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Abstract

The Symmetric Positive Definite (SPD) matrices have re-
ceived wide attention for data representation in many sci-
entific areas. Although there are many different attempts to
develop effective deep architectures for data processing on
the Riemannian manifold of SPD matrices, very few solu-
tions explicitly mine the local geometrical information in
deep SPD feature representations. Given the great success
of local mechanisms in Euclidean methods, we argue that it
is of utmost importance to ensure the preservation of local
geometric information in the SPD networks. We first anal-
yse the convolution operator commonly used for capturing
local information in Euclidean deep networks from the per-
spective of a higher level of abstraction afforded by cate-
gory theory. Based on this analysis, we define the local in-
formation in the SPD manifold and design a multi-scale sub-
manifold block for mining local geometry. Experiments in-
volving multiple visual tasks validate the effectiveness of our
approach. The supplement and source code can be found in
https://github.com/GitZH-Chen/MSNet.git.

1 Introduction

Symmetric Positive Definite (SPD) matrices have shown
great success in many scientific areas, like medical im-
age analysis(Chakraborty et al. 2020, 2018), elasticity
(Guilleminot and Soize 2012), signal processing (Hua et al.
2017; Brooks et al. 2019), machine learning (Kulis, Sustik,
and Dhillon 2006; Harandi et al. 2012), and computer vi-
sion (Chakraborty 2020; Zhang et al. 2020; Zhen et al. 2019;
Huang and Van Gool 2017; Nguyen 2021; Harandi, Salz-
mann, and Hartley 2018). However, the non-Euclidean na-
ture of SPD matrices precludes the use of a wide range of
data analysis tools, the applicability of which is confined to
Euclidean metric spaces. Motivated by this problem, a num-
ber of Riemannian metrics have been introduced, such as
Log-Euclidean metric (LEM) (Arsigny et al. 2005), Affine-
Invariant Riemannian metric (AIM) (Pennec, Fillard, and
Ayache 2006), Log-Cholesky metric (LCM) (Lin 2019).
With these well-studied Riemannian metrics, some Eu-
clidean techniques can be generalized into SPD manifolds.
Some approaches adopted approximation methods that lo-
cally flatten the manifold by identifying it with its tangent
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space(Huang et al. 2015c), or by projecting the manifold into
a Reproducing Kernel Hilbert Spaces (RKHS)(Chen et al.
2021; Harandi et al. 2012; Wang et al. 2012). However, these
methods tend to distort the geometrical structure commu-
nicated by the data. To address this issue, (Harandi, Salz-
mann, and Hartley 2018; Gao et al. 2019b) proposed direct
learning algorithms on SPD manifolds. In addition, inspired
by the significant progress achieved by deep learning (Le-
Cun et al. 1998; Krizhevsky, Sutskever, and Hinton 2012),
(Huang and Van Gool 2017; Zhang et al. 2020; Brooks et al.
2019; Chakraborty et al. 2018, 2020; Chakraborty 2020;
Nguyen 2021; Zhen et al. 2019; Wang et al. 2022a,b) at-
tempted to build deep Riemannian networks for non-linear
representation learning on SPD matrices.

Nevertheless, many existing deep SPD networks treat the
SPD features as a global representation. Given the success
of multi-scale features in both conventional feature design
(Belongie, Malik, and Puzicha 2002; Lowe 2004) and deep
learning (Szegedy et al. 2015; Krizhevsky, Sutskever, and
Hinton 2012), it should be rewarding to investigate local
mechanism in Riemannian neural networks. Accordingly, in
this paper, we develop a deep multi-scale submanifold net-
work designed to capture the informative local geometry in
deep SPD networks. To the best of our knowledge, this is the
first work to successfully mine the local geometric informa-
tion on SPD manifolds.

As convolution is one of the most successful techniques
for dealing with local information in traditional deep learn-
ing, we first analyze its mathematical essence from the per-
spective of category theory, to identify the universal prop-
erty which is transferable to manifolds. We proceed to de-
fine the local information in the category of SPD manifolds
and propose multi-scale submanifold blocks to capture both
holistic and local geometric information. In summary, our
contributions are three-fold: 1). a theoretical guideline is de-
veloped for the Riemannian local mechanism. 2). local pat-
terns in Riemannian manifolds are rigorously defined. 3). a
novel multi-scale submanifold block is proposed to capture
vibrant local statistical information on the SPD networks.

2 Related Work

To take advantage of deep learning techniques, some ef-
fort has been made to generalize Euclidean deep learning
into a Riemannian one. (Huang and Van Gool 2017) de-



signed a densely connected feedforward network on SPD
matrices with a procedure involving a slice of spectral lay-
ers. (Chakraborty et al. 2020) proposed a theoretical frame-
work to fulfil convolution network on Riemannian mani-
folds, where each ’pixel” of the input tensor is required to be
a manifold-valued point. However, different from Euclidean
convolution, none of these methods pay attention to the lo-
cal information in a single SPD matrix. In contrast, (Zhang
et al. 2020) proposed an SPD transformation network for ac-
tion recognition. They designed an SPD convolutional layer,
which is similar to the Euclidean convolution except that the
convolutional kernels are required to be SPD. Note that the
square matrices covered by a sliding window might not be
SPD. Therefore, local geometry might be distorted or omit-
ted, undermining the efficacy of their proposed network.
In contrast, in our approach, the proposed mechanisms can
faithfully preserve local information. A multi-scale repre-
sentation is further adopted, which captures different levels
of statistical information. We expect that Riemannian net-
works can benefit from this comprehensive statistical infor-
mation.

3 Preliminaries

To develop our proposed method, category theory and regu-
lar submanifolds are briefly reviewed. Due to the page limit,
others such as differential manifolds, the geometry of SPD
manifolds, and our backbone network, SPDNet, are pre-
sented in the supplement.

3.1 Foundations of Category Theory

Category theory, which is similar to object-oriented pro-
gramming in computer science, studies the universal prop-
erties and mathematical abstractions shared by different do-
mains.

Definition 1. A category C consists of a collection of
elements, called objects, denoted by Obj(C), and a set
Mor(A, B) of elements, called morphisms from A to B, for
any two objects A, B € Obj(C). Morphisms should satisfy
the below three axioms:

* composition: given any f € Mor(A,B) and g €
Mor(B, C), the composition h = go f € Mor(A4,C)
is well-defined.

* identity: for each object A, there is an identity morphism
14 € Mor(A, A) such that for any f € Mor(A, B) and
g € Mor(B, A),

fola=flaog=gy; (D

* associative: for f € Mor(A4, B),g € Mor(B,C), and
h € Mor(C, D),

ho(gof)=(hog)of.
The set of all the morphisms in C is denoted as Mor(C).

@

Let us take the linear space, which is widely studied in
pattern recognition, as an example. In this category, the ob-
jects are linear spaces and morphisms are linear homomor-
phisms. More details are introduced in (Tu 2011, § 10).
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Category theory enables us to develop a mathematical ab-
straction of operations in one category and generalize them
into another category. In this paper, we will rely on this the-
ory to derive local mechanisms in Riemannian manifolds
from Euclidean counterparts.

3.2 Regular Submanifolds

Regular submanifolds (Tu 2011, § 9) of manifolds generalize
the idea of subspace in the Euclidean space. In the smooth
category, since manifolds are locally Euclidean, submani-
folds are defined locally.

Definition 2. A subset S of a smooth manifold N of di-
mension 7 is a regular submanifold of dimension k if for
every p € S there is a coordinate neighbourhood (U, ¢) =
(U,2',...,z") of p in the maximal atlas of A" such that
U NS is defined by the vanishing of n — k of the coordinate
functions.

4 Proposed Method

In this section, we will introduce our method in detail. As
Euclidean convolution is one of the most successful local
mechanisms, we first analyze this operation from the per-
spective of category theory to uncover the mathematical
essence of the Euclidean local mechanism. Under this anal-
ysis, we proceed to define the local pattern in the SPD man-
ifold. Finally, we introduce a multi-scale local mechanism
to capture fine-grained local information. The proposed net-
work is conceptually illustrated in Figure 1.

4.1 Analysis of Euclidean Convolution

Since the convolution is an operation in the category of lin-
ear space, we first consider it from the perspective of linear
algebra. Then we will proceed with the analysis via category
theory to derive the general properties that can be transferred
into the SPD manifold.

To avoid tedious subscripts, we consider an example
whose input and output are single channel tensors. In this
case, only one kernel filter is involved, but the following
analysis can also be readily generalized into an arbitrary
number of channels. In convolution networks, the tensor
feature and the i*" receptive field can be viewed as the
linear space V' and subspace V;, respectively. The process
that the 7*" receptive field is reduced into a real scalar by
a specific kernel filter can be deemed as a linear mapping
fi + Vi = M. Note that M; is a trivial one-dimensional
linear space, R. After convolution, each receptive field is re-
duced into a real number and these scalar elements are con-
catenated to build a new tensor feature. This process can be
more generally described by the notion of direct sum “@®”
(Roman, Axler, and Gehring 2005) in linear algebra, i.e.,
M = M; @ --- @& M,,. Not that the direct sum, “®” can
be intuitively understood as a counterpart of the union in
the set theory. (see supplement for more details) The above
analysis leads to the following abstraction of the convolution
operation.

Proposition 1. For a given linear space V of dimension
d x d, n linear subspaces V1, Vs, - - - |V, of dimension k x k
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Figure 1: Illustration of the proposed Multi-scale Submanifold Network (MSNet). We first employ SPDNet (Huang and
Van Gool 2017) as our backbone to extract lower dimensional, yet more discriminative SPD feature representations. Then
in each branch, a BiMap-ReEig block is exploited to obtain SPD representations .S, _;, where £ — 1 and ¢ are layer and channel

index respectively. We propose a submatrix selection, denoted as SubSec, to result in P;' - - PZ:’”I along the i*" channel for
local manifold feature learning, where n'’ is the number of selected submanifolds in the i*" channel. Next, LogEig layer is
applied to map each submatrix feature into a Euclidean space, i.e., M,” = log(P;”). Then, we apply TrilCan to go through a
process of extracting a lower triangular matrix, vectorization, and concatenation. Finally, we concatenate all the vectors from
the different branches with a Concat layer, followed by any regular output layers like the softmax layer. Note that the SPD
matrix itself can also be viewed as a trivial submanifold, encoding global information, and hence the bottom branch is exploited

to capture global information, which is how SPDNet works.

are selected and a linear function f;(-) : V; — M; is
performed in each of them to extract local linear infor-
mation. The resulting linear spaces My, -- , M,, are com-
bined into a final linear space M by direct sum, i.e, M =
M, & & M,.

To discover a more general property of Euclidean con-
volution, we further analyze it by category theory. To this
end, we can simply substitute the linear algebra terms with
category language following the axioms of category theory.
In detail, linear space V, subspace V; and linear function f;
can be more generally described as object A, sub-object A;
and morphism f;. Besides, we notice that each subspace V;
shares the same dimensionality, which indicates V7, --- |V,
are equivalent in the sense of linear space. This suggests that
the extracted sub-objects Ay, - - - , A, should be isomorphic.
However, not all categories share the idea of the direct sum.
For example, the categories, known as group, ring and field,
do not have this kind of operation. Therefore, the combi-
nation strategies vary in different categories. Now, we could
obtain a more general description of convolution by category
theory.

Proposition 2. In a category C, for an object A € Obj(C),
we extract n isomorphic sub-objects from A, denoted by
Ay, As, ..., A,. Then morphism f; € Hom (A;, B;) is ap-
plied to each sub-object to map it into a resulting object B,.
The resulting objects By, --- , B; are combined into a final
object B € Obj(C) according to certain principles.

With the Proposition 2 as an intermediary, we can gen-
eralize the convolution into manifolds theoretically. Specifi-
cally, the object, sub-object and morphism in manifolds are
manifolds, submanifolds and smooth maps respectively.

Proposition 3. For a manifold M, we extract n isomorphic
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submanifolds M1, Mo, ..., My, and map each one of them
by a smooth maps f;(-) : M; — M. The resulting mani-
folds M, are aggregated into a final manifold M’ according
to certain principles.

As a summary of the above discussion, we obtain the fol-
lowing important insights about the Riemannian local mech-
anism. First of all, the local patterns in manifolds are sub-
manifolds. Secondly, not all submanifolds are involved, and
all the selected submanifolds could be isomorphic. Lastly, a
specific way of aggregating submanifolds should be elabo-
rately designed according to the axioms of manifolds.

4.2 Submanifolds in SPD Manifolds

Proposition 3 demonstrates that local patterns in manifolds
are submanifolds. In this subsection, we will identify the
submanifolds in the specific SPD manifolds. Briefly speak-
ing, in the category of SPD manifolds, submanifolds should
further be SPD manifolds. This constraint can be fulfilled by
principle submatrices.

For a clearer description, let us make some notifica-
tions first. Denote k-fold row and column indices as 7 =
{i1, -+ ,ixtand J = {41, , ji}. For a set of real square
matrices R"*", we denote (R"*"™)z, 7 as the set of subma-
trices, which are obtained by remaining rows Z and columns
J.If T = 7, then (R"*™)z 7 is the set of principal subma-
trices, abbreviated as (R™*")z.

As we discussed before, subspaces are sub-objects in the
category of linear algebra. For a set of real square matrices
R™*™, any set of k x k submatrices, (R"*™)z 7, forms a
subspace of R"*"™. However, things would be different for
SPD manifolds. Linear algebra tells us that an arbitrary sub-
matrix of an SPD matrix might not be SPD, and even not be
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Figure 2: Illustration of the process of selecting principal
submatrices. (a) We deem an S € S_ﬁ_ as a covariance from
an imaginary 4 X 4 random matrix Y. We use a 2 x 2 sliding
window with skip of 2 on X to obtain the corresponding po-
sition index. We use four kinds of colour to denote the four
regions of interest. (b) shows the corresponding indexes of
the four regions in vectorized Y,,. (c) Then we can find the
corresponding region covariance matrices for the four re-
gions from S. (d) The region covariance matrices S; € St |
corresponding to these local regions are the submanifolds
we select.

symmetric, while principle submatrices are always SPD. Al-
though we can readily prove that (S7 , )z, 7 can be viewed as
a regular submanifold of the SPD manifold S% ,, (S%, )z,7
might not be a SPD manifold. This could cause some incon-
sistency, since in the specific category of SPD manifolds, ob-
jects should always be SPD manifolds. In addition, (S} )z
can be viewed as a regular submanifold of S% , . The above
discussion is formalized by the following theorem. (Proof is
presented in the supplement.)

Theorem 1. For an SPD manifold S ,, the set of principal
submatrices (S , )z is an SPD manifold and can be embed-
ded into the S | as a regular submanifold. In addition, for
any proper indices I and J satisfying |Z| = |J|, (S}, )z is
isomorphic to (S} ) 7.

Now, we have identified that the local pattern in the spe-
cific SPD manifolds are principal submatrices.

4.3 Multi-scale Submanifold Block

Because of the analysis in Section 4.1, there are two factors
we should consider when designing our submanifold block,
i.e., the rule for selecting isomorphic submanifolds and the
way of aggregating them. In the following, we first discuss
the details of selecting submanifolds in the SPD manifold.
Then we proceed to introduce our multi-scale submanifold
block, which fuses submanifolds via a divide-aggregation
strategy.

The Principles for Selecting Submanifolds Theorem 1
reveals that the isomorphic submanifolds in SPD manifolds
are the sets of principal submatrices of the same size. Note
that incorporating all the sub-objects might not be an op-
timal solution, since it introduces redundant information
with cumbersome computation. In conventional convolu-
tion, sub-objects are selected following the concept of the re-
ceptive field. In terms of specific SPD manifolds, the number
of principal submatrices grows combinatorially, which could
cause a dimensionality explosion. For instance, if we select
all the principal submatrices of 4 x 4 from a 16 x 16 SPD
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matrix, which seems like a trivial example, the total num-
ber of selected submatrices would be Cyy = 1820. In most
cases, this huge number of small SPD submatrices would
not be manageable. Therefore, it is crucial to select princi-
pal submatrices to construct submanifolds. To this end, we
introduce a method for selecting principal submatrices.

In probability theory, the distribution information of a
d x d random matrix X can be conveyed by its covariance
matrix S of d? x d?, where S = Var(vec(X)) and vec(+)
denotes vectorization. The covariance of a k x k local re-
gion in X corresponds to a k? x k? principal submatrix of
S. If we focus on multiple k x k local regions, we then can
extract a series of principal submatrices of k? x k2. Con-
sidering that an SPD matrix is often defined by covariance
in computer vision, we can follow this probabilistic clue to
select principal submatrices.

Specifically, according to statistics, for a given image set
consisting of images X1, -, X,, of the size of n X n, it
can be viewed as m samples from a population, an n X n
random matrix X. Then we estimate population covari-
ance by sample covariance and model it into an n? x n?
SPD matrix Sy. After forward passing the deep SPD net-
works, we obtain a lower-dimensional discriminative SPD
matrix S of d? x d? via the network mapping denoted by
¢(-) : 8%y — S, . We hypothesize that there is an implicit
mapping () : R"*" — RI*4 to transform the random
matrix X into another one 1)(X) and S is the covariance of
¥(X). We denote ¢(X ) as Y for simplicity and then the size
of Y is d x d. If we focus on the local region covariance of
Y, then we can extract a series of principal submatrices from
S. Besides, the number of submatrices extracted in this way
is much smaller than the combinatorial number.

More specifically, we view a d? x d? SPD matrix S as a
covariance from a d X d random matrix Y, The covariance
matrix associated with a & X k receptive field of the matrix
Y corresponds to a k? x k? principal submatrix of S. When
moving a k X k sliding window by a step equal to s in Y (to
obtain the position index), we can select (% + 1)? princi-
pal submatrices of S accordingly. Obviously, the submatri-
ces we select are still SPD and the number of them is much
smaller than 052 . Besides, it will encode the geometrical in-
formation conveyed by the local system in the category of
SPD manifold. Figure 2 provides a conceptual illustration of
the process of selecting submanifolds.

Multi-scale Mechanism In fact, in a deep SPD network,
hidden SPD feature contains statistically compact informa-
tion. Each element of the hidden feature reflects the region
correlation in the original video. By extracting principal sub-
matrices, we focus on the correlation among multiple local
regions. In this way, we can capture the local semantic in-
formation in a statistical form. We anticipate that the classi-
fication can benefit from this compact local statistical infor-
mation.

Furthermore, inspired by Res2Net (Gao et al. 2019a),
which attempts to capture multi-scale features in one single
residual block, we design a multi-channel mechanism to ob-
tain local manifold information at diverse granularity levels.
In detail, for an SPD feature, various BiMap-ReEig layers



are applied to obtain a low dimensional SPD matrix, by:

BiMap: S} _; = Wj_1Sk—2Wil,,
ReEig: S} = U} _, max(el, %% UL,

3
“

where all W/ _, are of the same size, and (4) is an eigenval-
ues function.

It is expected that in each channel, the primary learnt local
geometry S} varies. To capture it, submatrices with specific
k; x k; dimensions are extracted from S,i. In this way, rich
statistical local information at different granularity levels is
extracted by our network. Besides, as an SPD matrix itself
can be viewed as a trivial submanifold, we also incorporate
a channel capturing the global information. In this way, not
only holistic geometry, but also local geometry are jointly
captured in the category of SPD manifold.

Submanifolds Fusion Strategies If we follow the Propo-
sition 3 rigorously, it would result in a major computational
burden, in view of the complex structure of the Riemannian
manifold. Therefore, we fuse this multi-scale information in
an approximate way instead. Since the SPD manifold Si’ 4

is diffeomorphic to the Euclidean space S? of symmetric
matrices by matrix logarithm, we can fuse the multi-scale
information in a comparatively simple space, i.e., S, which
is a well-known technique for tackling the problems of data
analysis on SPD manifolds (Huang et al. 2015c).

To be more specific, we first map each principal sub-
matrix into a real symmetric matrix by matrix logarithm,
M,;? = log(P,’), where k,i and j represent k'" layer,i'"
channel, and j** submatrix respectively. Considering that
the dimensionality of the Euclidean space formed by sym-
metric matrices S% is dd+1) , for each M, ,ij , we exploit its
lower triangular part to further mitigate the computational
burden. Since at this point the features lie in a Euclidean
space, concatenation can be applied to fuse them. This pro-
cess can be formally described as:

Vi ::concam(vec(trﬂ(ﬂ4il)),--~7vec(trﬂ(ﬂ4£"1))) Q)
where vec(-) means vectorization.

After we fuse the local information in each channel, we
concatenate the feature vectors to aggregate the multi-scale
information in different channels.

S Experiments

We evaluate the proposed MSNet in three challenging
visual classification tasks: video-based action recogni-
tion with the Cambridge-Gesture (CG) (Kim and Cipolla
2008) and the UCF-101 (Soomro, Zamir, and Shah 2012)
datasets, and skeleton-based action recognition with the
First-Person Hand Action (FPHA) (Garcia-Hernando et al.
2018) dataset, respectively. We simply employ a fully con-
nected layer, softmax layer and cross-entropy as our out-
put layer as (Huang and Van Gool 2017; Huang, Wu, and
Van Gool 2018). For training our MSNet, we use an i5-9400
(2.90GHz) CPU with 8GB RAM.
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5.1 Implementation Details

The SOTA Riemannian learning competitors include: 7).
General methods for SPD learning: Covariance Discrimi-
native Learning (CDL) (Wang et al. 2012), SPD Manifold
Learning (SPDML-AIM, SPDML-Stein) (Harandi, Salz-
mann, and Hartley 2018) and Log-Euclidean Metric Learn-
ing (LEML) (Huang et al. 2015c); 2). General methods
for Grassmann learning: Grassmann Discriminant Anal-
ysis (GDA) (Hamm and Lee 2008) and Projection Met-
ric Learning (PML) (Huang et al. 2015b); 3). Hybrid Rie-
mannian manifold learning methods: Hybrid Euclidean-
and-Riemannian Metric Learning (HERML) (Huang et al.
2015a) and Multiple Manifolds Metric Learning (MMML)
(Wang et al. 2018); 4). Riemannian deep methods: SPD
Network (SPDNet) (Huang and Van Gool 2017), SymNet
(Wang, Wu, and Kittler 2021), Grassmannian Network (Gr-
Net) (Huang, Wu, and Van Gool 2018). All the comparative
methods are carefully re-implemented by the source codes
and fine-tuned according to the original papers.

To further evaluate the effectiveness of our algorithm,
we also compare our MSNet with conventional SOTA
hand pose estimation methods on the FPHA dataset. These
approaches include Lie Group (Vemulapalli, Arrate, and
Chellappa 2014), Hierarchical Recurrent Neural Network
(HBRNN) (Du, Wang, and Wang 2015), Jointly Learning
Heterogeneous Features (JOULE) (Hu et al. 2015), Con-
volutional Two-Stream Network (Two stream) (Feichten-
hofer, Pinz, and Zisserman 2016), Novel View (Rahmani
and Mian 2016), Transition Forests (TF) (Garcia-Hernando
and Kim 2017), Temporal Convolutional Network (TCN)
(Kim and Reiter 2017), LSTM (Garcia-Hernando et al.
2018) and Unified Hand and Object Model (Tekin, Bogo,
and Pollefeys 2019). Besides, we also compare our approach
against Euclidean network searching methods, DARTS(Liu,
Simonyan, and Yang 2018) and FairDARTS (Chu et al.
2020), following the setting in (Sukthanker et al. 2021) by
viewing SPD logarithm maps as Euclidean data.

We study five configurations, i.e., MSNet-H, MSNet-
PS, MSNet-AS, MSNet-S and MSNet-MS to further eval-
uate the utility of our proposed network. In detail, MSNet-

MS with two BiMap-ReEig layers is Sp — flfl) —
T(z) N flfs) N f7(4) N fv({?) N f}ﬁ) N fs(7), where

ék), T(k), ﬁ),f}k), S(k) represent k' layers of BiMap,
ReEig, multi-scale submanifold, FC, and softmax-cross-
entropy, respectively. Note that apart from the two BiMap-

ReEig blocks in the backbone, in each branch of f,(,f ) , there
is a BiMap-ReEig block as well, as illustrated in Figure 1.
Besides, as the whole SPD matrix can be viewed as a trivial
submanifold, we use MSNet-H to denote that we only ex-
tract holistic information. Though it is similar to SPDNet,
only the lower triangular part is exploited for classification
in our framework, alleviating the computational burden. To
study the utility of proper submanifolds, we use MSNet-PS
to represent that we extract all kinds of proper submanifolds
according to our principles except the trivial ones. To see
whether over-loaded submanifolds would bring about redun-
dant information, we build MSNet-AS to extract all the sub-



Dataset CG FPHA UCF-sub

BiMap Settings  100,80,50,25  63,56,46,36  100,80,49

Submanifolds 22,32, 4%, 5> 52,62 22,62, 77
Learning Rates le™® le™* le™?
Epochs 500 3500 500

Table 1: Configurations of MSNet on three datasets. Note
that 100,80,50,25 means 100 x 80,80 x 50,50 x 25.

manifolds including the trivial ones. MSNet-S denotes that
we only utilize the proper submanifolds in the correspond-
ing MSNet-MS except for the trivial one.

In the experiments, we simply set “step” size equal to 1.
The above models of our MSNet and SPDNet share the same
learning mechanism as follows. The initial learning rate is
A = le~? and reduced by 0.8 every 50 epochs to a minimum
of 1e~3. Besides, the batch size is set to 30, and the weights
in BiMap layers are initialized as random semi-orthogonal
matrices. For activation threshold in ReEig and dimension
of transformation matrices in BiMap, we first search the op-
timal settings by our backbone SPDNet and then employ the
same settings to our MSNet.

5.2 Datasets and Settings

To evaluate our method when facing limited data, experi-
ments are carried out on the CG (Kim and Cipolla 2008)
dataset. It consists of 900 video sequences covering nine
kinds of hand gestures. For this dataset, following the crite-
ria in (Chen et al. 2020), we randomly select 20 and 80 clips
for training and testing per class, respectively. For evalua-
tion, we resize each frame into 20 x 20 and obtain the grey
scale feature. To further facilitate our experiment, we reduce
each frame dimension to 100 by PCA. Then we compute the
covariance matrix of size 100 x 100 to represent each video.

We employ the popular FPHA (Garcia-Hernando et al.
2018) dataset for skeleton-based action recognition. It in-
cludes 1,175 action videos of 45 different action categories.
For a fair comparison, we follow the protocols in (Wang,
Wu, and Kittler 2021). In detail, we use 600 action clips
for training and 575 for testing and each frame is vector-
ized into a 63-dimensional feature vector with the provided
3D coordinates of 21 hand joints. Then we obtain a 63 x 63
covariance representation for each sequence.

To assess the utility of our method in the task of rel-
atively large scale, UCF-101 (Soomro, Zamir, and Shah
2012) dataset is exploited, which is sourced from YouTube,
containing 13k realistic user-uploaded video clips of 101
types of action. To facilitate our experiment, 50 kinds of ac-
tion are randomly selected, each of which consists of 100
clips. We call this dataset UCF-sub in the following. As we
did in the CG dataset, we exploit the grey scale feature and
reduce the dimension of each frame to 100 by PCA. The
seventy-thirty-ratio (STR) protocol is exploited to build the
gallery and probes.

The configurations on three datasets are listed in Table 1.
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Methods Year Colour Depth Pose  Acc.
Lie Group 2014 X X v 82.69
HBRNN 2015 X X v 77.40
JOULE 2015 v v 4 78.78
Two stream 2016 v X X 75.30
Novel View 2016 X 4 X 69.21
TF 2017 X X v 80.69
TCN 2017 X X v/ 78.57
LSTM 2018 X X v 80.14
H+O 2019 v X X 82.43
DARTS 2018 X X v 74.26
FairDARTS 2020 X X v/ 76.87
SPDML-AIM 2018 X X v 76.52
HERML 2015 X X v 76.17
MMML 2018 X X v 75.05
SPDNet 2017 X X v 85.57
GrNet 2018 X X 4 77.57
SymNet 2021 X X v 82.96
MSNet-H X X v 85.74
MSNet-PS X X v 80.52
MSNet-AS X X v 82.26
MSNet-S X X v/ 86.61
MSNet-MS X X v 87.13

Table 2: Recognition Results (%) on the FPHA Dataset.

Acc on the CG dataset Acc on the UCF dataset

0.95 0.65
[ 06| bt
0.85 PN ossl | M\W
80.8 § :
0.75 0.5
0.7
0.65 —SPDNet||  0.45 ——SPDNet
: — MSNet ——MSNet

100 200 300 400 500
Training epoch

100 200 300 400 500
Training epoch

Figure 3: Accuracy curve of the proposed MSNet against
SPDNet on the CG and UCF-sub datasets.

5.3 Analysis

As reported in Table 2 and Table 3, our proposed MSNet-
MS outperforms all the other competitors on three datasets.
Note that in a relatively large dataset, some shallow learn-
ing methods, such as MMML and HERML, are barely fea-
sible in view of their time-consuming optimization. Figure 3
shows the convergence behaviour on the CG and UCF-sub
datasets. There are several interesting observations worth
discussing.

Firstly, although hybrid Riemannian methods, like
HERML and MMML, can take advantage of complementary
information encoded in different manifold and thus surpass
some deep methods occasionally, our method consistently
outperforms them. This verifies that information encoded in
submanifolds is of great importance and could be beneficial
for classification.

Secondly, on the CG and FPHA datasets, MSNet-H
achieves almost the same performance as SPDNet, while on



Method CG UCF-sub
GDA 88.68 43.67
CDL 90.56 41.53
PML 84.32 50.60

LEML 71.15 44.67

SPDML-Stein  82.62 51.40
SPDML-AIM  88.61 51.13

HERML 88.94 NA

MMML 89.92 NA
GrNet 85.69 35.80

SPDNet 89.03 59.93

SymNet 89.81 56.73

MSNet-H 89.03 58.27
MSNet-PS 90.14 57.73
MSNet-AS NA 58.33
MSNet-S 90.14 59.40
MSNet-MS 91.25 60.87

Table 3: Performance (%) on the CG and UCF-sub datasets.

the UCF-sub dataset, MSNet-H is inferior to SPDNet. Al-
though as we discussed in Section 4.3, the lower triangular
part of a symmetric matrix is mathematically equivalent to
itself, the non-convexity of optimization on deep learning
might cause some empirical deviation. However, extracting
lower triangular, which is the way we exploit, could alleviate
the computational burden and thus enhance the scalability
of the output layer. For instance, if a deep network is used
as an output classifier, it would be more efficient to halve
the dimensionality of the input vector. What’s more, our
method, i.e., MSNet-MS, surpasses the backbone network,
SPDNet, in all three datasets. This suggests that the underly-
ing statistical information in submanifolds could contribute
to the visual perception, leading to a better classifier. There-
fore, efforts should be paid to mine the information in sub-
manifolds. However, over-saturated efforts in submanifolds
might undermine discriminability. This idea is justified by
the generally inferior performance of MSNet-AS, which se-
lects all the submanifolds, to MSNet-MS.

Thirdly, although proper efforts should be made for sub-
manifolds, they might vary for different tasks. On the CG
dataset, the best performance is achieved when we use all
kinds of submanifolds. This might be attributed to the par-
ticularity of the dataset. In detail, on this dataset, the back-
ground and the foreground are relatively monotonous, and
the difference between them is apparent. Therefore, statisti-
cal information at diverse granular levels encoded in differ-
ent submanifolds could contribute to the classification. How-
ever, on the FPHA and UCF-sub datasets, the large variance
of appearance makes us cautious to select submanifolds to
waive the statistically dispensable information.

More importantly, although local statistical information
is of great value for visual classification, never can we ne-
glect the importance of holistic information. Specifically, as
we can see, MSNet-MS is superior to MSNet-S. The sole
difference between these two configurations is that MSNet-
MS uses the global information, while MSNet-S does not.
The consistent phenomenon can be observed in the com-
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Configuration SPDNet  MSNet
{100,60,36} 56.73 57.33
{100,80,60,36} 56.27 58.33
{100,80,50,25} 48.47 52.67
{100,80,50,25,16} 40.07 45.60
{100,80,50,25,9} 28.73 36.07

Table 4: Performance (%) on the UCF-sub dataset under dif-
ferent backbone configurations.

parison between MSNet-AS and MSNet-PS. This indicates
that only when we combine the optimal local information
together with global information, could we make the best of
statistical information.

It takes about 1.29s, 2.67s and 34.50s per epoch to train
our MSNet-MS on the CG, FPHA and UCF-sub datasets,
respectively, while training SPDNet takes 0.53s, 1.53s and
11.33s per epoch. Although the extra time caused by our
multi-branch mechanism is inevitable, our method demon-
strates the significance of submanifold for visual perception.

5.4 Ablation Study

To further evaluate the utility of our MSNet, different con-
figurations, like depth and transformation matrices in SPD
backbone, are implemented on the UCF-sub dataset, as
shown in Table 4. Apart from the expected consistent perfor-
mance gain brought about by our submanifold block, there
is another interesting observation. The magnitude of im-
provement varies under different configurations. To be more
specific, in some configurations, like {100,60,36}, the im-
provement sourced from our MSNet is relatively marginal,
while in other cases, our approach offers more incremental
gain, especially in the case of {100,80,50,25,9}, where the
SPDNet is highly underfitting. This indicates that by pro-
viding complementary geometrically local information, sub-
manifold is not only beneficial for Riemannian deep learn-
ing and could alleviate underfitting. It is therefore expected
that the study of submanifold is worthwhile in the sense of
promoting Riemannian deep learning forward.

6 Conclusion

In this paper, we successfully identify local mechanisms in
Riemannian manifolds and propose a novel multi-scale sub-
manifold block for SPD networks. Extensive experiments
demonstrate the superiority of our approach. To the best
of our knowledge, this work is the first attempt to mine
the diverse local geometry in the Riemannian deep network
paradigm. It opens a new direction that mines the informa-
tion in a high-level semantic submanifold.

However, there are still some issues to be improved. For
instance, our manual principle for selection is a sub-optimal
expedient. In the future, we will explore other techniques
for better selection. In addition, although local patterns are
successfully defined, we rely on approximation in extracting
local information. In the future, we will explore other more
intrinsic ways to better deal with submanifolds.
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