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Abstract

The actor-critic (AC) reinforcement learning algorithms have
been the powerhouse behind many challenging applications.
Nevertheless, its convergence is fragile in general. To study
its instability, existing works mostly consider the uncommon
double-loop variant or basic models with finite state and ac-
tion space. We investigate the more practical single-sample
two-timescale AC for solving the canonical linear quadratic
regulator (LQR) problem, where the actor and the critic up-
date only once with a single sample in each iteration on an
unbounded continuous state and action space. Existing anal-
ysis cannot conclude the convergence for such a challenging
case. We develop a new analysis framework that allows es-
tablishing the global convergence to an epsilon-optimal so-
lution with at most an order of epsilon to -2.5 sample com-
plexity. To our knowledge, this is the first finite-time conver-
gence analysis for the single sample two-timescale AC for
solving LQR with global optimality. The sample complex-
ity improves those of other variants by orders, which sheds
light on the practical wisdom of single sample algorithms.
We also further validate our theoretical findings via compre-
hensive simulation comparisons.

Introduction
The actor-critic (AC) methods (Konda and Tsitsiklis 1999)
are among the most commonly used reinforcement learning
(RL) algorithms, which have achieved tremendous empirical
successes (Mnih et al. 2016; Silver et al. 2017). In AC meth-
ods, the actor refers to the policy and the critic characterizes
the action-value function (Q-function) given the actor. In
each iteration, the critic tries to approximate the Q-function
by applying policy evaluation algorithms (Dann et al. 2014;
Sutton and Barto 2018), while the actor typically follows
policy gradient (Sutton et al. 1999; Agarwal et al. 2021)
updates according to the Q-function provided by the critic.
Compared with other RL algorithms, AC methods combine
the advantages of both policy-based methods such as RE-
INFORCE (Williams 1992) and value-based methods such
as temporal difference (TD) learning (Sutton 1988; Bhan-
dari, Russo, and Singal 2018) and Q-learning (Watkins and
Dayan 1992). Therefore, AC methods can be naturally ap-
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plied to the continuous control setting (Silver et al. 2014)
and meanwhile enjoy the low variance of bootstrapping.

Despite its empirical success, theoretical guarantees of
AC still lag behind. Most existing works focus exclusively
on the double-loop setting, where the critic updates many
steps in the inner loop, followed by an actor update in the
outer loop (Yang et al. 2019; Agarwal et al. 2021; Wang et al.
2019; Abbasi-Yadkori et al. 2019; Bhandari and Russo 2021;
Xu, Wang, and Liang 2020a). This setting yields accurate es-
timation of the Q-function and consequently the policy gra-
dient. Therefore, double-loop setting decouples the conver-
gence analysis of the actor and the critic, which further al-
lows analyzing AC as a gradient method with error (Sutton
et al. 1999; Kakade and Langford 2002; Shalev-Shwartz and
Ben-David 2014; Ruder 2016).

A more favorable implementation of AC in practice is the
single-loop two-timescale setting, where the actor and critic
are updated simultaneously in each iteration with different-
timescale stepsizes. Typically, the actor stepsize is smaller
than that of the critic. To establish the finite-time conver-
gence of two-timescale AC methods, most existing results
either focus on the multi-sample methods (Xu, Wang, and
Liang 2020b; Qiu et al. 2021) or the finite discrete action
space (Wu et al. 2020). The former allows the critic to col-
lect multiple samples to accurately estimate the Q-function
given the actor, which are rarely implemented in practice.
It essentially decouples actor and critic in a similar way to
the double-loop setting. We study the more practical single-
sample AC algorithm similar to the one considered in Wu
et al. (2020), where the critic updates only once using a sin-
gle sample per policy evaluation step. However, the latter
only attains a stationary point under the finite-action space
setting (see Table 1 for comparisons). We address the impor-
tant yet more challenging question: can the single-sample
two-timescale AC find a global optimal policy on the gen-
eral unbounded continuous state-action space?

To this end, we analyze the classic single-sample AC for
solving the Linear Quadratic Regulator (LQR), a fundamen-
tal control task which is commonly employed as a testbed
to explore the behavior and limits of RL algorithms under
continuous state-action spaces (Fazel et al. 2018; Yang et al.
2019; Tu and Recht 2018; Krauth, Tu, and Recht 2019; Duan
et al. 2022). In the LQR case, the Q-function is a linear func-
tion of the quadratic form of state and action. In general, it is
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Reference Structure Sample Complexity Optimality

Xu, Wang, and Liang (2020b) Multi-sample O(ϵ−2.5) Local
O(ϵ−4) Global

Wu et al. (2020) Single-sample O(ϵ−2.5) Local
This paper Single-sample O(ϵ−2.5) Global

Table 1: Comparison with other two-timescale actor-critic algorithms

difficult to establish the convergence of AC with linear func-
tion approximation (Bhandari, Russo, and Singal 2018). In
the double-loop and multi-sample settings (Yang et al. 2019;
Krauth, Tu, and Recht 2019), the Q-function of LQR can be
estimated arbitrarily accurately, and the LQR cost is guaran-
teed to converge to the global optimum monotonically per-
iteration. However, the single-sample algorithm generally
does not have these nice properties. It is more challenging to
control the error propagation between the actor and the critic
updates over iterations and prove its global convergence.

We distinguish our work from other model-free RL algo-
rithms for solving LQR in Table 2. The zeroth-order meth-
ods and the policy iteration method are included for com-
pleteness. In particular, we note that Zhou and Lu (2022) an-
alyzed the finite-time convergence under a single-timescale
stepsize and multi-sample setting. The analysis requires the
strong assumption on the uniform boundedness of the critic
parameters. In comparison, our analysis does not require
this assumption and considers the more challenging single-
sample setting.

Within the literature of two-timescale AC for solving gen-
eral MDP problems (see Table 1), we note that the analysis
of Wu et al. (2020) depends critically on the assumptions of
finite action space, bounded reward function, and bounded
feature functions. However, these fundamental assumptions
do not hold in the LQR case, making its analysis more chal-
lenging.

Main Contribution
Our main contributions are summarized as follows:

• Our work contributes to the theoretical understanding
of AC methods. We for the first time show that the clas-
sic single-sample two-timescale AC can provably find the
ϵ-accurate global optimum with a sample complexity of
O(ϵ−2.5), under the continuous state-action space with lin-
ear function approximation. This is the same complexity
order as those in Wu et al. (2020); Xu, Wang, and Liang
(2020b), but the latter only attain the local optimum.

We also add to the work of RL on continuous control
tasks. It is novel that even without completely solving the
policy evaluation sub-problem and only updating the actor
with a biased policy gradient, the two-timescale AC algo-
rithm can still find the global optimal policy for LQR, un-
der common assumptions. Our work may serve as the first
step towards understanding the limits of single-sample two-
timescale AC on continuous control tasks.

Compared with the state-of-the-art work of double-loop
AC for solving LQR (Yang et al. 2019), we show the prac-
tical wisdom single-sample AC enjoys a lower sample com-
plexity than O(ϵ−5) of the latter. We also show the algo-

rithm is much more sample-efficient empirically compared
to a few classic works.

• Technical-wise, despite the non-convexity of the LQR
problem, we still find the global optimal policy under the
single-sample update by exploiting the gradient domination
property (Polyak 1963; Nesterov and Polyak 2006; Fazel
et al. 2018). Existing popular analysis (Fazel et al. 2018;
Yang et al. 2019) relies on the contraction of the cost learn-
ing errors. This nevertheless does not hold in the single-
sample case. We alternatively establish the global conver-
gence by showing the natural gradient of the objective func-
tion converges to zero and then using the gradient domina-
tion. Our work provides a more general proof framework
for finding the optimal policy of LQR using various RL al-
gorithms.

Related Work
Due to the extensive studies on AC methods, we hereby re-
view only those works that are mostly relevant to our study.

Actor-Critic methods. The AC algorithm was proposed
in Witten (1977); Sutton (1984); Konda and Tsitsiklis
(1999). Kakade (2001) extended it to the natural AC algo-
rithm. The asymptotic convergence of AC algorithms has
been well established in Kakade (2001); Bhatnagar et al.
(2009); Castro and Meir (2010); Zhang et al. (2020). Many
recent works focused on the finite-time convergence of AC
methods. Under the double-loop setting, Yang et al. (2019)
established the global convergence of AC methods for solv-
ing LQR. Wang et al. (2019) studied the global conver-
gence of AC methods with both the actor and the critic be-
ing parameterized by neural networks. Kumar, Koppel, and
Ribeiro (2019) studied the finite-time local convergence of a
few AC variants with linear function approximation, where
the number of inner loop iterations grows linearly with the
outer loop counting number.

Under the two-timescale AC setting, Khodadadian et al.
(2022); Hu, Ji, and Telgarsky (2021) studied its finite-time
convergence in tabular (finite state-action) case. For two-
timescale AC with linear function approximation (see Ta-
ble 1 for a summary), Wu et al. (2020) established the finite-
time local convergence to a stationary point at a sample
complexity of O(ϵ−2.5). Xu, Wang, and Liang (2020b) stud-
ied both local convergence and global convergence for two-
timescale (natural) AC, with O(ϵ−2.5) and O(ϵ−4) sample
complexity, respectively, under the discounted accumulated
reward. The algorithm collects multiple samples to update
the critic.

Under the single-timescale setting, Fu, Yang, and Wang
(2020) considered the regularized least-square temporal dif-
ference (LSTD) update for critic and established the finite-
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Reference Algorithm Structure
Fazel et al. (2018) Zeroth-order

Double-loopMalik et al. (2019) Zeroth-order
Yang et al. (2019) Actor-Critic

Krauth, Tu, and Recht (2019) Policy Iteration
Single-loop

Multi-sample
Zhou and Lu (2022) Actor-Critic Multi-sample (Single-timescale)

This paper Actor-Critic Single-sample (Two-timescale)

Table 2: Comparison with other model-free RL algorithms for solving LQR.

time convergence for both linear function approximation and
nonlinear function approximation using neural networks.

RL algorithms for LQR. RL algorithms in the context of
LQR have seen increased interest in the recent years. These
works can be mainly divided into two categories: model-
based methods (Dean et al. 2020; Mania, Tu, and Recht
2019; Cohen, Koren, and Mansour 2019; Dean et al. 2018)
and model-free methods. Our main interest lies in the model-
free methods. Notably, Fazel et al. (2018) established the
first global convergence result for LQR under the policy gra-
dient method using derivative-free (one-point gradient es-
timator based zeroth-order) optimization at a sample com-
plexity of O(ϵ−4). Malik et al. (2019) employed two-point
gradient estimator based zeroth-order optimization methods
for solving LQR and improved the sample complexity to
O(ϵ−1). Tu and Recht (2019) characterized the sample com-
plexity gap between model-based and model-free methods
from an asymptotic viewpoint where their model-free algo-
rithm is based on REINFORCE.

Apart from policy gradient methods, Tu and Recht (2018)
studied the LSTD learning for LQR and derived the sample
complexity to estimate the value function for a fixed pol-
icy. Subsequently, Krauth, Tu, and Recht (2019) established
the convergence and sample complexity of the LSTD pol-
icy iteration method under the LQR setting. On the subject
of adopting AC to solve LQR, Yang et al. (2019) provided
the first finite-time analysis with convergence guarantee and
sample complexity under the double-loop setting. For the
more practical yet challenging single-sample two-timescale
AC, there is no such theoretical guarantee so far, which is
the focus of this paper.

Notation. For two sequences {xn} and {yn}, we write
xn = O(yn) if there exists an constant C such that xn ≤
Cyn. We use ∥ω∥ to denote the ℓ2-norm of a vector ω and
use ∥A∥ to denote the spectral norm of a matrix A. We also
use ∥A∥F to denote the Frobenius norm of a matrix A. We
use σmin(A) and σmax(A) to denote the minimum and max-
imum singular values of a matrix A respectively. We also use
Tr(A) to denote the trace of a square matrix A. For any sym-
metric matrix M ∈ Rn×n, let svec(M) ∈ Rn(n+1)/2 denote
the vectorization of the upper triangular part of M such that
∥M∥2F = ⟨svec(M), svec(M)⟩. Besides, let smat(·) denote
the inverse of svec(·) so that smat(svec(M)) = M . We de-
note by A ⊗s B the symmetric Kronecker product of two
matrices A and B.

Preliminaries
In this section, we introduce the AC algorithm and provide
the theoretical background of LQR.

Actor-Critic Algorithms
Reinforcement learning problems can be formulated as a
discrete-time Markov Decision Process (MDP), which is de-
fined by (X ,U ,P, c). Here X and U denote the state and the
action space, respectively. At each time step t, the agent se-
lects an action ut ∈ U according to its current state xt ∈ X .
In return, the agent will transit into the next state xt+1 and
receive a running cost c(xt, ut). This transition kernel is de-
fined by P , which maps a state-action pair (xt, ut) to the
probability distribution over xt+1. The agent’s behavior is
defined by a policy πθ(u|x) parameterized by θ, which maps
a given state to a probability distribution over actions. In the
following, we will use ρθ to denote the stationary state dis-
tribution induced by the policy πθ.

The goal of the average RL is to learn a policy that min-
imizes the infinite-horizon time-average cost (Sutton et al.
1999; Yang et al. 2019), which is given by

J(θ) := lim
T→∞

Eθ

∑T
t=0 c(xt, ut)

T
= E

x∼ρθ,u∼πθ

[c(x, u)],

(1)

where Eθ denotes the expected value of a random variable
whose state-action pair (xt, ut) is obtained from policy πθ.
Under this setting, the state-action value of policy πθ can be
calculated as

Qθ(x, u) =
∞∑
t=0

Eθ[c(xt, ut)− J(θ)|x0 = x, u0 = u]. (2)

The typical AC consists of two alternate processes: (1)
critic update, which estimates the Q-function Qθ(x, u) of
current policy πθ using temporal difference (TD) learning
(Sutton and Barto 2018), and (2) actor update, which im-
proves the policy to reduce the cost function J(θ) via gra-
dient descent. By the policy gradient theorem (Sutton et al.
1999), the gradient of J(θ) with respect to parameter θ is
characterized by

∇θJ(θ) = Ex∼ρθ,u∼πθ
[∇θ log πθ(u|x) ·Qθ(x, u)].

One can also choose to update the policy using the nat-
ural policy gradient, which is the basic idea behind natural
AC algorithms (Kakade 2001). The natural policy gradient
is given by

∇N
θ J(θ) = F (θ)†∇θJ(θ). (3)
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where

F (θ) = Ex∼ρθ,u∼πθ
[∇θ log πθ(u|x)(∇θ log πθ(u|x))⊤]

is the Fisher information matrix and F (θ)† denotes its
Moore Penrose inverse.

The Linear Quadratic Regulator Problem
As a canonical optimal control problem, the linear quadratic
regulator (LQR) has become a convenient testbed for the op-
timization landscape analysis of various RL methods. In this
paper, we aim to analyze the convergence performance of
the AC algorithm applied to LQR. In particular, we consider
a stochastic version of LQR (called noisy LQR), where the
system dynamics and the running cost are specified by

xt+1 = Axt +But + ϵt, (4a)

c(x, u) = x⊤Qx+ u⊤Ru. (4b)

Here xt ∈ Rd and ut ∈ Rk, A ∈ Rd×d and B ∈ Rd×k are
system matrices, Q ∈ Sd×d and R ∈ Sk×k are performance
matrices, and ϵt ∼ N (0, D0) are i.i.d Gaussian random vari-
ables with D0 > 0.

The goal of the noisy LQR problem is to find an action
sequence {ut} that minimizes the following infinite-horizon
time-average cost

minimize
{ut}

J({ut}) := lim
T→∞

E[
1

T

T∑
t=1

x⊤
t Qxt + u⊤

t Rut]

subject to (4a).

From the optimal control theory (Anderson and Moore
2007; Bertsekas 2011, 2019), the optimal policy is given by
a linear feedback of the state

ut = −K∗xt, (5)

where K∗ ∈ Rk×d can be calculated as

K∗ = (B⊤P ∗B)−1B⊤P ∗A

with P ∗ being the unique solution to the following Algebraic
Riccati Equation (ARE) (Anderson and Moore 2007)

P ∗ = Q+A⊤P ∗A−A⊤P ∗B(B⊤P ∗B +R)−1B⊤P ∗A.

Actor-critic for LQR
Although the optimal solution of LQR can be easily found
by solving the corresponding ARE, its solution relies on the
complete model knowledge. In this paper, we pursue find-
ing the optimal policy in a model-free way by using the AC
method, without knowing or estimating A,B,Q,R.

Based on the structure of the optimal policy in (5), we
parameterize the policy as

{πK(·|x) = N (−Kx, σ2Ik),K ∈ Rk×d}, (6)

where K is the policy parameter to be solved and σ > 0
is the standard deviation of the exploration noise. In other
words, given a state xt, the agent will take an action ut ac-
cording to ut = −Kxt + σζt, where ζt ∼ N (0, Ik). As

a consequence, the closed-loop form of system (4a) under
policy (6) is given by

xt+1 = (A−BK)xt + ξt, (7)

where

ξt = ϵt + σBζt ∼ N (0, Dσ)

with Dσ = D0 + σ2BB⊤.
The set K of all stabilizing policies is given by

K :=
{
K ∈ Rk×d : ρ(A−BK) < 1

}
, (8)

where ρ(·) denotes the spectral radius. Before adopting AC
to find the optimal policy πK∗ that minimizes the corre-
sponding cost J(K) defined in (1), we first need to estab-
lish the analytical formula of the average cost J(K), the Q-
function QK(x, u), and the policy gradient ∇KJ(K) for a
given stabilizing policy.

It is well known that if K ∈ K, the Markov chain in (7)
has a stationary distribution N (0, DK), where DK satisfies
the following Lyapunov equation

DK = Dσ + (A−BK)DK(A−BK)⊤. (9)

Similarly, we define PK as the unique positive definite solu-
tion to

PK = Q+K⊤RK + (A−BK)⊤PK(A−BK). (10)

Based on DK and PK , the following lemma characterizes
the explicit expression of J(K) and its gradient ∇KJ(K).
Lemma 1. (Yang et al. 2019) For any K ∈ K, the cost
function J(K) and its gradient ∇KJ(K) take the follow-
ing forms

J(K) = Tr(PKDσ) + σ2Tr(R), (11a)
∇KJ(K) = 2EKDK , (11b)

where EK := (R+B⊤PKB)K −B⊤PKA.

It can be shown that the natural gradient of J(K) can be
calculated as (Fazel et al. 2018; Yang et al. 2019)

∇N
KJ(K) = ∇KJ(K)D−1

K = EK . (12)

Note that we omit the constant coefficient since it can be
absorbed by the stepsize.

The expression of QK(x, u) will also play an important
role in our analysis later on.
Lemma 2. (Bradtke, Ydstie, and Barto 1994; Yang et al.
2019) For any K ∈ K, the Q-function QK(x, u) takes the
following form

QK(x, u) =(x⊤, u⊤)ΩK

(
x
u

)
− σ2Tr(R+ PKBB⊤)− Tr(PKDK),

(13)

where

ΩK :=

[
Ω11

K Ω12
K

Ω21
K Ω22

K

]
:=

[
Q+A⊤PKA A⊤PKB
B⊤PKA R+B⊤PKB

]
.

(14)
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Single-sample Natural Actor-Critic
The expressions of ∇J(K) and QK(x, u) in Lemmas 1 and
2 depend on A, B, Q, and R. For model-free learning, we
establish a single-sample two-timescale AC algorithm for
LQR in the following.

In view of the structure of the Q-function given in (13),
we define the following feature functions,

ϕ(x, u) = svec

[(
x
u

)(
x
u

)⊤
]
.

Then we can parameterize QK(x, u) by the following linear
function

Q̂K(x, u;w) = ϕ(x, u)⊤w + b.

To drive Q̂K(x, u;w) towards its true value QK(x, u) in a
model-free way, the TD learning technique is applied to tune
its parameters ω:

ωt+1 = ωt + βt[(ct − J(K) + ϕ(xt+1, ut+1)
⊤ωt

+ b− ϕ(xt, ut)
⊤ωt − b)]ϕ(xt, ut)

= ωt + βt[(ct − J(K))ϕ(xt, ut)

− ϕ(xt, ut)(ϕ(xt, ut)− ϕ(xt+1, ut+1))
⊤)ωt],

(15)
where βt is the step size of the critic.

To further simplify the expression, we denote (x′, u′)
as the subsequent state-action pair of (x, u) and abbrevi-
ate Ex∼ρK ,u∼πK(·|x) as E(x,u). By taking the expectation of
ωt+1 in (15) with respect to the stationary distribution, for
any given ωt, the expected subsequent critic can be written
as

E[ωt+1|ωt] = ωt + βt(bK −AKωt), (16)

where

AK = E(x,u)[ϕ(x, u)(ϕ(x, u)− ϕ(x′, u′))⊤)], (17)

bK = E(x,u)[(c(x, u)− J(K))ϕ(x, u)].

Given a policy πK , it is not hard to show that if the up-
date in (16) has converged to some limiting point ω∗

K , i.e.,
limt→∞ ωt = ω∗

K , ω∗
K must be the solution of

AKω = bK . (18)

We characterize the uniqueness and the explicit expression
of ω∗

K in Proposition 3.
Proposition 3. Suppose K ∈ K. Then the matrix AK de-
fined in (17) is invertible such that the linear equation (18)
has an unique solution ω∗

K , which is in the form of

ω∗
K = svec(ΩK). (19)

Combining (12), (14), and (19), we can express the natu-
ral gradient of J(K) using only ω∗

K :

∇N
KJ(K) = Ω22

KK − Ω21
K = smat(ω∗

K)22K − smat(ω∗
K)21.

This enables us to estimate the natural policy gradient using
the critic parameters ωt+1, and then update the actor in a
model-free manner

Kt+1 = Kt − αt
̂∇N
Kt

J(Kt), (20)

where αt is the (actor) step size and ̂∇N
Kt

J(Kt) is the natural
gradient estimation depending on ωt+1:

̂∇N
Kt

J(Kt) = smat(ωt+1)
22Kt − smat(ωt+1)

21. (21)

With the critic update rule (15) and the actor update rule
(20) in place, we are ready to present the following single-
sample two-timescale natural AC algorithm for LQR.

Algorithm 1: Single-Sample Two-timescale Natural Actor-
Critic for Linear Quadratic Regulator

1: Input initialize actor parameter K0 ∈ K, critic parame-
ter ω0, average cost η0, step sizes αt, βt, and γt.

2: for t = 0, 1, 2, · · · , T − 1 do
3: Sample xt from the stationary distribution ρKt

.
4: Take action ut ∼ πKt

(·|xt) and receive ct =
c(xt, ut) and the subsequent state x′

t.
5: Obtain u′

t ∼ πKt
(·|x′

t).
6: TD error calculation

δt = ct − ηt + ϕ(x′
t, u

′
t)

⊤ωt − ϕ(xt, ut)
⊤ωt

7: Average cost estimate

ηt+1 = ΠU (ηt + γt(ct − ηt))

8: Critic estimate

ωt+1 = Πω̄(ωt + βtδtϕ(xt, ut))

9: Actor update

Kt+1 = Kt − αt(smat(ωt+1)
22Kt − smat(ωt+1)

21)

10: end for

We call this algorithm “single-sample” because we only
use exactly one sample to update the critic and the ac-
tor at each step. Line 3 of Algorithm 1 samples from the
stationary distribution corresponding to policy πK , which
is common in analysis of the LQR problem (Yang et al.
2019). Such a requirement is only made to simplify the the-
oretical analysis. As shown in Tu and Recht (2018), when
K ∈ K, the Markov chain in (7) is geometrically β-mixing
and thus mixes quickly. Therefore, in practice, one can run
the Markov chain in (7) for a sufficient time and sample from
the last one.

Since the update of the critic parameter in (15) requires
the knowledge of the average cost J(K), Line 7 is to pro-
vide an estimate of the cost function J(K). Besides, com-
pared with (15), we introduce a projection operator in Line
8 to keep the critic norm-bounded, which is necessary to sta-
bilize the algorithm and attain convergence guarantee. Simi-
lar operation has been commonly adopted in other literature
(Wu et al. 2020; Yang et al. 2019; Xu, Wang, and Liang
2020b).

Main Theory
In this section, we establish the global convergence and an-
alyze the finite-sample performance of Algorithm 1. All the
corresponding proofs are provided in Chen et al. (2022).
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Before preceding, the following assumptions are required,
which are standard in the theoretical analysis of AC methods
(Wu et al. 2020; Fu, Yang, and Wang 2020; Yang et al. 2019;
Zhou and Lu 2022).

Assumption 4. There exists a constant K̄ > 0 such that
∥Kt∥ ≤ K̄ for all t.

The above assumes the uniform boundedness of the ac-
tor parameter. One can also ensure this by adding a projec-
tion operator to the actor. In this paper, we follow the pre-
vious works (Konda and Tsitsiklis 1999; Bhatnagar et al.
2009; Karmakar and Bhatnagar 2018; Barakat, Bianchi, and
Lehmann 2022) to explicitly assume that our iterations re-
main bounded. As shown in our proof, it is only made
to guarantee the uniform boundedness of the feature func-
tions, which is a standard assumption in the literature of AC
methods with linear function approximation (Xu, Wang, and
Liang 2020b; Wu et al. 2020; Fu, Yang, and Wang 2020).

Assumption 5. There exists a constant ρ ∈ (0, 1) such that
ρ(A−BKt) ≤ ρ for all t.

Assumption 5 is made to ensure the stability of the closed
loop systems induced in each iteration and thus ensure the
existence of the stationary distribution corresponding to pol-
icy πKt . In the single-sample case, the estimation of the nat-
ural gradient of J(K) is biased and the policy change is
noisy. Therefore, it is difficult to obtain a theoretical guaran-
tee for this condition. Nevertheless, we will present numer-
ical examples to support this assumption. Moreover, the as-
sumption for the existence of stationary distribution is com-
mon and has been widely used in Zhou and Lu (2022); Ol-
shevsky and Gharesifard (2022).

Under these two assumptions, we can now prove the con-
vergence of Algorithm 1.

We first establish the finite-time convergence of the critic
learning.

Theorem 6. Suppose that Assumptions 4 and 5 hold.
Choose αt = cα

(1+t)δ
, βt = 1

(1+t)v , γt = 1
(1+t)v , where

0 < v < δ < 1, cα is a small positive constant. We have

1

T

T−1∑
t=0

E[∥ωt−ω∗
Kt

∥2]

= O(
1

T 1−v
) +O(

1

T v
) +O(

1

T 2(δ−v)
).

Note that ∥ωt − ω∗
Kt

∥2 measures the difference between
the estimated and true parameters of the corresponding Q-
function under Kt. Despite the noisy single-sample critic
update, this result establishes the convergence and charac-
terizes the sample complexity of the critic for Algorithm 1.
The complexity order depends on the selection of step sizes
δ and v, which will be determined optimally later according
to the finite-time bound of the actor.

Based on this finite-time convergence result of the critic,
we further characterize the global convergence of Algorithm
1 below.

Theorem 7. Suppose that Assumptions 4 and 5 hold.
Choose αt = cα

(1+t)δ
, βt = 1

(1+t)v , γt = 1
(1+t)v , where

0 < v < δ < 1, cα is a small positive constant. We have

min
0≤t<T

E[J(Kt)− J(K∗)]

= O(
1

T 1−δ
) +O(

1

T v
) +O(

1

T 2(δ−v)
).

The optimal convergence rate of the actor is attained at
δ = 3

5 and v = 2
5 . In particular, to obtain an ϵ-optimal policy,

the optimal complexity of Algorithm 1 is O(ϵ−2.5). To our
knowledge, this is the first convergence result for solving
LQR using single-sample two-timescale AC method.

To see the merit of our proof framework, we sketch the
main proof steps of Theorems 6 and 7 in the following. The
supporting propositions and theorems mentioned below can
be found in Chen et al. (2022). Note that since the critic
and the actor are coupled together, we define the following
notations to clarify their dependency:

A(T ) =
1

T

T−1∑
t=0

E[(ηt − J(Kt))
2],

B(T ) =
1

T

T−1∑
t=0

E[∥ωt − ω∗
Kt

∥2],

C(T ) =
1

T

T−1∑
t=0

E[∥∇N
Kt

J(Kt)∥2],

where ∇N
Kt

J(Kt) = EKt is defined in (12).
Proof Sketch:
1. Prove the convergence of the average cost. Note that in

Line 7 of Algorithm 1, the average cost estimator ηt is
only coupled with actor Kt via the cost ct. We bound ηt
utilizing the local Lipschitz continuity of J(K) shown in
Chen et al. (2022, Proposition 12) and the boundedness
of Kt. Then it can be proved that

A(T ) ≤
√

A(T )O(T
1
2−2(δ−v)) +O(

1

T 1−v
) +O(

1

T v
),

where O(T
1
2−2(δ−v)) comes from the ratio between ac-

tor step size and critic step size, which reveals how
the merit of two-timescale method can contribute to the
proof. The other two terms O( 1

T 1−v ) and O( 1
Tv ) are in-

duced by the step size for the average cost, which is
γt = 1

(1+t)v . Solving this inequality gives the conver-
gence of ηt which we presented in Chen et al. (2022,
Theorem 13).

2. Prove the convergence of the critic. Note that the critic
is coupled with both ηt and actor Kt. We decouple the
critic and the actor in a similar way to step 1 utilizing the
Lipschitz continuity of ω∗

t as shown in Chen et al. (2022,
Proposition 15). Then, the following inequality can be
obtained,

B(T ) ≤
√

A(T )B(T ) +

√
O(

1

T 2(δ−v)
)B(T )

+O(
1

T 1−v
) +O(

1

T v
),
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where
√

A(T )B(T ) shows the coupling between the
average cost estimator ηt and the critic ωt. Terms
O( 1

T 2(δ−v) ), O( 1
T 1−v ) and O( 1

Tv ) are induced by the
stepsizes. Combining the bound for A(T ), we can con-
clude the convergence of critic detailed in Theorem 6.

3. Prove the convergence of the actor. We utilize the almost
smoothness property of the cost function J(K) to estab-
lish the relation between actor, critic, and the natural gra-
dient. We first prove that

C(T ) ≤
√
B(T )C(T ) +O(

1

T 1−δ
) +O(

1

T δ
),

where
√
B(T )C(T ) shows the coupling between critic

and actor. The terms O( 1
T 1−δ ) and O( 1

T δ ) are induced
by the step size of actor. By the convergence of critic
established in Theorem 6, we can show that C(T ) con-
verges to zero, which means the convergence of natural
gradient. Finally, using the following gradient domina-
tion conditions (see Chen et al. (2022, Lemma 17))

J(K)− J(K∗) ≤ 1

σmin(R)
∥DK∗∥Tr(E⊤

KEK),

we can further prove the global convergence of actor
shown in Theorem 7.

Experiments

In this section, we provide two examples to validate our the-
oretical results.

Example 1. Consider a two-dimensional system with

A =

[
0 1
1 0

]
,B =

[
0 1
1 0

]
,Q =

[
9 2
2 1

]
,R =

[
1 2
2 8

]
.

Example 2. Consider a four-dimensional system with

A =

0.2 0.1 1 0
0.2 0.1 0.1 0
0 0.1 0.5 0
0 0 0 0.5

 ,B =

0.3 0 0
0.2 0 0.3
1 1 0.3
0.3 0.1 0.1

 ,

Q =

 1 0 0.2 0
0 1 0.1 0
0.2 0.1 1 0.1
0 0 0.1 1

 ,R =

[
1 0.1 1
0.1 1 0.5
1 0.5 2

]
.

The learning results of Algorithm 1 for these two exam-
ples are shown in Figure 1. Consistent with our theoretical
analysis, both the critic and the actor gradually converge to
the optimal solution. Interested readers can refer to the Ap-
pendix of Chen et al. (2022) for experimental details.
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(a) Example 1
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Figure 1: Learning curves of the critic and the actor. Critic
error refers to 1

T

∑T−1
t=0 ∥ωt−ω∗

Kt
∥2 while actor error refers

to 1
T

∑T−1
t=0 [J(Kt)− J(K∗)]. The solid lines correspond to

the mean and the shaded regions correspond to 95% confi-
dence interval over 10 independent runs.

We also compare our algorithm with the double-loop AC
algorithm proposed in Yang et al. (2019) and the zeroth-
order method described in Fazel et al. (2018). We plotted the
relative error of the actor parameters for all three methods in
Figure 2. These simulation results show the superior sample-
efficiency of Algorithm 1 empirically, confirming the prac-
tical wisdom of single sample two-timescale AC method.
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Figure 2: Sample complexity comparison. The solid lines
correspond to the mean and the shaded regions correspond
to 95% confidence interval over 10 independent runs.

Conclusion and Discussion
In this paper, we establish the first finite-time global con-
vergence analysis for the two-timescale AC method under
LQR setting. We adopt a more practical single-sample two-
timescale AC method and achieve an O(ϵ−2.5) sample com-
plexity. Our proof techniques of decoupling the actor and
critic updates and controlling the accumulative estimate er-
rors of the actor induced by the critic are novel and appli-
cable to analyzing other AC methods where the actor and
critic are updated simultaneously. Our future work includes
further tightening the sample complexity bound under more
relaxed settings and assumptions.
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