmentation with anchor
words and cluster-specific expectations.

The Proposed TC-DWA Method
We now introduce the proposed TC-DWA. In this work, we
apply the 12-layer BERT-base model1 (Devlin et al. 2019)
as the backbone, but TC-DWA can be also extended to other
well-established pre-trained language models.

TC-DWA

Formally, we are given by a dataset of n texts {xi}ni=1,
where x denotes the raw content of text. TC aims to par-

1For convenience, we will call this model as BERT in the fol-
lowing parts of this paper.
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Figure 1: The overall flowchart of TC-DWA. The raw texts are fed into BERT to generate the embedded features and NA weights
of words. The [CLS] token and other tokens with top-k NA weights are selected as the anchor words (i.e., AW augmentation).
Their embedded features are fed into the predictive layer to compute sharpened target cluster memberships. For each anchor
word, we formulate an expectation form of the self-training loss between its embedded feature and the target cluster membership
(i.e., EW augmentation).

tition the text dataset into l clusters (i.e., text subsets), so
that the texts of each cluster share coherent semantic topics.

To handle the task of TC, we suggest the TC-DWA
method, which fine-tunes BERT under the self-training
manner with dual word-level augmentation. The overall
flowchart of TC-DWA is illustrated in Fig.1. To be spe-
cific, for each text xi, we treat the special [CLS] token
zi0 = fΘ(xi) as the embedded feature of the text, where
Θ denotes the learnable parameters of BERT. We adopt zi0
to predict the cluster membership of xi with a linear layer
parameterized by W:

q(zi0) = softmax(Wzi0) ≜ pi, i ∈ 1, · · · , n, (1)

and then construct a target cluster membership yi by refer-
ring to (Xie, Girshick, and Farhadi 2016):

yij =
p2
ij/gj∑l

h=1 p
2
ih/gh

, gj =
n∑

i=1

pij , j ∈ 1, · · · , l (2)

Accordingly, we can formulate a self-training objective as
follows:

L(Θ,W) =
n∑

i=1

ℓ (yi,q(zi0)) , (3)

where ℓ(, ·, ) denotes the loss function, e.g., cross-entropy
and KL-divergence.2

2This work employs the KL-divergence as the loss function, and
other popular ones will be further investigated in the future.

To enhance the objective of Eq.3, we suggest a dual
word-level augmentation technique, including Anchor Word
(AW) augmentation and Expectation Word (EW) augmen-
tation.

AW augmentation. The insight of AW augmentation is
that for each text, it has several most informative words,
called anchor words, supporting the full text semantics.
Naturally, the predictive cluster memberships of anchor
words from the same text must be consistent to each other
and also the one of the [CLS] token. Supposing each text
contains k anchor words, we use the notation3 zi = fΘ(xi)
to denote the set of embedded features of both the [CLS]
token (i.e., zi0) and anchor words {zij}kj=1. We compute a
weighted average of predictive cluster memberships by us-
ing all words within zi as follows:

pi =
1∑k

j=0 λij

k∑
j=0

λijq(zij), i ∈ 1, · · · , n, (4)

where λij is the corresponding weight of zij . By construct-
ing the target cluster membership yi with Eq.2, we can for-
mulate a novel objective with AW augmentation as follows:

La(Θ,W) =
n∑

i=1

k∑
j=0

λijℓ (yi,q(zij)) , (5)

3Actually, the model fΘ(xi) outputs embedded features of all
words in xi. To make notations compact, we reuse it to denote the
set of the embedded features of [CLS] token and anchor words.
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Algorithm 1: Training of TC-DWA

Input: text dataset {x}ni=1 and parameters l, k, γ, β
1: for t̂ = 1, 2, · · · ,MaxEpoch do
2: for t = 1, 2, · · · ,MaxIter do
3: Draw a mini-batch of texts randomly
4: Update {Θ,W} with the mini-batch
5: end for
6: Update Σ using Eq.10
7: end for
Output: predictive cluster memberships {pi}ni=1

Dataset #Word #Text #Class

AG News 49,141 10,000 4
DBPedia 72,179 10,000 14

Newsgroup 192,227 11,014 20

Table 1: Statistics of datasets used in our experiments.

Specially, we select the anchor words by ranking the
Norm-based Attention (NA) weights of words (Kobayashi
et al. 2020). For each text xi, we measure each of word
importance by ∥αijzij∥, where αij denotes the correspond-
ing attention weight. Further, we may use the NA weights
from the shallower layer of BERT denoted by ∥αh

ijz
h
ij∥, h ∈

{1, · · · , 12}. That is because each layer of BERT describes
various kinds of information ranging from surface to seman-
tics, and the {3, 4, 5, 6, 7, 9, 12} layers have the most repre-
sentation power (Jawahar, Sagot, and Seddah 2019). In this
work, we specially notice that we refer to the [CLS] to-
ken as a special anchor word for convenience in the follow-
ing. Besides, the top-k words with largest NA weights are
selected as the anchor words finally, and the corresponding
weight λij is computed as follows:

λij =
∥αh

ijz
h
ij∥∑k

g=0 ∥αh
igz

h
ig∥

, j ∈ 0, · · · , k (6)

EW augmentation. The insight of EW augmentation is
that we can directly draw augmented embedded features
around the ones of anchor words, because the deep features
learned by the network usually tend to be linearized (Bengio
et al. 2013). Specifically, for each anchor word we draw a
number of augmented embedded features ẑij from a Gaus-
sian with mean zij and cluster-specific covariance matrix
Σy∗

i
, described below:

ẑij ∼ N
(
zij , γΣy∗

i

)
, y∗

i = argmax
j

yij , (7)

where γ ≥ 0 is the scaling parameter, and y∗
i is the biggest

cluster in the current yi.
We can directly incorporate those augmented embedded

features into the objective of Eq.5, but we apply a more ro-
bust expectation formulation, which is equivalent to generat-
ing infinite augmented features (Wang et al. 2019), described
below.

Le(Θ,W,Σ) =
n∑

i=1

k∑
j=0

λijEẑij
[ℓ (yi,q(ẑij))] (8)

Unfortunately, this objective of Eq.8 is naturally intractable
to solve due to the expectation form. Accordingly, we apply
the second-order Taylor expansion at zij to form a tractable
approximation:

Le(Θ,W,Σ)

≈
n∑

i=1

k∑
j=0

λij

(
ℓ (yi,q(zij)) +

1

2
Tr

(
▽2

zij
γΣy∗

i

))
≜ Lt

e(Θ,W,Σ), (9)

where Σ = {Σi}li=1 are the learnable cluster-specific co-
variance matrices; Tr(·) is the trace of a matrix; and ▽2

zij
is

the Hessian matrix of ℓ (yi,q(zij)).

Remark: The work of (Wang et al. 2019) has proposed
a similar expectation-based augmentation (called ISDA) to
our EW augmentation, i.e., Eq.8. The major difference be-
tween them is that the ISDA is built on a cross-entropy-
specific upper bound of the expectation form, but we derive
a more generic Taylor approximation for a much wider range
of loss functions.

Training of TC-DWA
We optimize the learnable parameters {Θ,W,Σ} by mini-
mizing the approximating objective of Eq.9. The stochastic
gradient descent method is adopted to solve the problem.
At each iteration t, we draw a mini-batch of texts and then
update {Θ,W} with backpropagtion by fixing Σ. At each
epoch t̂, we update Σ by using the current embedded fea-
tures with target cluster memberships, directly estimated as
follows:

µ
(t̂)
j =

1∑n
i=1 y

(t̂)
ij

∑k
h=0 λih

n∑
i=1

y
(t̂)
ij

k∑
h=0

λihz
(t̂)
ih ,

Σ
(t̂)
j =

∑n
i=1 y

(t̂)
ij

∑k
h=0 λih

(
z
(t̂)
ih − µ

(t̂)
j

)(
z
(t̂)
ih − µ

(t̂)
j

)⊤

∑n
i=1 y

(t̂)
ij

∑k
h=0 λih

,

Σ
(t̂)
j = βΣ

(t̂−1)
j + (1− β)Σ

(t̂)
j , j ∈ [l], (10)

where β is a learning rate. After initialization, we alterna-
tively update each learnable parameter, and take the final
text cluster assignments by referring to the predictive cluster
memberships of texts. For clarity, we summarize the training
process of TC-DWA in Algorithm 1.

Time Complexity of TC-DWA
We now discuss the efficiency of TC-DWA. For brevity, we
only concentrate on the major operations when optimizing
Eq.9 with respect to the parameters of interest {Θ,W,Σ}.
First, we need to compute the gradients of {Θ,W}. The
BERT ingests each text and outputs both the NA weights
and embedded features of all its words. Therefore, for each
text we can (1) neglect the cheaper anchor words selection
with any sorting operation and (2) show the per-epoch com-
plexity of the gradient of the first term in Eq.9 is about
O(T Θ

1 + (k + 1)T W
1 ), where O(T Θ

1 ) and O(T W
1 ) denote
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Method
AG News DBPedia Newsgroup

ACC NMI ARI ACC NMI ARI ACC NMI ARI

k-means 0.447• 0.251• 0.246• 0.543• 0.699• 0.429• 0.253• 0.260• 0.104•
GMM 0.629• 0.375• 0.391• 0.619• 0.694• 0.429• 0.259• 0.260• 0.104•
DEC 0.617• 0.306• 0.303• 0.599• 0.679• 0.488• 0.316• 0.339• 0.178•

SpectralNet 0.483• 0.334• 0.170• 0.589• 0.608• 0.453• 0.184• 0.221• 0.096•
SDCN 0.764• 0.468• 0.494• 0.762• 0.765• 0.651• 0.368• 0.378• 0.217•
BERT 0.817• 0.552• 0.583• 0.580• 0.656• 0.453• 0.245• 0.273• 0.123•

Finetuned-BERT 0.808• 0.530• 0.565• 0.776• 0.814 0.698• 0.470• 0.465• 0.306•
SimCSE 0.779• 0.483• 0.502• 0.743• 0.718• 0.608• 0.405• 0.403• 0.228•

Finetuned-SimCSE 0.797• 0.507• 0.545• 0.775• 0.761• 0.670• 0.444• 0.427• 0.279•
SCCL 0.727• 0.425• 0.408• 0.704• 0.681• 0.576• 0.306• 0.275• 0.121•

TC-DWA (Ours) 0.827 0.566 0.604 0.795 0.823 0.711 0.491 0.487 0.334

Table 2: Clustering results of all comparing methods on benchmark datasets. The best results are highlighted in bold. Besides,
the notation • indicates the performance gain of TC-DWA is statistically significant (paired sample t-tests) at 0.01 level.
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Figure 2: Sensitivity analysis of the anchor word number k with different values on benchmark datasets.

the corresponding complexities of gradients of Θ, and W
for one anchor word. Analogously, the per-epoch complex-
ity of the gradient of the second Hessian matrix term in Eq.9
is about O(T Θ

2 + (k+1)T W
2 ), where O(T Θ

2 ) and O(T W
2 )

denote the corresponding complexities of gradients of Θ,
and W for one anchor word. We express that the complex-
ity of O(T Θ

2 ) is at most that of O(T Θ
1 ), and O(T W

1 ) and
O(T W

2 ) are much cheaper with a single linear predictive
layer. Second, at each epoch we need to update Σ. By re-
ferring to Eq.10, the complexity is about O(nl(k + 1)). In
summary, the overall per-epoch time complexity of TC-DWA
is about O(T Θ

1 + T Θ
2 + (k + 1)(T W

1 + T W
2 + nl)).

Experiment

In this section, we first describe the experimental settings,
and then compare TC-DWA against the existing TC baseline
methods. Finally, we show the results of parameter evalua-
tions, ablative study, and efficiency evaluations.

Experimental Setup

Datasets. In the experiments, we select three commonly
used text datasets, i.e., AG News, DBPedia, and News-
group.4 For efficient evaluations, in terms of AG News and
DBPedia, we randomly draw 10,000 texts from the full
datasets containing massive samples; and in terms of News-
group, we employ its standard split of training set. The
statistics of these text datasets are shown in Table 1.
Baseline methods. We select 8 existing TC methods as
baselines. They are briefly introduced below:

• k-means: The traditional k-means clustering method
with the Bag-of-Words features of texts.

• GMM: The traditional GMM clustering method with the
Bag-of-Words features of texts.

• DEC5 (Xie, Girshick, and Farhadi 2016): A deep cluster-
ing method with the auto-encoder paradigm.

4http://qwone.com/ jason/20Newsgroups/
5https://github.com/piiswrong/dec
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Layer
AG News DBPedia Newsgroup

ACC NMI ARI ACC NMI ARI ACC NMI ARI
h = 7 0.800 0.518 0.551 0.761 0.798 0.671 0.401 0.405 0.234
h = 9 0.801 0.524 0.556 0.775 0.810 0.692 0.447 0.444 0.280
h = 12 0.827 0.566 0.604 0.795 0.823 0.711 0.491 0.487 0.334

Table 3: Sensitivity analysis of h on benchmark datasets. The best results are highlighted in bold.

• SpectralNet6 (Shaham et al. 2018): A deep spectral clus-
tering method with the orthogonality constraint.

• SDCN7 (Bo et al. 2020): A deep clustering method with
the auxiliary graph of texts.

• BERT8 (Devlin et al. 2019): The pre-trained BERT
model. We feed the raw texts into BERT and then apply
k-means with the embedded features. And, Finetuned-
BERT is the fine-tuned version using Eq.3.

• SimCSE9 (Gao, Yao, and Chen 2021): A BERT-based
sentence representation model fine-tuned with con-
trastive learning. We feed the raw texts into SimCSE and
then apply k-means with the embedded features. And,
Finetuned-SimCSE is the version that we further use
Eq.3 to fine-tune SimCSE.

• SCCL10 (Zhang et al. 2021): A deep learning method
with instance-wise contrastive learning.

Specifically, for k-means, GMM, DEC, SpectralNet, and
SDCN, we employ the TF-IDF text features of the 2,000
most frequent words after removing the stopwords.

Implementation details of TC-DWA We employ the
backbone BERT. For all three datasets, limited by the stor-
age of the experimental environment, we set the max se-
quence length to 128 tokens and the training batch size to
16. By convention, we set the cluster number l as the num-
ber of classes for each dataset. We use the Adam optimizer,
and the initial learning rates are 5e-6 and 1e-3 for training
the parameters of BERT and predictive parameters, respec-
tively. The anchor word number k is set to 1 or 2. For the
layer index h of computing NA weights, we fix it to 12 for
all the three datasets. Besides, we set the scaling parameter
γ defined in Eq.7 as γ = t

MaxIterγ0, where γ0 = 0.1 and t
is the iteration number. This setting can reduce the impact of
the estimated covariances in the early training stage. Finally,
the parameter β defined in Eq.10 is set to 0.9 and the number
of epochs is set to 5 for all datasets. All experiments are run
on a Linux server with 2 NVIDIA TITAN GTX GPUs and
512G memory.
Evaluation metrics. To evaluate the clustering performance
from different views, we employ three metrics: Accuracy
(ACC), Normalized Mutual Information (NMI) and Average
Rand Index (ARI). Let L and C be the sets of ground-truth

6https://github.com/KlugerLab/SpectralNet
7https://github.com/bdy9527/SDCN
8https://github.com/huggingface/transformers
9https://github.com/princeton-nlp/SimCSE

10https://github.com/amazon-research/sccl

labels and cluster assignments, respectively. First, the ACC
is defined below:

ACC =

∑n
i=1 I (li = h (ci))

n
, li ∈ L, ci ∈ C,

where I(·) denotes the indicator function, and h(·) is the
Hungarian mapping function (Kuhn 1955). Second, the NMI
is defined as follows:

NMI =
2×MI(C;L)
H(C) + H(L)

,

where MI (·) and H(·) are the mutual information and en-
tropy, respectively. Finally, the ARI is computed as follows:

ARI =
RI(C;L)− E [RI(C;L)]

max (RI(C;L))− E [RI(C;L)]
,

where RI(·) is the rand index.

Clustering Results
For each dataset, we run all comparing methods 5 times and
finally report the average scores of clustering metrics. As
shown in Table 2, we have the following observations.

Overall speaking, TC-DWA consistently performs the
highest scores on all three metrics across all datasets. Com-
paring with the traditional k-means and GMM, our TC-DWA
and other deep clustering methods always achieve higher
scores by a large margin, indicating that the significant ad-
vantage of deep embedded features to the shallow features
such as Bag-of-Words features in TC tasks. Besides, we
can observe that TC-DWA performs better than the exist-
ing auto-encoder methods DEC and SDCN, and surprisingly
we sometimes gain significant improvements on the com-
petitor SDCN which captures the information of the auxil-
iary graph of instances, e.g., about 0.03 ∼ 0.06 improve-
ments on DBPedia. This can be an empirical evidence that
the contextualized embedded features are more discrimina-
tive for texts. Finally, it can be also seen that TC-DWA beats
other language model-based baseline methods. For example,
on Newsgroup, the improvements over SimCSE are about
0.08 ∼ 0.11. More importantly, TC-DWA achieves better
clustering performance than the two fine-tuned versions us-
ing Eq.3. For example, compared to Finetuned-BERT, TC-
DWA achieves improvements of 0.02 ∼ 0.03 on Newsgroup.
The results demonstrate the effectiveness of the proposed
dual word-level augmentation technique fairly. More de-
tailed empirical analysis of augmentations will be shown in
the ablation study.
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Variant
AG News DBPedia Newsgroup

ACC NMI ARI ACC NMI ARI ACC NMI ARI
TC-DWA 0.822 0.557 0.593 0.795 0.823 0.711 0.491 0.487 0.334

TC-DWA (-A) 0.810 0.530 0.567 0.780 0.821 0.699 0.477 0.470 0.311
TC-DWA (-E) 0.819 0.550 0.588 0.784 0.818 0.701 0.484 0.480 0.325

TC-DWA (-A-E) 0.808 0.530 0.565 0.776 0.814 0.698 0.470 0.465 0.306

Table 4: Clustering results of ablation study. The best results are highlighted in bold.

Variant AG News DBPedia Newsgroup
TC-DWA 353.9 (s) 347.7 (s) 378.7 (s)

TC-DWA (-A-E) 277.1 (s) 278.2 (s) 297.7 (s)

Table 5: Per-epoch running times (s: second) of TC-DWA and TC-DWA (-A-E) on benchmark datasets.

Sensitivity Analysis of Parameters
We verify the impact of the anchor word number k by vary-
ing it from 0 to 5. These three metrics have similar trends
with respect to k, so we take ACC as an example and report
the clustering results in Fig.2. We find that with the introduc-
tion of anchor words (k > 0), the experimental results are
better than when using only the [CLS] token as described in
Eq.3 (k = 0), which once again proves the positive influence
of anchor words on clustering. In addition, as the value of k
increases, the performance trend of the model on the three
datasets can be roughly summarized as follows: rise to the
maximum, and then start to decline. This demonstrates that
selecting too many anchor words will introduce too much
non-representative information, making it difficult to cluster
texts effectively.

As shown in Table 3, we search h in the range of
{7, 9, 12} to verify the influence of the selected layer of
BERT on experimental results. We find that when h is 12,
TC-DWA performs best on all the three datasets. It demon-
strates that richer semantic information has stronger repre-
sentative power, which leads to more accurate clustering.

Ablation Study
To get a better understanding of the effectiveness of AW and
EW augmentations, we conduct a series of ablation experi-
ments. To be specific, we consider the following variants of
TC-DWA:
• TC-DWA (-A): The variant without AW augmentation.
• TC-DWA (-E): The variant without EW augmentation.
• TC-DWA (-A-E): The variant without both AW and EW

augmentations.
The clustering results of ablation experiments are reported

in Table 4. First, TC-DWA significantly beats TC-DWA (-A)
on all settings, where the performance gain on ACC, NMI,
and ARI are about averagely 0.01, 0.02, and 0.02, respec-
tively. Those empirical evidences exactly show that the AW
augmentation is beneficial to TC, because the selected an-
chor words are informative and their augmented features
can better represent the full text semantic. Second, the im-
provements of TC-DWA over TC-DWA (-E) are about 0.01

on ACC, 0.01 on NMI, and 0.01 on ARI averagely, exactly
demonstrating the effectiveness of the EW augmentation.

Efficiency Evaluation
To evaluate the efficiency of the proposed augmentation
technique, we examine the running times of TC-DWA and
TC-DWA (-A-E). We report the per-epoch running times
across all datasets in Table 5. It can be clearly observed that
the running times of the two variants are almost at the same
level, where, for example, TC-DWA requires only 76 and 69
seconds more than TC-DWA (-A-E) on AG News and DB-
Pedia, respectively. The empirical efficiency evidences are
consistent to the analysis of time complexity. To sum up,
we consider that the proposed dual word-level augmentation
technique can be efficient and practical in real applications.

Conclusion
In this paper, we propose a novel language model-based
TC method named TC-DWA. Basically, we formulate a self-
training objective with embedded features of BERT. We then
enhance the objective by suggesting a dual word-level aug-
mentation technique, including AW and EW augmentations.
First, we use the embedded features of anchor words as aug-
mented features, which are selected by the NA weights of
words; Second, we suggest a Taylor expansion approxima-
tion of expectation of anchor words, which is equivalent to
generating infinite augmented features. We conduct exten-
sive experiments to evaluate the clustering performance of
TC-DWA on three benchmark text datasets. The experimen-
tal results indicate that TC-DWA significantly outperforms
the existing TC methods and the ablation studies show the
effectiveness of AW and EW augmentation techniques.
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