
Min-Max Submodular Ranking for Multiple Agents*

Qingyun Chen1, Sungjin Im1, Benjamin Moseley2, Chenyang Xu3,4†, Ruilong Zhang5†

1 Electrical Engineering and Computer Science, University of California at Merced
2 Tepper School of Business, Carnegie Mellon University

3 Software Engineering Institute, East China Normal University
4 College of Computer Science, Zhejiang University

5 Department of Computer Science, City University of Hong Kong
qchen41@ucmerced.edu, sim3@ucmerced.edu, moseleyb@andrew.cmu.edu, xcy1995@zju.edu.cn,

ruilzhang4-c@my.cityu.edu.hk

Abstract

In the submodular ranking (SR) problem, the input consists
of a set of submodular functions defined on a ground set of
elements. The goal is to order elements for all the functions
to have value above a certain threshold as soon on average
as possible, assuming we choose one element per time. The
problem is flexible enough to capture various applications in
machine learning, including decision trees.
This paper considers the min-max version of SR where mul-
tiple instances share the ground set. With the view of each
instance being associated with an agent, the min-max prob-
lem is to order the common elements to minimize the maxi-
mum objective of all agents—thus, finding a fair solution for
all agents. We give approximation algorithms for this prob-
lem and demonstrate their effectiveness in the application of
finding a decision tree for multiple agents.

1 Introduction
The submodular ranking (SR) problem was proposed by
(Azar and Gamzu 2011). The problem includes a ground
set of elements [n], and a collection of m monotone sub-
modular1 set functions f1, . . . , fm defined over [n], i.e.,
fj : 2[n] → R≥0 for all j ∈ [m]. Each function fj is ad-
ditionally associated with a positive weight wj ∈ R. Given
a permutation π of the ground set of elements, the cover time
of a function fj is defined to be the minimal number of el-
ements in the prefix of π which forms a set such that the
corresponding function value is larger than a unit threshold
value2. The goal is to find a permutation of the elements such

*All authors (ordered alphabetically) have equal contributions
and are corresponding authors.

†The work was done when Chenyang Xu was a student at Zhe-
jiang University and Ruilong Zhang visited CMU.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A function f : 2[n] → R is submodular if for all A,B ⊆ [n]
we have f(A) + f(B) ≥ f(A ∩B) + f(A ∪B). The function is
monotone if f(A) ≤ f(B) for all A ⊆ B.

2If the threshold is not unit-valued, one can easily obtain an
equivalent instance by normalizing the corresponding function.

that the weighted average cover time is minimized.
The SR problem has a natural interpretation. Suppose

there are m types of clients who are characterized by their
utility function {fj}j∈[m], and we have to satisfy a client
sampled from a known probability distribution {wj}j∈[m].
Without knowing her type, we need to sequentially present
items to satisfy her, corresponding to her utility fj having
a value above a threshold. Thus, the goal becomes finding
the best ordering to minimize the average number of items
shown until satisfying the randomly chosen client.

In the min-max submodular ranking for multiple agents,
we are in the scenario where there are k SR instances sharing
the common ground set of elements, and the goal is to find
a common ordering that minimizes the maximum objective
of all instances. Using the above analogy, suppose there are
k different groups of clients. We have k clients to satisfy,
one sample from each group. Then, we want to satisfy all
the k clients as early as possible. In other words, we want
to commit to an ordering that satisfies all groups fairly—
formalized in a min-max objective.

1.1 Problem Definition
The problem of min-max submodular ranking for multiple
agents (SRMA) is formally defined as follows. An instance
of this problem consists of a ground set U := [n], and a set of
k agents A := { a1, . . . , ak }. Every agent ai, where i ∈ [k],
is associated with a collection of m monotone submodular
set functions f (i)

1 , . . . , f
(i)
m . It is the case that f (i)

j : 2[n] →
[0, 1] with f

(i)
j (U) = 1 for all i ∈ [k], j ∈ [m]. In addition,

every function f
(i)
j is associated with a weight w(i)

j > 0 for
all i ∈ [k], j ∈ [m].

Given a permutation π of the ground elements, the cover
time cov(f

(i)
j , π) of f (i)

j in π is defined as the smallest in-

dex t such that the function f
(i)
j has value 1 for the first t ele-

ments in the given ordering. The goal is to find a permutation
of the ground elements that minimizes the maximum total
weighted cover time among all agents, i.e., finding a permu-
tation π such that maxi∈[k]

{∑m
j=1 w

(i)
j · cov(f

(i)
j , π)

}
is

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7061

minimized. We assume that the minimum non-zero marginal
value of all m · k functions is ϵ > 0, i.e., for any S ⊆ S′,
f
(i)
j (S′) > f

(i)
j (S) implies that f (i)

j (S′)− f
(i)
j (S) ≥ ϵ > 0

for all i ∈ [k], j ∈ [m]. Without loss of generality, we as-
sume that any w

(i)
j ≥ 1 and let W := maxi∈[k]

∑m
j=1 w

(i)
j

be the maximum total weight among all agents.

1.2 Applications
In addition to the aforementioned natural interpretation, we
discuss two concrete applications below in detail.

Optimal Decision Tree (ODT) with Multiple Probabil-
ity Distributions. In (the non-adaptive) optimal decision
tree problem with multiple probability distributions, we are
given k probability distributions {p(i)j }j∈[m], i ∈ [k] over m
hypotheses and a set U := [n] of binary tests. There is ex-
actly one unknown hypothesis j̃(i) drawn from {p(i)j }j∈[m]

for each i ∈ [k]. The outcome of each test e ∈ U is a parti-
tion of m hypotheses. Our goal is to find a permutation of U
that minimizes the expected number of tests to identify all
the k sampled hypotheses j̃(i), i ∈ [k].

This problem generalizes the traditional optimal decision
tree problem which assumes k = 1. The problem has the fol-
lowing motivation. Suppose there are m possible diseases
and their occurrence rate varies depending on the demo-
graphics. A diagnosis process should typically be unified
and the process should be fair to all demographic groups.
If we adopt the min-max fairness notion, the goal then be-
comes to find a common diagnostic protocol that success-
fully diagnoses the disease to minimize the maximum diag-
nosis time for any of the k groups. The groups are referred
to as agents in our problem.

As observed in (Jia et al. 2019), the optimal decision tree
is a special case of submodular ranking. To see this, fix agent
ai. For notational simplicity we drop ai. Let Tj(e) be the set
of hypotheses that have an outcome different from j for test
e. For each hypothesis j, we define a monotone submodular
function fj : 2

U → [0, 1] with a weight pj as follows:

fj(S) =

∣∣∣∣ ⋃
e∈S

Tj(e)

∣∣∣∣ · 1

m− 1

which is the fraction of hypotheses other than j that have
been ruled out by a set of tests S. Then, hypothesis j̃ can be
identified if and only if fj̃(S) = 1.

Web Search Ranking with Multiple User Groups. Be-
sides fair decision tree, our problem also captures several
practical applications, as discussed in (Azar and Gamzu
2011). Here, we describe the application of web search rank-
ing with multiple user groups. A user group is drawn from a
given distribution defined over k user groups. We would like
to display the search results sequentially from top to bottom.
We assume that each user browses search results from top to
bottom. Each user is satisfied when she has found sufficient
web pages relevant to the search, and the satisfaction time
corresponds to the number of search results she checked.
The satisfaction time of a user group is defined as the total

satisfied time of all users in this group. The min-max objec-
tive ensures fairness among different groups of users.

1.3 Our Contributions
To our knowledge, this is the first work that studies submod-
ular ranking, or its related problems, such as optimal deci-
sion trees, in the presence of multiple agents (or groups).
Finding an order to satisfy all agents equally is critical to be
fair to them. This is because the optimum ordering can be
highly different for each agent.

We first consider a natural adaptation of the normalized
greedy algorithm (Azar and Gamzu 2011), which is the best
algorithm for submodular ranking. We show that the adapta-
tion is O(k ln(1/ϵ))-approximation and has an Ω(

√
k) lower

bound on the approximation ratio.
To get rid of the polynomial dependence on k, we then

develop a new algorithm, which we term balanced adaptive
greedy. Our new algorithm overcomes the polynomial de-
pendence on k by carefully balancing agents in each phase.
To illustrate the idea, for simplicity, assume all weights as-
sociated with the functions are 1 in this paragraph. We iter-
atively set checkpoints: in the p-th iteration, we ensure that
we satisfy all except about m/2p functions for each agent.
By balancing the progress among different agents, we obtain
a O(ln(1/ϵ) log(min{n,m}) log k) approximation (Theo-
rem 2), where n is the number of elements to be ordered.
When min{n,m} = o(2k), the balanced adaptive greedy
algorithm has a better approximation ratio than the natural
adaptation of the normalized greedy algorithm. For the case
that min{n,m} = Ω(2k), we can simply run both of the
two algorithms and pick the better solution which yields an
algorithm that is always better than the natural normalized
greedy algorithm.

We complement our result by showing that it is NP-hard
to approximate the problem within a factor of O(ln(1/ϵ) +
log k) (Theorem 3). While we show a tight Θ(log k)-
approximation for generalized min-sum set cover over mul-
tiple agents which is a special case of our problem (see The-
orem 4), reducing the gap in the general case is left as an
open problem.

We demonstrate that our algorithm outperforms other
baseline algorithms for real-world data sets. This shows that
the theory is predictive of practice. The experiments are per-
formed for optimal decision trees, which is perhaps the most
important application of submodular ranking.

1.4 Related Works
Submodular Optimization. Submodularity commonly
arises in various practical scenarios. It is best character-
ized by diminishing marginal gain, and it is a common phe-
nomenon observed in all disciplines. Particularly in machine
learning, submodularity is useful as a considerable num-
ber of problems can be cast into submodular optimizations,
and (continuous extensions of) submodular functions can be
used as regularization functions (Bach et al. 2013). Due to
the extensive literature on submodularity, we only discuss
the most relevant work here. Given a monotone submodular
function f : 2U → Z≥0, choosing a S ⊆ U of minimum

7062

cardinality s.t. f(S) ≥ T for some target T ≥ 0 admits
a O(log T)-approximation (Williamson and Shmoys 2011),
which can be achieved by iteratively choosing an element
that increase the function value the most, i.e., an element
with the maximum marginal gain. Or, if f has a range [0, 1],
T = 1 and the non-zero marginal increase is at least ϵ > 0,
we can obtain an O(ln(1/ϵ))-approximation.

Submodular Ranking. The submodular ranking problem
was introduced by (Azar and Gamzu 2011). In (Azar and
Gamzu 2011), they gave an elegant greedy algorithm that
achieves O(ln 1

ϵ)-approximation and provided an asymptot-
ically matching lower bound. The key idea was to renor-
malize the submodular functions over the course of the al-
gorithm. That is, if S is the elements chosen so far, we
choose an element e maximizing

∑
f∈F wf · f(S∪{e})−f(S)

1−f(S) ,
where F is the set of uncovered functions. Thus, if a func-
tion fj is nearly covered, then the algorithm considers fj
equally by renormalizing it by the residual to full coverage,
i.e., 1 − fj(S). Later, (Im, Nagarajan, and van der Zwaan
2016) gave a simpler analysis of the same greedy algorithm
and extended it to other settings involving metrics. Spe-
cial cases of submodular ranking include min-sum set cover
(Feige, Lovász, and Tetali 2004) and generalized min-sum
set cover (Azar, Gamzu, and Yin 2009; Bansal et al. 2021).
For stochastic extension of the problem, see (Im, Nagara-
jan, and van der Zwaan 2016; Agarwal, Assadi, and Khanna
2019; Jia et al. 2019).

Optimal Decision Tree. The optimal decision tree prob-
lem (with one distribution) has been extensively studied. The
best known approximation ratio for the problem is O(logm)
(Gupta, Nagarajan, and Ravi 2017) where m is the number
of hypotheses and it is asymptotically optimal unless P =
NP (Chakaravarthy et al. 2007). As discussed above, it is
shown in (Jia et al. 2019) how the optimal decision tree prob-
lem is captured by the submodular ranking. For applications
of optimal decision trees, see (Dasgupta 2004). Submodular
ranking only captures non-adaptive optimal decision trees.
For adaptive and noisy decision trees, see (Golovin, Krause,
and Ray 2010; Jia et al. 2019).

Fair Algorithms. Fairness is an increasingly important
criterion in various machine learning applications (Baro-
cas, Hardt, and Narayanan 2017; Chouldechova and Roth
2020; Mehrabi et al. 2021; Halabi et al. 2020; Abernethy
et al. 2022), yet certain fairness conditions cannot be sat-
isfied simultaneously (Kleinberg, Mullainathan, and Ragha-
van 2016; Corbett-Davies et al. 2017). In this paper, we take
the min-max fairness notion, which is simple yet widely ac-
cepted. For min-max, or max-min fairness, see (Radunovic
and Le Boudec 2007).

2 Warm-up Algorithm: A Natural
Adaptation of Normalized Greedy

The normalized greedy algorithm (Azar and Gamzu 2011)
obtains the best possible approximation ratio of O(ln 1

ϵ) on
the traditional (single-agent) submodular ranking problem,
where ϵ is the minimum non-zero marginal value of func-
tions. The algorithm picks the elements sequentially and the

final element sequence gives a permutation of all elements.
Each time, the algorithm chooses an element e maximizing∑

f∈F wf · f(S∪{e})−f(S)
1−f(S) , where S is the elements chosen

so far and F is the set of uncovered functions.
For the multi-agent setting, there exists a natural adapta-

tion of this algorithm: simply view all m · k functions as a
large single-agent submodular ranking instance and run nor-
malized greedy. For simplicity, refer to this adaption as al-
gorithm NG. The following shows that this algorithm has to
lose a polynomial factor of k on the approximation ratio.

Theorem 1. The approximation ratio of algorithm NG is
Ω(
√
k), even when the sum

∑
j w

(i)
j of function weights for

each agent i is the same.

Proof. Consider the following SRMA instance. There are
k agents and each agent has at most

√
k functions;

√
k is

assumed to be an integer. We first describe a weighted set
cover instance and explain how the instance is mapped to
an instance for our problem. We are given a ground set of
k+
√
k elements E = { e1, e2, . . . , ek+√

k } and a collection
of singleton sets corresponding to the elements. Each agent
i ∈ [k − 1] has two sets, { ei } with weight 1 + δ and { ek }
with weight

√
k − 1 − δ, where δ > 0 is a tiny value used

for tie-breaking. The last agent k is special and she has
√
k

sets, { ek+1 } , . . . , { ek+√
k }, each with weight 1. Note that

every agent has exactly the same total weight
√
k.

Each set is “covered” when we choose the unique ele-
ment in the singleton set. This results in an instance for our
problem: for each set {e} with weight w, we create a dis-
tinct 0-1 valued function f with an equal weight w such that
f(S) = 1 if and only if e ∈ S. It is obvious to see that all
created functions are submodular and have function values
in {0, 1}. It is worth noting that ek is special and all func-
tions of the largest weight (

√
k − 1) get covered simultane-

ously when ek is selected.
Algorithm NG selects ek in the first step. After

that, the contribution of each element in E \ { ek }
in each following step is the same, which is

√
k −

1. Thus, the permutation π returned by algorithm NG
is (ek, e1, . . . , ek−1, ek+1, . . . , ek+

√
k). The objective for

this ordering is at least Ω(k1.5) since until we choose
ek+

√
k/2, the last agent k has at least

√
k/2 func-

tions unsatisfied. However, another permutation π′ =
(ek, ek+1, . . . , ek+

√
k, e1, . . . , ek−1) obtains an objective

value of O(k). This implies that the approximation ratio of
the algorithm is Θ(

√
k) and completes the proof.

One can easily show that the approximation ratio of al-
gorithm NG is O(k ln(1ϵ)) by observing that the total cover
time among all agents is at most k times the maximum cover
time. Due to space limit, the details are deferred to the full
version of this paper.

3 Balanced Adaptive Greedy for SRMA
In this section, we build on the simple algorithm NG to give
a new combinatorial algorithm that obtains a logarithmic ap-

7063

Algorithm 1: Balanced Adaptive Greedy for SRMA

Input: Ground elements [n]; Agent set A; A collec-
tion of k weight vectors {w(i) ∈ Rm

+ | i ∈ [k] };
A collection of m · k submodular functions
{ f (i)

j : 2[n] → [0, 1] | i ∈ [k], j ∈ [m] }.
Output: A permutation π : [n]→ [n] of the elements.

1: p← 1; q ← 1; t← 1; Bp ← (23)
p ·W

2: For each agent ai, let R(i)
t be the set of functions of

agent ai that are not satisfied earlier than time t.
3: while there exists an agent ai with w(R

(i)
t) > Bp do

4: q ← 1; Ap,q ← { ai ∈ A | w(R(i)
t) > Bp }.

5: while |Ap,q| ≥ 0 do
6: A′

p,q ← Ap,q .
7: while |Ap,q| ≥ 3

4 · |A
′
p,q| do

8: Fπt−1(e) ←
∑

ai∈A′
p,q

∑
j∈[m] w

(i)
j ·

f
(i)
j (πt−1∪{ e })−f

(i)
j (πt−1)

1−f
(i)
j (πt−1)

, ∀e ∈ U \ πt−1.

9: π(t)← argmaxe∈U\πt−1
Fπt−1(e).

10: t← t+ 1; Ap,q ← { ai ∈ A | w(R(i)
t) > Bp }.

11: end while
12: q ← q + 1; Ap,q ← Ap,q−1.
13: end while
14: p← p+ 1.
15: end while
16: return Permutation π.

proximation. As the proof of Theorem 1 demonstrates, the
shortfall of the previous algorithm is that it does not take
into account the progress of agents in the process of cover-
ing functions. After the first step, the last agent k has many
more uncovered functions than other agents, but the algo-
rithm does not prioritize the elements that can cover the
functions of this agent. In other words, algorithm NG per-
forms poorly in balancing agents’ progress, which prevents
the algorithm from getting rid of the polynomial dependence
on k. Based on this crucial observation, we propose the bal-
anced adaptive greedy algorithm.

We introduce some notation first. Let R(i)
t be the set of

functions of agent ai that are not satisfied earlier than time
t. Note that R(i)

t includes the functions that are satisfied ex-
actly at time t. Let w(R(i)

t) be the total weight of functions
in R

(i)
t . Recall that W is the maximum total function weight

among all agents. Let B = { (23)
1 ·W, (23)

2 ·W, . . . } be
a sequence, where each entry is referred to as the base-
line in each iteration. Let Bp be the p-th term of B, i.e.,
Bp = (23)

p · W . Roughly speaking, in the p-th iteration,
we want the uncovered functions of any agent to have a to-
tal weight at most Bp. Note that the size of B is Θ(logW).
Given a permutation π, let π(t) be the element selected in the
t-th time slot. Let πt be the set of elements that are scheduled
before or at time t, i.e., πt = {π(1), . . . , π(t) }.

Algorithm 1 has two loops: outer iteration (line 3-15) and
inner iteration (line 7-11). Let p, q be the index of the outer

and inner iterations, respectively. At the beginning of the p-
th outer iteration, we remove all the satisfied functions and
elements selected in the previous iterations, and we obtain
a subinstance, denoted by Ip. At the end of the p-th outer
iteration, Algorithm 1 ensures that the total weight of unsat-
isfied functions of each agent is at most Bp = (23)

p · W .
Let Ap be the set of agents whose total weight of unsatis-
fied functions is more than Bp. At the end of (p, q)-th inner
iteration, Algorithm 1 guarantees that the number of agents
with the total weight of unsatisfied function larger than Bp

is at most (34)
q · |Ap|. Together, this implies there are at most

Θ(logW) outer iterations because Bp decreases geometri-
cally. Similarly, there are at most Θ(log k) inner iterations
for each outer iteration.

Naturally, the algorithm chooses the element that gives
the highest total weighted functional increase over all agents
in Ap,q and their corresponding submodular functions.
When computing the marginal increase, each function is di-
vided by how much is left to be fully covered.

For technical reasons, during one iteration of line 7-11,
some agents may be satisfied, i.e., their total weight of un-
satisfied functions is at most Bp. Instead of dropping them
immediately, we wait until 1/4-the proportion of agents is
satisfied, and then drop them together. This is the role of
line 6 of Algorithm 1.

4 Analysis
Given an arbitrary instance I of SRMA, let OPT(I) be an
optimal weighted cover time of instance I . Our goal is to
show Theorem 2. Recall that W = maxi∈[k]

∑m
j=1 w

(i)
j is

the maximum total weight among all agents; we assume that
all weights are integers. We will first show the upper bound
depending on logW . We will later show how to obtain an-
other bound depending on log n at the end of the analysis,
where n is the number of elements.
Theorem 2. Algorithm 1 obtains an approximation ratio of
O(ln(1/ϵ) log(min{n,W}) log k), where ϵ is the minimum
non-zero marginal value among all m ·k monotone submod-
ular functions, k is the number of agents and W is the max-
imum total integer weight of all functions among all agents.

We first show a lower bound of OPT(I). Let π∗ be an
optimal permutation of the ground elements. Let R̃(i)

t be the
set of functions of agent ai that are not satisfied earlier than
time t in π∗. Note that R̃(i)

t includes the functions that are
satisfied exactly at time t. Let w(R̃(i)

t) be the total weight
of functions in R̃

(i)
t . Let T ∗ be the set of times from t = 1

to the first time that all agents in the optimal solution satisfy
w(R̃

(i)
t) ≤ α ·W , where α ∈ (0, 1) is a constant. Let E(T ∗)

be the corresponding elements in the optimal solution π∗,
i.e., E(T ∗) = {π∗(1), . . . , π∗(|T ∗|) }.

We have the following lower bound of the optimal solu-
tion. An example of Fact 1 can be found in Fig. 1.
Fact 1. (Lower Bound of OPT) α ·W · |T ∗| ≤ OPT(I).

Recall that Ip is the subinstance of the initial instance at
the beginning of the p-th iteration of Algorithm 1. Therefore,
we have OPT(Ip) ≤ OPT(I) for all p ≤ ⌈logW ⌉. Let

7064

Figure 1: An illustration of the optimal value’s lower bound.
There are four agents in the figure. The area enclosed by
the x-axis, y-axis, and curve w(R̃

(i)
t) is the total weighted

cover time of agent ai. The optimal value will be the largest
one. Then, the total area of α ·W · |T ∗| will be completely
included in the area that is formed by the optimal solution.

π∗(Ip) be the optimal permutation of instance Ip. Recall that
Bp = (23)

p ·W . Let T ∗
p be the set of times from t = 1 to

the first time such that all agents satisfy w(R̃
(i)
t) ≤ 1

12 ·
Bp in π∗(Ip). By Fact 1, we know that 1

12 · Bp · |T ∗
p | ≤

OPT(Ip) ≤ OPT(I). Let Tp be the set of times that are
used by Algorithm 1 in the p-th outer iteration, i.e., Tp =
tp, ..., tp+1 − 1 where tp is the time at the beginning of the
p-th outer iteration. Let E(Tp) be the set of elements that
are selected by Algorithm 1 in the p-th outer iteration. Note
that |Tp| is the length of the p-th outer iteration. Recall that
every outer iteration contains Θ(log k) inner iterations. In
the remainder of this paper, we denote the q-th inner iteration
of the p-th outer iteration as (p, q)-th iteration.

We now give a simple upper bound of the solution re-
turned by the algorithm.

Fact 2. (Upper Bound of ALG) ALG(I) ≤
∑

p|Tp| ·
Bp−1 =

∑
p

2
3 · |Tp| ·Bp.

Our analysis relies on the following key lemma. Roughly
speaking, Lemma 1 measures how far the algorithm is be-
hind the optimal solution after each outer iteration.

Lemma 1. For any p ≤ ⌈logW ⌉, |Tp| ≤
O
(
(1 + ln(1ϵ)) · log k

)
· |T ∗

p |, where ϵ is the minimum
non-zero marginal value and k is the number of agents.

It now remains to show Lemma 1. The correctness of
Lemma 1 relies on the following lemma (Lemma 2). Let Tp,q

be the times that are used by Algorithm 1 in the (p, q)-th iter-
ation. Let E(Tp,q) be the set of elements that are selected by
Algorithm 1 in the (p, q)-th iteration. Note that |Tp,q| is the
length of the q-th inner iteration in p-th outer inner iteration.
Let T ∗

p,q be the set of times from t = 1 to the first time such

that all agents in Ap,q satisfy w(R̃
(i)
t) ≤ 1

12 ·Bp in π∗(Ip).

Lemma 2. For any p ≤ ⌈logW ⌉ and q ≤ ⌈log k⌉, we have

|Tp,q| ≤
(
1 + ln(1ϵ)

)
· |T ∗

p,q|.
Based on Lemma 2, the proof of Lemma 1 is straightfor-

ward since T ∗
p,q ⊆ T ∗

p for any p ≤ ⌈logW ⌉ and the number
of inner iterations is Θ(log k). Thus, the major technical dif-
ficulty of our algorithm is to prove Lemma 2. Let π be the
permutation returned by Algorithm 1. Note that the time set
[n] can be partitioned into O(logW · log k) sets. Recall that
Tp,q is the time set that are used in the (p, q)-th iteration and
Ap,q is the set of unsatisfied agents at the beginning of the
(p, q)-th iteration, i.e., Ap,q = { ai ∈ A | w(R(i)

t) > Bp }.
For notation convenience, we define Fπt−1

(e) as follows:

Fπt−1
(e)

:=
∑

ai∈Ap,q

∑
j∈[m]

w
(i)
j ·

f
(i)
j (πt−1 ∪ { e })− f

(i)
j (πt−1)

1− f
(i)
j (πt−1)

Now we present two technical lemmas sufficient to prove
Lemma 2.
Lemma 3. For any p ≤ ⌈logW ⌉ and q ≤ ⌈log k⌉, we have∑

t∈Tp,q

Fπt−1(et) ≤
(
1 + ln(

1

ϵ
)

)
· |Ap,q| ·Bp−1

Lemma 4. For any p ≤ ⌈logW ⌉ and q ≤ ⌈log k⌉, we have∑
t∈Tp,q

Fπt−1
(et) ≥

2

3
· |Tp,q|
|T ∗

p,q|
· |Ap,q| ·Bp

The proof of Lemma 3 uses a property of a monotone
function, while the proof of Lemma 4 is more algorithm-
specific. Recall that in each step t of an iteration (p, q), Al-
gorithm 1 will greedily choose the element et among all un-
selected elements such that Fπt−1(et) is maximized. Then
we have that the inequality Fπt−1(et) ≥ Fπt−1(e) holds
for any element e ∈ U , and hence, for any element se-
lected by the optimal solution. By an average argument,
we can build the relationship between Fπt−1

(e) and |T ∗
p,q|,

and prove Lemma 4. Lemma 2 follows from Lemma 3 and
Lemma 4 simply by concatenating the two inequalities. Due
to space limit, the detailed proofs are omitted in this version.

Proof of Theorem 2. Combining Fact 1, Fact 2 and
Lemma 1, we have ALG(I) ≤ O((1+ln(1ϵ)) log k logW) ·
OPT(I). To obtain the other bound of log n claimed in
Theorem 2, we make a simple observation. Once the total
weight of the uncovered functions drops below W/n for
any agent, they incur at most (W/n)n = W cost in total
afterward as there are at most n elements to be ordered.
Until this moment, O(log n) different values of p were
considered. Thus, in the analysis, we only need to consider
O(log n) different values of p, not O(logW). This gives
the desired approximation guarantee.

5 Inapproximability Results for SRMA and
Tight Approximation for GMSC

In this section, we consider a special case of SRMA,
which is called Generalized Min-sum Set Cover for Mul-
tiple Agents (GMSC), and leverage it to give a lower bound

7065

on the approximation ratio of SRMA. Due to space limit,
we only present key lemmas in the following and defer the
detailed problem formulation, proofs, and algorithms to the
full version of this paper.
Lemma 5. For the generalized min-sum set cover for mul-
tiple agents problem, given any constant c < 1, there is no
c · ln k-approximation algorithm unless P=NP, where k is
the number of agents.

Note that our problem admits the submodular ranking
problem as a special case which is c ln(1/ϵ)-hard to approx-
imate for some constant c > 0 (Azar and Gamzu 2011).
Thus, our problem has a natural lower bound Ω(ln(1/ϵ)).
Hence, by combining Lemma 5 and the lower bound of clas-
sical submodular ranking, one can easily get a Ω(ln(1/ϵ) +
log k) lower bound for SRMA .
Theorem 3. The problem of min-max submodular ranking
for multiple agents cannot be approximated within a fac-
tor of c · (ln(1/ϵ) + log k) for some constant c > 0 unless
P=NP, where ϵ is the minimum non-zero marginal value and
k is the number of agents.

Now we show a tight approximation for GMSC. The al-
gorithm is an LP-based randomized algorithm. Let xe,t be
the variable that indicates whether the element e is sched-
uled at time t. To reduce the integrality gap, we introduce an
exponential number of constraints. We show that the ellip-
soid algorithm can solve such an LP. We partition the whole
timeline into multiple phases based on the optimal fractional
solution. In each phase, we round variable xe,t to obtain an
integer solution. The main difference from (Bansal, Gupta,
and Krishnaswamy 2010), we repeat the rounding algorithm
Θ(log k) time and interleave the resulting solutions over
time to avoid the bad events for all k agents simultaneously.
Theorem 4. There is a randomized algorithm that achieves
Θ(log k)-approximation for generalized min-sum set cover
for multiple agents, where k is the number of agents.

6 Experiments
This section investigates the empirical performance of our
algorithms. We seek to show that the theory is predictive of
practice on real data. We give experimental results for the
min-max optimal decision tree over multiple agents. At the
high level, there is a set of objects where each object is asso-
ciated with an attribute vector. We can view the data as a ta-
ble with the objects as rows and attributes as columns. Each
agent i has a target object oi sampled from a different distri-
bution over the objects. Our goal is to order the columns to
find all agents’ targets as soon as possible. When column c
is chosen, for each agent i, rows that have a different value
from oi in column c are discarded. The target object oi is
identified when all the other objects are inconsistent with oi
in one of the columns probed.

Data Preparation. In the experiments, three public data
sets are considered: MFCC data set3, PPPTS data set4, and

3https://archive.ics.uci.edu/ml/datasets/Anuran+Calls+\%
28MFCCs\%29

4https://archive.ics.uci.edu/ml/datasets/Physicochemical+
Properties+of+Protein+Tertiary+Structure\#

CTG data set5. These are the data sets in the field of life
science. Each one is in table format and the entries are
real-valued. The sizes of the three data sets are 7195 × 22,
45730× 9, and 2126× 23 respectively, where h×n implies
h rows and n columns.

The instances are constructed as follows. We first dis-
cretize real-valued entries, so entries in each column can
have at most ten different values. This is because the ob-
jects’ vectors could have small variations, and we seek to
make them more standardized. Let the ground set of ele-
ments U be all the columns for a table, and view each row
j as an object. Create a submodular function fj for each ob-
ject j: For a subset S ⊆ U , fj(S) represents the number of
rows that have different attributes from row j after checking
the columns in S. If fj(S) = f(U), the object in row j can
be completely distinguished from other objects by checking
columns in S. We then normalize functions to have a range
of [0, 1]. Note that the functions are created essentially in the
same way they are in the reduction of the optimal decision
tree to submodular ranking, as discussed in Section 1. All
agents have the same table, that is, the same objects, func-
tions, and columns. We construct a different weight vector
for each agent, where each entry has a value sampled uni-
formly at random from [1, 100]. In the following, we use K
and M to denote the number of agents and the number of
functions, respectively.

Baseline Algorithms and Parameter Setting. We refer to
our main Algorithm 1 as balanced adaptive greedy (BAG).
We also refer to the naive adaptation of the algorithm pro-
posed by (Azar and Gamzu 2011) as normalized greedy
(NG). For full description of NG, see Section 2. The algo-
rithms are compared to two natural baseline algorithms. One
is called the random (R) algorithm, which directly outputs
a random permutation of elements. The other is the greedy
(G) algorithm, which selects the element that maximizes the
total increment of all K · M functions each time. Notice
that Algorithm 1, the decreasing ratio of the sequence in
algorithm BAG is set to be 2/3, but in practice, this de-
creasing ratio is flexible. In the experiments, we test the
performance of algorithm BAG with decreasing ratios in
[0, 0.05, 0.1, . . . , 0.95, 1] and pick the best decreasing ratio.

We conduct the experiments on a machine running
Ubuntu 18.04 with an i7-7800X CPU and 48 GB memory.
We investigate the performance of algorithms on different
data sets under different values of K and M . The results
are averaged over four runs. The data sets give the same
trend. Thus, we first show the algorithms’ performance with
K = M = 10 on the three data sets and only present the
results on the MFCC data set when K and M vary in Fig. 2.
The results on the other two data sets appear in the full ver-
sion of this paper.

Empirical Discussion. From the figures, we see that the
proposed balanced adaptive greedy algorithm always ob-
tains the best performance for all datasets and all values of K
and M . Moreover, Fig. 2(b) shows that as K increases, the
objective value of each algorithm generally increases, im-

5https://archive.ics.uci.edu/ml/datasets/Cardiotocography

7066

(a) (b)

(c) (d)

Figure 2: Fig. 2(a) shows the results on different datasets when both the number of agents K and the number of functions
per agent M are 10. Others show the performance of algorithms on the MFCC dataset when K and M vary. In Fig. 2(b), we
fix M = 10 and increase K, while in Fig. 2(c), we fix K = 10 and increase M . Finally, Fig. 2(d) shows the algorithms’
performance when K and M are set to be the same value and increase together.

plying that the instance becomes harder. In these harder in-
stances, algorithm BAG has a more significant improvement
over other methods. Conversely, Fig. 2(c) indicates that we
get easier instances as M increases because all the curves
generally give downward trends. In this case, although the
benefit of our balancing strategy becomes smaller, algorithm
BAG still obtains the best performance.

7 Conclusion
The paper is the first to study the submodular ranking prob-
lem in the presence of multiple agents. The objective is to
minimize the maximum cover time of all agents, i.e., opti-
mizing the worst-case fairness over the agents. This problem
generalizes to designing optimal decision trees over multi-
ple agents and also captures other practical applications. By
observing the shortfall of the existing techniques, we intro-
duce a new algorithm, balanced adaptive greedy. Theoreti-

cally, the algorithm is shown to have strong approximation
guarantees. The paper shows empirically that the theory is
predictive of experimental performances. Balanced adaptive
greedy is shown to outperform strong baselines in the exper-
iments, including the most natural greedy strategies.

The paper gives a tight approximation algorithm for gen-
eralized min-sum set cover on multiple agents, which is a
special case of our model. The upper bound shown in this
paper matches the lower bound introduced. The tight ap-
proximation for the general case is left as an interesting open
problem. Beyond the generalized min-sum set cover prob-
lem, another special case of our problem is also interesting
in which the monotone submodular functions of each agent
are the same. Observing the special case above also captures
the problem of Optimal Decision Tree with Multiple Prob-
ability Distribution. Thus, improving the approximation for
this particular case will be interesting.

7067

Acknowledgments
Chenyang Xu was supported in part by Science and Technol-
ogy Innovation 2030 –“The Next Generation of Artificial In-
telligence” Major Project No.2018AAA0100900. Qingyun
Chen and Sungjin Im were supported in part by NSF CCF-
1844939 and CCF-2121745. Benjamin Moseley was sup-
ported in part by a Google Research Award, an Infor Re-
search Award, a Carnegie Bosch Junior Faculty Chair and
NSF grants CCF-1824303, CCF-1845146, CCF-1733873
and CMMI-1938909. We thank the anonymous reviewers
for their insightful comments and suggestions.

References
Abernethy, J. D.; Awasthi, P.; Kleindessner, M.; Morgen-
stern, J.; Russell, C.; and Zhang, J. 2022. Active Sampling
for Min-Max Fairness. In ICML, volume 162 of Proceedings
of Machine Learning Research, 53–65. PMLR.
Agarwal, A.; Assadi, S.; and Khanna, S. 2019. Stochastic
submodular cover with limited adaptivity. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, 323–342. SIAM.
Azar, Y.; and Gamzu, I. 2011. Ranking with Submodular
Valuations. In SODA, 1070–1079. SIAM.
Azar, Y.; Gamzu, I.; and Yin, X. 2009. Multiple intents re-
ranking. In Proceedings of the forty-first annual ACM sym-
posium on Theory of computing, 669–678.
Bach, F.; et al. 2013. Learning with submodular functions: A
convex optimization perspective. Foundations and Trends®
in Machine Learning, 6(2-3): 145–373.
Bansal, N.; Batra, J.; Farhadi, M.; and Tetali, P. 2021. Im-
proved approximations for min sum vertex cover and gener-
alized min sum set cover. In Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), 998–
1005. SIAM.
Bansal, N.; Gupta, A.; and Krishnaswamy, R. 2010. A Con-
stant Factor Approximation Algorithm for Generalized Min-
Sum Set Cover. In Proceedings of the Twenty-First An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, Austin, Texas, USA, January 17-19, 2010, 1539–1545.
SIAM.
Barocas, S.; Hardt, M.; and Narayanan, A. 2017. Fairness in
machine learning. Nips tutorial, 1: 2.
Chakaravarthy, V. T.; Pandit, V.; Roy, S.; Awasthi, P.; and
Mohania, M. 2007. Decision trees for entity identification:
Approximation algorithms and hardness results. In Proceed-
ings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, 53–62.
Chouldechova, A.; and Roth, A. 2020. A snapshot of the
frontiers of fairness in machine learning. Communications
of the ACM, 63(5): 82–89.
Corbett-Davies, S.; Pierson, E.; Feller, A.; Goel, S.; and
Huq, A. 2017. Algorithmic decision making and the cost
of fairness. In Proceedings of the 23rd acm sigkdd interna-
tional conference on knowledge discovery and data mining,
797–806.

Dasgupta, S. 2004. Analysis of a greedy active learning
strategy. Advances in neural information processing sys-
tems, 17.
Feige, U.; Lovász, L.; and Tetali, P. 2004. Approximating
min sum set cover. Algorithmica, 40(4): 219–234.
Golovin, D.; Krause, A.; and Ray, D. 2010. Near-optimal
bayesian active learning with noisy observations. Advances
in Neural Information Processing Systems, 23.
Gupta, A.; Nagarajan, V.; and Ravi, R. 2017. Approximation
algorithms for optimal decision trees and adaptive TSP prob-
lems. Mathematics of Operations Research, 42(3): 876–896.
Halabi, M. E.; Mitrovic, S.; Norouzi-Fard, A.; Tardos, J.;
and Tarnawski, J. 2020. Fairness in Streaming Submodular
Maximization: Algorithms and Hardness. In NeurIPS.
Im, S.; Nagarajan, V.; and van der Zwaan, R. 2016. Mini-
mum Latency Submodular Cover. ACM Trans. Algorithms,
13(1): 13:1–13:28.
Jia, S.; Navidi, F.; Ravi, R.; et al. 2019. Optimal decision
tree with noisy outcomes. Advances in neural information
processing systems, 32.
Kleinberg, J.; Mullainathan, S.; and Raghavan, M. 2016.
Inherent trade-offs in the fair determination of risk scores.
arXiv preprint arXiv:1609.05807.
Mehrabi, N.; Morstatter, F.; Saxena, N.; Lerman, K.; and
Galstyan, A. 2021. A survey on bias and fairness in machine
learning. ACM Computing Surveys (CSUR), 54(6): 1–35.
Radunovic, B.; and Le Boudec, J.-Y. 2007. A unified frame-
work for max-min and min-max fairness with applications.
IEEE/ACM Transactions on networking, 15(5): 1073–1083.
Williamson, D. P.; and Shmoys, D. B. 2011. The design of
approximation algorithms. Cambridge university press.

7068

