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Abstract

Molecular structures and Drug-Drug Interactions (DDI) are
recognized as important knowledge to guide medication rec-
ommendation (MR) tasks, and medical concept embedding
has been applied to boost their performance. Though promis-
ing performance has been achieved by leveraging Graph Neu-
ral Network (GNN) models to encode the molecular struc-
tures of medications or/and DDI, we observe that existing
models are still defective: 1) to differentiate medications with
similar molecules but different functionality; or/and 2) to
properly capture the unintended reactions between drugs in
the embedding space. To alleviate this limitation, we pro-
pose Carmen, a cautiously designed graph embedding-based
MR framework. Carmen consists of four components, in-
cluding patient representation learning, context information
extraction, context-aware GNN, and DDI encoding. Carmen
incorporates the visit history into the representation learn-
ing of molecular graphs to distinguish molecules with sim-
ilar topology but dissimilar activity. Its DDI encoding mod-
ule is specially devised for the non-transitive interaction DDI
graphs. The experiments on real-world datasets demonstrate
that Carmen achieves remarkable performance improvement
over state-of-the-art models and can improve the safety of
recommended drugs with proper DDI graph encoding.

Introduction
To benefit from the escalating growth of the volume of
electronic health records (EHR), many deep learning mod-
els [Shang et al. 2019a,b; Choi et al. 2017, 2016b; Yang
et al. 2021; Choi et al. 2016a] have been proposed to
mine EHR efficiently. Specifically, a promising and essen-
tial application in healthcare is medication recommendation
(MR) [Yang et al. 2021; Shang et al. 2019b,a], which aims
at recommending medication combinations for patients ac-
cording to their history EHR.

Medical concept representation, which represents and
preserves the relationship between medical concepts in low-
dimensional subspaces, has been adopted to aid deep learn-
ing models to improve the prediction accuracy and effi-
ciency for MR tasks and has a substantial impact on the
performance of MR models. With proper medical concept
embedding, the recommendations can be achieved in the
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Figure 1: Testosterone (left) and Estradiol (right).

embedding spaces by measuring the “distance” between
visits and medications. Due to the extreme complexity of
EHR data and insufficient labeled data in MR tasks, learn-
ing appropriate representation for each medical concept
is not trivial. Therefore, most existing approaches incor-
porate some existing medical “knowledge”, among which
molecular structures of medications are the most impor-
tant, to enhance medical representation learning. The study
of the molecular structures can be traced back to “molec-
ular descriptors” [Mauri et al. 2006] and “molecular fin-
gerprints” [Rogers and Hahn 2010; Duvenaud et al. 2015],
which are shallow models with mathematical conversions
and algorithms. Recent work started to focus on applying
deep models to represent molecular structures. [Shin et al.
2019] developed a model which ingests SMILES strings and
uses a self-attention mechanism to learn the drug structure.
With graph neural networks (GNN), the topology structure
of the molecules is applied to the models, such as [Yang et al.
2021], which proposed Dual Molecular Graph Encoders to
learn molecular representations.

Molecular-based medication representation methods rely
on graph representations of molecules, where atoms and
bonds are represented by nodes and edges, respectively.
However, converting molecules into graphs inevitably in-
duces information loss as similar molecules might be
converted to the same graph structure. In particular, the
graph structures of pairs of stereoisomers are the same,
even though they have different functionalities. Further-
more, as most existing methods simply adopt vanilla GNNs
for molecular graph encoding, they encode medications
with similar molecular graphs closer to the embedding
space. Unfortunately, medications with similar molecu-
lar graphs or similar molecular 3D structures do not al-
ways indicate they have similar functionality. Fig. 1 illus-
trates that Testosterone and Estradiol, which are two
medications with completely different functionalities. With
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Figure 2: The molecule graphs for the medications m and
n. The 1-WL test cannot distinguish them, but Carmen can.
WL test updates one atom representation by taking an in-
jective mapping on its neighborhood structure. Therefore,
atom a/b will have the same representation in m and n as
they have the same neighborhood. In comparison, the repre-
sentation learned by Carmen considers the external context
knowledge on how m and n are used with other medications.

vanilla GNNs, they would have almost identical representa-
tions, which might misguide the medication recommenda-
tion module to equal them and mistakenly recommend them
to patients as another.

The crux of resolving the above issues lies in how to
compensate for the information loss and empower GNNs
to learn more distinguishable medication representations in
case medications have similar molecular graphs but different
functionalities. Motivated by the fact that medications with
different functionality exhibit different co-occurring behav-
iors in EHR, it is important to properly utilize co-occurring
medical concepts of each medication as its context informa-
tion to favor the representation learning. Therefore, we pro-
posed Carmen, a context-aware GNN module that enables
GNN to inject the context information of each medication
into its representations. For example, Fig. 2 demonstrates
that Carmen is capable of distinguishing pairs of medica-
tions with similar molecular graphs but different use cases in
the embedding space as Carmen considers their occurrence
patterns in prescriptions while the 1-WL test (and vanilla
GNNs) cannot.

In addition to the contextual information that can be
learned from prescriptions, medication recommendations
should also avoid drug combinations that have Drug-Drug
Interactions (DDI) as they can lead to unintended reactions
and side effects. DDI are usually provided/presented in a
graph, where nodes represent drugs and edges represent in-
teractions. Existing models either consider a DDI loss to
regularize the objective function [Yang et al. 2021] or uti-
lize a conventional message passing-based graph embed-
ding to model the drug interactions [Shang et al. 2019b].
They directly or indirectly applied the “transitivity” feature,
which plays an important role in learning social networks
and knowledge graphs. “Transitivity” in a graph indicates
that, if there is an edge between vertices v and u, and one
between u and w, it is likely that v and w are also connected.
However, we argue that the “transitivity” feature should not
be applied to the DDI graph. For example, digoxin, which
is in the cardiac glycoside class of drugs, will cause gy-
necomastia and increase the risk of breast and uterus can-
cer while being administrated with estrogens. digoxin is

Figure 3: “Transitivity” via message passing results in inac-
curate inference. The drugs of different colors are mutually
exclusive. The link between the drugs declares DDI, which
is a mutex relation. For the non-transitive DDI graph, the
primitive message passing will mistakenly infer the exis-
tence of a mutex relation between v and w.

also suggested not to be taken with thyroid preparations,
which may decrease the response to digoxin. But it is harm-
less to administrate estrogens and thyroid preparations
together. Fig. 3 illustrates the example and its general form
of “transitivity” inference, and we use “non-transitive” to de-
scribe the absence of transitivity. In comparison with exist-
ing models, Carmen applies reformative message dispelling
to encode DDI with the “transitivity” feature off.

Our main contributions are summarized as follows:

• We recognized the issue of indistinguishable molecule
graphs in MR tasks and developed a context-aware GNN
that equips molecular graphs with the context informa-
tion extracted from EHR, thus learning more distinguish-
able medication representations.

• We recognized the inappropriacy of encoding non-
transitive DDI graphs with transitivity-favored message
passing in existing work and proposed a non-transitive
DDI encoding scheme. We theoretically demonstrated
our method works better for embedding DDI graphs.

• The experiments proved that the use of context informa-
tion improves the learned medication embeddings which
in turn leads to more accurate recommendations. Mean-
while, with the help of proper DDI encoding, the recom-
mendations eliminate unsafe drug combinations.

Related Work
Representation learning aims to convert the observed
data into low-dimensional data informatively. Conse-
quently, learning effective medical representations, primar-
ily the representations of medical codes and patients’ visit
records [Choi et al. 2017; Shang et al. 2019b,a], has become
an important topic in healthcare-related research. Based on
the Skip-gram model, Med2vec [Choi et al. 2016a] learns
representations by considering the co-occurrence informa-
tion of the clinical concepts in EHR. To tackle the issue
of the absence of long-term information in Med2Vec, [Choi
et al. 2016b] proposed RETAIN to model the history of se-
quential dependencies. Leap [Zhang et al. 2017] generalizes
treat recommendation to a sequential decision-making pro-
cess with label dependency and label instance mapping con-
sidered. In comparison, besides the contextual information
about medication co-occurrence, we also consider the repre-
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sentation of molecular and DDI information in MR tasks.
Molecular information is pivotal for capturing the structure
and property of drugs. CASTER [Huang et al. 2020] devel-
oped a deep auto-encoding module that takes SMILE strings
as input to represent sub-structures of drugs. Nevertheless,
SMILES owns a sequential structure and neglects the spatial
information of the molecule. Alternatively, as GNNs demon-
strated their effectiveness for processing topology structures,
they have been widely applied to molecule representation.
For example, GMPNN [Nyamabo et al. 2022] utilizes edges
in molecular graphs as gates to control the flow of message
passing, and CMPNN [Song et al. 2020] applies a com-
municative kernel to improve the molecular embedding by
strengthening the message interactions. For MR tasks, Safe-
Drug [Yang et al. 2021] develops dual molecular graph en-
coders to embed global and local molecular structures. How-
ever, the insufficient encoding ability of vanilla GNNs limits
the advantage of utilizing molecular knowledge [Beani et al.
2021]. And learning the effective embedding of molecules
for MR remains a challenge.
Avoiding adverse DDI in drugs or/and predicting DDI in
prescriptions via machine learning models have been widely
studied, aiming to prevent adverse effects triggered by DDI
in treatment and diagnosis. In existing work, leveraging the
DDI information can be achieved by either developing a
DDI loss function, such as SafeDrug [Yang et al. 2021], or
regularizing the medication concept representation learning
on the DDI graph, such as GAMENet [Shang et al. 2019b].
Moreover, SMR [Gong et al. 2021] utilizes a knowledge
graph, where DDI appears as the relation connecting enti-
ties. However, as we argued before, the existing approaches
simply utilize the conventional transitivity-favored message-
passing scheme, neglecting the fact that the interactions in
DDI graphs are non-transitive.

Basic Notation
Three sets of medical concepts are considered in the pa-
per, including diagnosis, procedure, and medication, which
are represented as D = {d1,d2, . . ., d|D|}, P = {p1, p2,
. . .,p|P|}, and M = {m1, m2, . . ., m|M|}, respectively. For-
mally, the EHR of each patient is a sequence of hospital vis-
its, < V 1, V 2, . . . , V T >, where V t denotes the tth hospital
visit. For the tth visit of ith patient, V t

i , can be presented as
a triplet (dti, p

t
i,m

t
i), where dti ∈ {0, 1}|D|, pti ∈ {0, 1}|P|,

and mt
i ∈ {0, 1}|M|. For simplicity, in the following sec-

tions, we omit the patient subscript when there is no ambi-
guity. Table 1 shows the key notations in the paper.

Proposed Model
We propose a medication recommendation model with
context-aware GNN (Carmen) to learn more distinguish-
able medication representations, thus making better medi-
cation recommendations. Fig. 4 illustrates the architecture
of Carmen, which consists of four major components: pa-
tient representation learning, context information extraction,
context-aware GNN, and DDI encoding.

The patient representation learning module processes di-
agnosis and procedure codes from the visit sequence and re-

Notation Description
Ed Diagnosis Embedding matrix
Ep Procedure Embedding matrix
Em Medication Embedding matrix
ht Patient representation for the tthvisit
Amd Medication-diagnosis co-occurrence matrix
Amp Medication-procedure co-occurrence matrix
Amm Medication-medication co-occurrence matrix
ŷ Prediction of the current visit
y Ground truth of the current visit

Table 1: Key Notations

turns the patient representation. The context information ex-
traction module distills context information for each medica-
tion from three co-occurrence matrices, yielding abstracted
information. The context-aware GNN module skillfully in-
jects the context information into message passing to en-
able GNN to distinguish medication with similar molecular
structures. Meanwhile, the DDI encoding module properly
represents the drugs in the non-transitive DDI graph, and the
generated drug embeddings are combined with the represen-
tations from the context-aware GNN. Finally, we can make
recommendations for each patient based on their representa-
tions and the learned medication embedding matrix.

Patient Representation Learning
To learn patient representations, given the historical di-
agnosis and procedure codes from the visit records <
V 1, V 2, . . . , V t >, we start with encoding the diagnosis and
procedure of each visit.
Visit Representation. Given a triplet of multi-hot vector
(dt, pt,mt) denoting the tth visit, we convert dt/pt to a
low-dimensional dte/pte by multiplying embedding matrix
Ed/Ep with original multi-hot vector dt/pt. Ed ∈ R|D|×l

and Ep ∈ R|P|×l denote the embedding matrix of diagnosis
and procedure, respectively. The superscript l is the dimen-
sionality of medical concept representation.
Patient Representation. Similar to the healthcare scenario
where doctors always refer to patients’ medical history to
make a diagnosis, we utilize two GRUs to process the
< d1e, d

2
e, . . . , d

t
e > sequence and the < p1e, p

2
e, . . . , p

t
e >

sequence to capture longitudinal information of diagnosis
view and procedure view:

dth = GRUd(d
t
e, d

t−1
h ), pth = GRUp(p

t
e, p

t−1
h ), (1)

where dth, p
t
h ∈ Rl. To combine both diagnosis and proce-

dure information, we use ht = Wh [d
t
h; p

t
h], where [; ] is

the concatenate operator and Wh is a learnable weight ma-
trix in Rl×2l. Thus, we obtain the final patient representation
ht ∈ Rl, which includes all the procedure and diagnosis in-
formation of the patient.

Context-Aware Medication Representation
Learning
Let G = (V, E) be an undirected graph, V denotes the node
set, E denotes the edge set, and n = |V| denotes the number
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Figure 4: The framework of Carmen. Carmen has four main modules: 1) Patient representation learning module takes diagnosis
dt and procedure pt as inputs to get the patient representation ht; 2) Context information extracting module generates the
context table C according to the three co-occurrence matrices Amd, Amp, and Amm; 3) Context-aware GNN injects the mth

medication’s context Cm into its molecule representation; 4) DDI encoding module leverages message dispelling to separate
adjacent drugs from the DDI graph. Based on patient representation ht and medication representations Em, the prediction score
is computed for the patient.

of nodes in the graph. Given a node v ∈ V , N (v) := {u |
{u, v} ∈ E} is the set of v’s neighbors. In GNNs, each node
v receives messages from its neighbors:

zkN (v) = AGG(zk−1
u , ∀u ∈ N (v)),

zkv = UPD(zk−1
v , zkN (v)).

(2)

Eq. (2) depicts the layer-wise operation of GNN, where
zkN (v) denotes the output of the function AGG(·) which
gathers neighborhood information at GNN’s kth layer, and
the function UPD(·) updates node embedding with its cor-
responding aggregated neighborhood information. To learn
the graph-level representations, a readout function R(·) :
Rn×l 7−→ Rl is then adopted to integrate the node represen-
tations learned by GNNs [Hassani and Khasahmadi 2020].

As discussed before, vanilla GNNs are inborn defective
for medication representation due to the inadequate distin-
guishing power to medications with similar molecular struc-
tures. Therefore, we inject medication-specific information
into the message-passing process of GNN.
Context Information Extraction. As different medications
would exhibit different co-occurring behaviors in EHR
datasets, we first construct three co-occurrence matrices
from the training set: medication-diagnosis co-occurrence
matrix Amd ∈ R|M|×|D|, medication-procedure co-
occurrence matrix Amp ∈ R|M|×|P|, and medication-
medication co-occurrence matrix Amm ∈ R|M|×|M|. Rows
of each matrix are normalized by L1 norm.

Each medication is preliminarily represented by Cd =
AmdEd and Cp = AmpEp, where Cd, Cp ∈ R|M|×l can be
considered as the preliminary medication context represen-
tations under the two views, which are then combined into

the co-occurring information Cdp by Cdp = [Cd;Cp]Wc,
where Wc ∈ R2l×l is also a learnable parameter matrix.

The combination information is captured by Cmm =
AmmCdp, and is integrated with the co-occurring informa-
tion Cdp by C = Cdp + tanh (CdpWs1) ⊙ Cmm, where
Ws1 ∈ Rl×l taken by activation function tanh(·) is a fea-
ture attention layer, which aims to adaptively select valuable
features in Cmm and filter out the trivial ones according to
Cdp. ⊙ denotes the element-wise product. Finally, we get
the context information C of medications.
Context-aware GNN. The molecular graph of the mth

medication is represented as Gm = (Vm, Em), where Vm

and Em denote the set of atoms and edges, respectively.
Chemical bonds are modeled as edges. We aggregate the
neighborhood information for each atom v ∈ Vm with

zkN (v) =
∑

∀u∈N (v)

W kzk−1
u√

auav
, (3)

where W k ∈ Rl×l is the weight matrix of kth layer. au and
av are the degrees of atom u and atom v, indicating the num-
ber of chemical bonds connecting them.

As existing methods are limited by the distinguishing
power of vanilla GNNs, we design a novel aggregation form
for atoms in the molecular graph, wherein each atom is en-
coded by its neighborhood information and the additional
graph-level medication context information. The neighbor-
hood information of each atom and the context embedding
of medication Cm are aggregated as below:

ẑkN (v) = tanh (Ws2C
m)⊙ zkN (v), (4)

where Ws2 ∈ Rl×l with tanh(·) is another feature attention
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layer, and Cm ∈ Rl is the mth row of C for the mth med-
ication. Then, ẑkN (v) together with a single self-connection
representation zk−1

v are integrated to infer the representation
of atom v in kth layer:

zkv = ϵzk−1
v + ẑkN (v), (5)

where ϵ is a hyper-parameter for balancing the weight be-
tween the atom v and its neighbors. To summarize the atom
representations into a graph-level medication representation,
we leverage the readout function R(·):

em = R
({

zKv , ∀v ∈ V
})

, (6)

where K denotes the layer number of GNN and em is the
final representation of the mth medication. Each medication
is encoded by context-aware GNN in parallel and stored in
medication embedding matrix Em ∈ R|M|×l.

DDI Encoding
As we have highlighted, message passing-based encoding
schemes, including conventional GCNs, cannot be simply
applied to DDI graphs as they are non-transitive in nature.
In this section, we propose an encoding scheme that favors
non-transitive DDI graphs.

A DDI graph is an undirected graph Gddi = (Vddi, Eddi),
where Vddi and Eddi denote its nodes and edges, respec-
tively. Each node vddi ∈ Vddi represents a medication and
each edge eddi ∈ Eddi indicates the presence of DDI be-
tween two medications. For DDI graphs, the conventional
encoding process (Eq. (2)) is specified as:

zkN (vddi)
= AGGddi(z

k−1
u , ∀u ∈ N (vddi)),

zkvddi
= UPD−(z

k−1
vddi

, zkN (vddi)
).

(7)

We employ the attention mechanism [Veličković et al. 2017]
for aggregation. As the connected drugs in a DDI graph
in fact repel each other, their representations in a low-
dimensional embedding space should be far apart. Conse-
quently, the conventional UPD(·) function (Eq. (5)) be-
comes invalid as it enforces neighbors to be close in the em-
bedding space. Hence, we modify the update function as:

UPD−(z
k−1
vddi

, zkN (vddi)
) = γzk−1

vddi
− zkN (vddi)

, (8)

where γ is the hyperparameter that adjusts the balance be-
tween drug vddi and its neighborhood. We refer to the pro-
cess, including the aggregates and the dispelling updates, as
the message dispelling, formally defined below.

Definition 1 (Message Dispelling). G = (V,E) is an N-
node undirected graph. A is the adjacency matrix of G and
Di =

∑
j Aij . For nodes V = {v1, . . . , vN}, Xt

i is the
embedding of vi after t times message dispelling, of which
the basic form is Xt+1 = (I −D− 1

2AD− 1
2 )Xt.

The following proposition proves that the embeddings of
the drugs are estranged as the message dispelling proceeds,
and the connected nodes are the first to be separated. There-
fore, the message dispelling is practical for graphs with non-
transitive structures, such as DDI graphs.

Proposition 1. For a large enough t = τ , ∥Xτ
i −Xτ

j ∥2 >

∥X0
i −X0

j ∥2.

Proof. For a message dispelling

Xt+1
i = (I −D− 1

2AD− 1
2 )Xt

i , (9)
it can be rewritten as:

Xt
i = LXt−1

i = LtX0
i , (10)

where L = I − D− 1
2AD− 1

2 denotes the normalized graph
Laplacian matrix. The eigendecomposition of L is L =
UΛUT , where U = ([u1, ..., uN ]), ui ∈ RN and Λ =
diag([λ1, ..., λN ]). According to the properties of L, λi ∈
[0, 2], and U is guaranteed to be an orthogonal matrix. Then
Eq. (10) can be expanded as:

Xt
i = UΛtUTX0

i . (11)

By setting X̂ = UT (X0
i −X0

j ), we have

Xt
i −Xt

j = UΛtUT (X0
i −X0

j ) = UΛtX̂. (12)
We can induce that

∥Xt
i −Xt

j∥2 =

√√√√ N∑
j=1

(
N∑
i=1

λt
iuij x̂i)2, (13)

where uij represents the jth element of eigenvector ui, and
x̂i denotes the ith element of X̂ . With λi ∈ [0, 2], when τ is
large enough, we have√√√√ N∑

j=1

(

N∑
i=1

λτ
i uij x̂i)2 >

√√√√ N∑
j=1

(

N∑
i=1

uij x̂i)2. (14)

Hence, we can conclude that ∥Xτ
i −Xτ

j ∥2 > ∥X0
i −X0

j ∥2.

The embedding of the drugs learned by the DDI embed-
ding module is then combined with em from Eq. (6) to facil-
itate the recommendation.

Prediction and Objectives
The matching score of each medication is the similarity be-
tween the patient representation ht and the medication rep-
resentation Em as ŷ = σ(LN(Ẽmh̃t)), where ŷ ∈ R|M|, σ
denotes the sigmoid activation function, and LN represents
layer normalization operation. Ẽm is row normalized Em

and h̃t is normalized ht.
Objective. This paper formulates medication recommenda-
tion as a multi-class and multi-label classification task. First,
we adopt binary cross-entropy (BCE) loss Lbce as part of the
objective, and empirically utilize the multi-label hinge loss
Lmargin, aiming to keep a significant margin between the
ground truth labels’ scores and the others. Thus, the objec-
tive is the weighted sum of Lbce and Lmargin:

Lbce = −
|M|∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi),

Lmargin = −
∑

i:y(i)=1

∑
j:y(j)=0

max (0, 1− (ŷi − ŷj))

|M|
,

L = (1− α)Lbce + αLmargin.

(15)
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Item MIMIC-III MIMIC-IV
# of patients 6350 9036
# of visits 15032 20616

Avg.# of visit per patient 2.37 2.28
Max.# of visit 29 28

# of unique diagnosis codes 1958 1892
# of unique procedure codes 1430 4939
# of unique medication codes 131 131

Table 2: Statistics of dataset

For the ith medication, ŷi is the prediction and yi is the
ground truth label. α is a predefined hyperparameter to con-
trol the proportion of two loss functions.

Experiments
We conducted extensive experiments for performance com-
parison between Carmen 1 and several state-of-the-art meth-
ods. To further verify the reliability and effectiveness of our
model, two analytical studies are also provided.

Experimental Setting

Datasets. We evaluated our model on MIMIC-III [Johnson
et al. 2016] and MIMC-IV [Johnson et al. 2018]. After the
data preprocessing, we got 131 medications for recommen-
dation when we set the ATC Third Level code as the target
label. In more detail, each ATC Third Level code involves
one or more medications and each medication corresponds
to one ATC Third Level code.
Evaluation. We measured the performance with three com-
mon metrics, including Jaccard similarity, F1 score, and
Precision-Recall AUC (PRAUC).
Baselines. To evaluate our work comprehensively, we com-
pared Carmen with the state-of-the-art methods from dif-
ferent categories: 1) Shallow model baselines include Lo-
gistic Regression (LR) and Ensembles of Classifier Chains
(ECC) [Read et al. 2011]; 2) Deep model baselines include
RETAIN [Choi et al. 2016b], Leap[Zhang et al. 2017],
GAMENet[Shang et al. 2019b], and SafeDrug [Yang et al.
2021]. We also introduce the variants of Carmen, including
Carmen w/o (context & ddi-enc) which removes the con-
text information injection and the DDI encoding 2 , Carmen
w/ ddi-loss which replaces the DDI encoding with an addi-
tional DDI loss from SafeDrug, Carmen w/ ddi-agg which
encodes the DDI graph by a conventional message passing,
and Carmen w/o ddi-enc which removes the DDI encoding.
Note that as we analyzed in Prop 1, message dispelling ben-
efits from multiple layers while message passing will con-
front over-smoothing in this condition. For fairness, we set
2 layers for message passing and 9 for message dispelling.

1Code is available at https://github.com/bit1029public/Carmen.
2Carmen w/o (context & ddi-enc) simply utilizes the vanilla

GNNs to encode molecules to represent medications.

Figure 5: The number of occurrences of the adverse DDI
among 20 times recommendations. Carmen w/o ddi-enc and
Carmen w/ ddi-agg recommended one unsafe drug pair 17
times and 19 times (pink bars), respectively, and Carmen
w/ ddi-loss recommended three unsafe drug pairs once (red
bar). Carmen recommended none of unsafe drug pairs.

Performance Comparison
Carmen outperforms baselines. Table 3 lists the results
of medication recommendations. Each model was executed
five times with different seeds, and the mean and standard
deviation of the results were presented. The results show that
Carmen and its variants consistently outperform the base-
lines. The comparison between Carmen w/o ddi-enc and
Carmen w/o (context & ddi-enc) demonstrates that the ma-
jor performance gain is from the context information in-
volved in the GNN forward process. Although both Carmen
w/o (context & ddi-enc) and SafeDrug use the vanilla GNN
to encode molecules, the design details of their graph en-
coders are significantly different, and SafeDrug has an ex-
tra local Bipartite encoder. Concretely, the degree of nodes
has been proved to be discriminative information to encode
graphs [Geerts, Mazowiecki, and Perez 2021] but is ignored
in SafeDrug. This explains why Carmen w/o (context & ddi-
enc) still achieves comparable performance.
DDI encoding guarantees safety. DDI knowledge can be
included in two ways, DDI encoding and DDI loss. For
DDI loss, it has trivial improvement for Carmen (Carmen
w/ ddi-loss vs. Carmen w/o ddi-enc), notable upgrade for
GAMENet, and almost no influence on SafeDrug. The rea-
son is that the DDI knowledge is not only determined by the
molecules but also implied in the visit records prescribed
by physicians. GAMENet only utilizes the co-occurrence
information so that extra DDI knowledge relieves the dis-
advantage of lacking molecular details (or other medication
attributes). SafeDrug tends to make conservative recommen-
dations to fit the DDI loss function, compromising accuracy
as the DDI knowledge is not always consistent with visit
records. The representation obtained from Carmen w/o ddi-
enc is far more informative as it considers the contributions
from both molecules and records, and it can be trained to
dominate the output, thus loosening the negative constraint
brought by DDI loss.

For DDI encoding, we observe that it even has some nega-
tive impact on accuracy as a trade-off for drug safety, which
means drugs with DDI should not appear together. Given the
fact that some EHR records have DDI in presence, instead
of using the DDI rate [Shang et al. 2019b; Yang et al. 2021]
as a metric, we evaluated the effectiveness brought by dif-
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Method MIMIC-III MIMIC-IV
Jaccard (%) Prauc (%) F1-score (%) Jaccard (%) Prauc (%) F1-score (%)

LR 49.40±00.14 75.88±00.19 65.08±00.11 47.32±00.18 73.80±00.16 63.03±00.17

ECC 48.36±00.14 75.86±00.18 63.96±00.10 44.03±00.10 71.39±00.06 60.16±00.09

RETAIN 48.55±00.15 75.68±00.12 64.67±00.12 44.03±00.10 71.40±00.02 60.13±00.08

Leap 45.44±00.18 65.71±00.30 61.63±00.17 43.50±00.23 63.21±00.40 59.63±00.22

GAMENet w/o ddi-loss 50.93±00.08 76.24±00.24 66.56±00.08 47.50±00.08 73.96±00.13 63.33±00.07

GAMENet 51.59±00.09 76.84±00.12 67.15±00.07 47.84±00.18 73.95±00.28 63.63±00.17

SafeDrug w/o ddi-loss 50.42±00.23 76.11±00.04 66.20±00.20 48.52±00.41 74.09±00.24 64.31±00.37

SafeDrug 50.35±00.15 75.76±00.18 66.14±00.39 48.57±00.62 74.00±00.31 64.35±00.54

Carmen w/o (context & ddi-enc) 51.20±00.14 74.57±00.07 66.90±00.12 48.74±00.27 71.90±00.18 64.53±00.23

Carmen w/o ddi-enc 53.13±00.11 77.35±00.23 68.56±00.08 50.27±00.09 75.09±00.09 65.90±00.08

Carmen w/ ddi-agg 53.15±00.09 77.19±00.14 68.58±00.08 50.33±00.11 75.07±00.10 65.99±00.11

Carmen w/ ddi-loss 53.23±00.18 77.36±00.21 68.65±00.16 50.49±00.09 75.13±00.13 66.15±00.11

Carmen 52.67±00.21 76.52±00.36 68.12±00.19 50.06±00.12 74.62±00.30 65.69±00.07

Table 3: Performance comparison on MIMIC-III and MIMIC-IV. Numbers in bold indicate the best performance.

ferent methods of applying DDI information. We tested each
model 10 times on MIMIC-III&IV respectively, and counted
the number of appearances of the “adverse DDI”, which rep-
resents the DDI not appearing in the prescriptions of the test
dataset. It can be observed from Fig. 5 that Carmen does
not recommend any unsafe drug combinations. Conversely,
Carmen w/ ddi-loss fails to reduce unsafe drug combina-
tions. Likewise, Carmen w/ ddi-agg cannot guarantee not to
recommend any adverse DDI. These results prove that our
DDI encoding module can handle the inherent property of
the non-transitive DDI graph and captures the relation be-
tween drugs to ensure the safety and reliability of drug use,
but inevitably decreases the accuracy as some DDI are in the
EHR test set. In contrast, the DDI loss function focuses more
on numerical accuracy. It is deficient in capturing and lever-
aging the concrete DDI information between drugs, leading
to the lack of inductive ability of the model.
Carmen improves the distinguishing power of GNN. To
measure the impact of molecule similarity on making pre-
dictions, we introduced a “confusion index” ηi, which indi-
cates how much confusion for the ith medication is due to
other medications with similarities to it:

ηi =

∑
j!=i njsij

ni +
∑

j!=i njsij
. (16)

nj and ni denote the number of occurrences of the jth and
ith medications in the training data. sij denotes the molecu-
lar similarity between ith medication and jth medication,
which is defined by Dice similarity on their ECMP (Ex-
tended Connectivity Fingerprints) [Rogers and Hahn 2010].
When the molecular structure of medication is unique, the
confusion index reaches its minimum value (0). Whereas,
when the dataset is dominated by one single molecular struc-
ture, the confusion index approaches its maximum value (1).
Therefore, the “confusion” provides a way to assess how
challenging it is to predict a medicine properly.

We identified the medications that Carmen w/o ddi-enc
always predicted better than the baseline models in all five
rounds of experiments and obtained their respective confu-
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Figure 6: Model improvement regarding confusion index.
Blue line represents Carmen w/o ddi-enc−Carmen w/o
(context & ddi-enc), and red line represents Carmen w/o ddi-
enc−SafeDrug.

sion indexes. Then we plot the average improvement be-
tween two compared models on the Jaccard index (y-axis)
with respect to the “confusion index” (x-axis) in Fig. 6. The
x-axis starts from 0.95 and we calculated the average im-
provement within every 0.01 interval. It is evident that the
majority of the medications that are better predicted have a
high confusion index η, and the larger η becomes, the more
significant the improvement of the Jaccard index is, indicat-
ing that the major gains in our model are from the medica-
tions with the larger η. This proves that our model is capa-
ble of differentiating the medications with similar molecules
more effectively.

Conclusion
This paper proposed a novel context-aware GNN (Carmen)
for medication recommendations. Carmen extracts context
information for each medication and injects it into GNN
forward process, improving the distinguishing power of
the vanilla GNNs. Notably, a DDI encoding module is
developed to properly embed drugs, remedying the defect
of the conventional message passing applied in the non-
transitive DDI graph. The experimental results show that
the proposed model remarkably outperforms state-of-the-art
methods. We also verified that the major improvement
is attributed to the context-aware GNN, and DDI encod-
ing ensures the safety and reliability of the recommendation.
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