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Abstract

Vision Transformers (ViT) have made many breakthroughs
in computer vision tasks. However, considerable redundancy
arises in the spatial dimension of an input image, leading
to massive computational costs. Therefore, We propose a
coarse-to-fine vision transformer (CF-ViT) to relieve compu-
tational burden while retaining performance in this paper. Our
proposed CF-ViT is motivated by two important observations
in modern ViT models: (1) The coarse-grained patch splitting
can locate informative regions of an input image. (2) Most im-
ages can be well recognized by a ViT model in a small-length
token sequence. Therefore, our CF-ViT implements network
inference in a two-stage manner. At coarse inference stage,
an input image is split into a small-length patch sequence
for a computationally economical classification. If not well
recognized, the informative patches are identified and further
re-split in a fine-grained granularity. Extensive experiments
demonstrate the efficacy of our CF-ViT. For example, with-
out any compromise on performance, CF-ViT reduces 53%
FLOPs of LV-ViT, and also achieves 2.01× throughput. Code
of this project is at https://github.com/ChenMnZ/CF-ViT.

Introduction
Tremendous successes of traditional transformer (Vaswani
et al. 2017) in natural language processing (NLP) have
inspired the researchers to go further on computer vi-
sion (Han et al. 2022a). Consequently, vision transform-
ers (ViT) (Dosovitskiy et al. 2020) receive ever-increasing
attentions in many vision tasks such as image classifica-
tion (Dosovitskiy et al. 2020; Jiang et al. 2021), object de-
tection (Liu et al. 2021; Wang et al. 2021a), semantic seg-
mentation (Zheng et al. 2021; Xie et al. 2021), etc.

By splitting a 2D image into a patch sequence and us-
ing a linear projection to embed these patches into 1D
tokens as inputs, ViT merits in its property of modeling
long-range dependencies among tokens. Generally speak-
ing, the performance of a ViT model is closely correlated
with the token number (Dosovitskiy et al. 2020; Wang et al.
2021c), to which, however, the computational cost of ViT
is also quadratically related. Fortunately, images often have
more spatial redundancy than languages (Wang, Stuijk, and

*Corresponding Author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (a) Performance comparison (DeiT-S (Touvron
et al. 2021a)) between 100 highest-score patches and 100
lowest-score patches. The score is measured by the class at-
tention. (b) Visualization of class attention in the last en-
coder of DeiT-S (Best viewed with zooming in).

De Haan 2014), such as regions with task-unrelated ob-
jects. Thus, many works (Wang et al. 2020; Yang et al.
2020; Wang et al. 2022a, 2021b, 2022b; Han et al. 2022b,
2021c) o try to adaptively reduce the input resolution of
convolution neural networks. Also, great efforts have been
made to excavate redundant tokens for ViTs. For exam-
ple, PS-ViT (Tang et al. 2022b) enhances transformer ef-
ficiency by a top-down token pruning paradigm. Both Dy-
namicViT (Rao et al. 2021) and IA-RED2 (Pan et al. 2021a)
devise a lightweight prediction module to estimate the im-
portance score of each token, and discard low-score tokens.
Following DynamicViT (Rao et al. 2021), EViT (Liang et al.
2022) regards class attention as a metric of token impor-
tance, which avoids the introduction of extra parameters.
Unlike discarding tokens directly, DGE (Song et al. 2021)
introduces sparse queries to reduce the output token num-
ber. Evo-ViT (Xu et al. 2022) maintains the spatial structure
while consuming less computational cost to update uninfor-
mative tokens. DVT (Wang et al. 2021c) cascades multiple
ViTs with increasing tokens, then leverages an early-exiting
policy to decide each image’s token number.

This paper observes two insightful phenomena. First,
similar to the fine-grained patch splitting like 14×14, the
coarse-grained patch splitting such as 7×7 can also locate
the informative regions. To verify this, we first show that
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No. of token 14×14 7×7
Accuracy 79.8% 73.2%
FLOPs 4.60G 1.10G

Table 1: Accuracy and FLOPs of Deit-S (Touvron et al.
2021a) on ImageNet with different No. of patches as inputs.

class attention
(
see Eq. (2)

)
(Liang et al. 2022) has a re-

markable ability to identify informative patches. We conduct
a toy experiment on the validation set of ImageNet (Deng
et al. 2009) with a pre-trained DeiT-S model (Touvron et al.
2021a). Following DeiT-S, we split each image into 14×14
patches, then compute the class attention score of each patch
within each encoder. Then, the 100 highest-score patches
and 100 lowest-score patches are respectively fed to DeiT-S
to obtain their accuracy in Fig. 1(a). In the figure, highest-
score patches outperform lowest-score ones by a large mar-
gin, such a result demonstrates that class attention can well
reflect more informative patches. Then, in Fig. 1(b), we visu-
alize the class attention in the last encoder of DeiT-S. As can
be seen, 7×7 splitting and 14×14 splitting generally obtain
similar attentive regions.

The second phenomenon is that most images can be well
recognized by a ViT model in a small-length patch se-
quence. We train Deit-S (Touvron et al. 2021a) with vary-
ing lengths of input sequence, and report top-1 accuracy
and FLOPs in Table 1, in which, with 4.2× higher compu-
tational cost, splitting a 2D image into fine-grained 14×14
patches only obtains 6.6% accuracy benefits than coarse-
grained 7×7 splitting. A similar observation has been dis-
cussed in DVT (Wang et al. 2021c). This indicates that most
regions in 73.2% images are “easy” so that coarse-grained
7×7 patch splitting can well implement the classification,
and a small portion of images are filled with “hard” re-
gions requiring a fine-grained splitting of 14×14 with heav-
ier computation. Thus, we split the “easy” samples with
coarse-grained patch splitting for cheaper computation. In
addition, for “hard” samples, we can differentiate “easy” re-
gions and “hard” regions, and split them with different patch
sizes in order to pursue an efficient inference while retaining
good performance. Note that, these two phenomena can be
found in other ViT models as well.

Inspired by the above observations, we propose a novel
coarse-to-fine vision transformer in this paper, termed CF-
ViT, which aims to produce correct predictions with input-
adaptive computational cost. As shown in Fig. 2, the in-
ference of CF-ViT is divided into a coarse inference stage
and a fine inference stage. The coarse stage receives coarse-
grained patches as network inputs, which merits in low com-
putational cost since the coarse-grained splitting results in
much fewer patches (tokens). If this stage owns a high con-
fidence score, the network inference terminates; otherwise,
the input image is split again into fine-grained patches and
fed to the fine stage. In contrast to a naive re-splitting of all
coarse patches, we design a mechanism of informative re-
gion identification to further split the informative patches in
a fine-grained state, and retain these patches with less infor-
mation in a coarse-grained state. Therefore, we avoid heavy
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Figure 2: Example of CF-ViT.

computational burdens on the redundant image patches.
Also, we introduce a mechanism of feature reuse to inject
the integral information of the coarse patch to the split fine-
grained patches, which further enhance the model perfor-
mance. We then evaluate our proposed CF-ViT built upon
DeiT (Touvron et al. 2021a) and LV-ViT (Jiang et al. 2021)
on ImageNet (Deng et al. 2009). Extensive experiments re-
sults show that our CF-ViT can well boost the inference effi-
ciency. For example, without any performance compromise,
CF-ViT reduces 53% FLOPs of LV-ViT and also leads to
2.01× practical throughput on an A100 GPU. In addition,
extensive ablation studies also demonstrate the efficacy of
each design in our CF-ViT including the informative region
identification and the feature reuse. Visualization of infer-
ence results shows that CF-ViT enables adaptive inference
according to the “difficulty” of input images and can accu-
rately locate informative regions for re-splitting in fine in-
ference stage.

Related Work
Vision Transformer
Motivated by successes of transformer (Vaswani et al. 2017)
in NLP, researchers develop vision transformer (ViT) (Doso-
vitskiy et al. 2020) for image recognition. However, the
lack of inductive bias (Dosovitskiy et al. 2020) requires ViT
model to be pre-trained on a very large-scale data corpus
such as JFT-300M (Sun et al. 2017) to pursue a desired per-
formance. This demand barricades the development of ViT
model since the large-scale dataset requires a high-capacity
workstation. To handle this, many studies (Touvron et al.
2021a; Jiang et al. 2021) develop specialized training strate-
gies for ViT models. For instance, DeiT (Touvron et al.
2021a) introduces an extra token for knowledge distillation.
LV-ViT (Jiang et al. 2021) leverages all tokens to compute
the training loss, and the location-specific supervision la-
bel of each patch token is generated by a machine anno-
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tator. In addition, another group focuses on improving the
architecture of ViT (Yuan et al. 2021a; Li et al. 2021; Chu
et al. 2021b,a; Yuan et al. 2021b; Heo et al. 2021; Touvron
et al. 2021b; Liu et al. 2021; Li et al. 2022). For example,
CPVT (Chu et al. 2021b) uses a convolution layer to replace
the learnable positional embedding. CaiT (Touvron et al.
2021b) builds deeper transformers and develops specialized
optimization strategies for training. TNT (Han et al. 2021a)
leverages an inner block to model the pixel-wise interactions
within each patch, which merits in preserving more rich lo-
cal features. Our study in this paper introduces a general
framework, which aims to improve the inference efficiency
of various ViT backbones in an input-adaptive manner.

ViT Compression
Except to develop high-performing ViT models, the expen-
sive computation of a ViT model also arouses wide atten-
tion and methods are explored to facilitate ViT deployment.
Based on whether the inference is input-dependent, we em-
pirically categorize existing studies on compressing ViTs
into two groups below.

Static ViT Compression. This group mainly focuses
on reducing the network complexity through manually de-
signed modules with a fixed computational graph regard-
less of the input images. Inspired by the great success of
hierarchical convolutional neural networks in dense predic-
tion tasks such as segmentation and detection, recent ad-
vances (Heo et al. 2021; Liu et al. 2021; Pan et al. 2021b;
Yuan et al. 2021b; Wang et al. 2021a) introduce hierarchi-
cal transformers. Also, many others (Liu et al. 2021; Huang
et al. 2021; Fang et al. 2021; Yu et al. 2021) consider local
self-attention to reduce the complexity of traditional global
self-attention. Compared to these static methods using a
fixed computational graph, our CF-ViT, improves the infer-
ence efficiency by adaptively selecting an appropriate com-
putational path for each image.

Dynamic ViT Compression. In contrast to static ViT
compression, dynamic ViT adapts the computational graph
according to its input images (Han et al. 2021b). Some
works (Rao et al. 2021; Pan et al. 2021a; Liang et al. 2022;
Lin et al. 2022) attempt to dynamically prune these tokens
considered unimportant during inference. On the contrary,
Evo-ViT (Xu et al. 2022) chooses to preserve the unimpor-
tant tokens, which however, are assigned with a lower com-
putational budget for updating. Unlike these pruning-based
methods, our CF-ViT maintains the integrity of image infor-
mation and reinforces the inference efficiency by enlarging
the size of patches in uninformative regions, which leads to
fewer tokens. The rationale behind this is that uninformative
regions like background contribute less to the recognition
thus a fine-grained patch splitting is unnecessary. Note that,
the recent DVT (Wang et al. 2021c) endows a proper token
number for each input image by cascading three transform-
ers. Though meriting in inference acceleration, it inevitably
increases the storage overhead by 3×. Different from DVT,
our CF-ViT trains only one transformer that can accept dif-
ferent sizes of input tokens, and only conducts fine-grained
token splitting on informative regions rather than an entire
image. QuadTree (Tang et al. 2022a) also builds token pyra-

mids in a coarse-to-fine manner. However, QuadTree per-
forms coarse-to-fine splitting for all images while our CF-
ViT only performs fine splitting on “hard” images to further
reduce computation cost.

Preliminaries
Vision Transformer(ViT) (Dosovitskiy et al. 2020) splits a
2D image into flattened 2D patches and uses an linear pro-
jection to map patches into tokens, a.k.a. patch embeddings.
Besides, an extra [class] token, which represents the global
image information, is appended as well. Moreover, all to-
kens are added with a learnable positional embedding. Thus,
the input token sequence of a ViT model is:

X0 = [x0
0;x

1
0; ...;x

N
0 ] +Epos, (1)

where xi
0 ∈ RD is a D-dimensional token of the i-th patch

if i > 0, and [class] token if i = 0. The Epos and N are the
position embedding and patch number.

A ViT model V contains K sequentially stacked encoders,
each of which consists of a self-attention (SA) module1 and
a feed-forward network (FFN). In SA of the k-th encoder,
the token sequence Xk−1 is projected into a query matrix
Qk ∈ R(N+1)×D, a key matrix Kk ∈ R(N+1)×D, and a
value matrix Vk ∈ R(N+1)×D. Then, the self-attention ma-
trix Ak ∈ R(N+1)×(N+1) is computed as:

Ak = Softmax(
QkK

T
k√

D
) = [a0k;a

1
k; ...; a

N
k ]. (2)

The a0k ∈ R(N+1) is known as class attention, reflecting
the interactions between [class] token and other patch to-
kens. With Ak, the outputs of SA, i.e., AkVk, are sent to
FFN consisting of two fully-connected layers to derive the
updated tokens Xk = [x0

k;x
1
k; ...;x

N
k ]. The [class] token x0

k
is derived as:

x0
k = FFN(a0kVk). (3)

After a series of SA-FFN transformations, the [class] to-
ken x0

K from the K-th encoder is fed to the classifier to pre-
dict the category of the input.

ViT Complexity. Given that an image is split into N
patches, the computational complexity of SA and FFN
are (Xu et al. 2022):

O(SA) = 3ND2 + 2N2D,

O(FFN) = 8ND2.
(4)

We can see that the complexities of SA and FNN are re-
spectively quadratic and linear to N . Thus, ViT complexity
can be well reduced by decreasing the input patch (token)
number (Rao et al. 2021; Pan et al. 2021a; Liang et al. 2022;
Wang et al. 2021c), which is also the focus of this paper.

1SA has been replaced by multi-head self-attention (MHSA)
in most ViTs. For brevity, we simply discuss SA herein. Also, we
ignore the shortcut operation in Eq. (3).
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Coarse-to-Fine Vision Transformer
This section formally introduces our CF-ViT that decreases
the computational cost by reducing the input sequence
length. Our motive lies in two observations in Sec. : (1) The
coarse-grained patch splitting can well locate the informa-
tive objects as well. (2) Most images can be well recognized
by a ViT model in a small sequence length. These inspire
us to implement a ViT in a two-stage manner. As shown in
Fig. 3, the coarse inference stage implements image recog-
nition with a small length of token sequence. If not well rec-
ognized, the informative regions will be further split for a
fine-grained recognition. Details are given below.

Coarse Inference Stage
CF-ViT first performs a coarse splitting to recognize images
filled with “easy” regions. Also, it locates informative re-
gions for an efficient inference when meeting “hard” sam-
ples. At coarse stage, the input of our CF-ViT model V is:

Xc
0 = [x0

0;x
1
0; ...;x

Nc
0 ] +Ec

pos, (5)

where Nc is the number of coarse patches. Supposing V con-
tains K encoders, after SA-FFN transformations in Sec. , the
output token sequence of V is:

V(Xc
0) = [x0

K ;x1
K ; ...;xNc

K ]. (6)

Finally, the [class] token x0
K is fed to a classifier F to

obtain the coarse-stage category prediction distribution pc:

pc = F(x0
K) = [pc1, p

c
2, ..., p

c
n], (7)

where n denotes the category number. So far, we can obtain
the predicted category of the input as:

j = argmax
i

pci . (8)

We expect a large pcj since it serves as a prediction con-
fidence score at coarse inference stage where the compu-
tational cost is very cheap due to a small value of patch

number Nc. We introduce a threshold η to realize a trade-off
between performance and computation. In our implementa-
tion, if pcj ≥ η, the inference will terminate and we attribute
the input to category j. Otherwise, the input images might
contain “hard” regions undistinguished to the ViT model.
Thus, a more fine-grained patch splitting is urgent.

Informative Region Identification. The most naive solu-
tion is to further split all the coarse patches [x1

0;x
2
0; ...;x

Nc
0 ].

However, the drastically increasing tokens inevitably cause
severe computational costs. Instead, for an economical bud-
get, we propose to identify and then re-split these informa-
tive regions that are the most beneficial to the performance
increase. Thus, the key now lies in how to identify the infor-
mative patches.

Recall that, the class attention a0k ∈ Ak in Eq. (2) re-
flects the interactions between [class] token and other im-
age patch tokens in the k-th encoder. Besides, the [class]
token x0

k = FFN(a0kVk), which indicates that each item
(a0k)i models the weighted coefficient of the i-th token xi

0
to the performance. Therefore, it is natural to use the class
attention a0k as a score to indicate if a token is informative.
From Fig. 1(a), we can see that, the performance of preserv-
ing 100 highest-score patches usually outperforms that of
100 lowest-score patches. This demonstrates that class at-
tention can be a reliable measure. Nevertheless, we can also
observe the instability of class attention in the bottom layers,
such as the first encoder. To overcome it, we propose global
class attention that combines class attention across different
encoders using exponential moving average (EMA) to better
identify informative patches:

āk = β · āk−1 + (1− β) · a0k, (9)

where β = 0.99. The global class attention begins from the
4-th encoder and we select patches with high-score global
class attention in the last encoder āK .

Earlier studies (Liang et al. 2022; Xu et al. 2022) also
adopt class attention to indicate token importance. This pa-
per differs in two folds: (1) A comprehensive demonstration
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on high-score patches are given in Fig. 1(a). (2) We consider
the global class attention instead of class attention in a par-
ticular layer (Liang et al. 2022), efficacy of which is given
in Table. 4.

Fine Inference Stage
With the global class attention āK on hand, we continue to
perform a fine-grained splitting on informative patches when
the prediction in coarse stage pcj < η, which indicates an
indistinguishable input image.

To that effect, we pick up these coarse patches, attention
scores of which are within the top-αNc largest among the
Nc coarse patches, where α ∈ [0, 1] represents the rate of
informative patches. Then, as shown in Fig. 3, each infor-
mative patch is further split into 2 × 2 patches for better
representation in a finer granularity. Consequently, the patch
number after fine-grained splitting is:

Nf = 4⌈Ncα⌉+ ⌊Nc(1− α)⌋, (10)
where ⌈·⌉ and ⌊·⌋ respectively round up and round down
their inputs. It is intuitive that α provides a trade-off be-
tween accuracy and efficiency. The α = 0 indicates no fine
inference and results in the fewest patches. Though compu-
tationally economical, performance drops if the test set is
full of “hard” images. In contrast, α = 1 leads the fine in-
ference stage of our CF-ViT degenerates to traditional ViT
models (Jiang et al. 2021; Touvron et al. 2021a). In this case,
the computational cost is extraordinarily expensive. For a
trade-off, we set α to 0.5 in our implementation.

Feature Reuse. After re-splitting of each input image, the
input token sequence at fine inference stage of our CF-ViT
becomes:

X̃f
0 = [x0

0; x̃
1
0; ...; x̃

Nf

0 ] +Ef
pos. (11)

Suppose that an informative patch xi
0 in Eq. (5) is further

split into 2×2 patches in Eq. (11), which offer a finer granu-
larity. Nevertheless, they also cut off the integrity of the local
patch xi

0. To solve this, we also devise a feature reuse mod-
ule to inject the information of xi

0 into the four fine-grained
patches.

Fig. 4 illustrates our feature reuse. It takes the output to-
ken sequence from coarse stage as input. Similar to FNN,
the input will be processed by an MLP layer first to allow
a flexible transformation. Then, these transformed tokens
are reshaped and each of them is copied 4×. Further, these
tokens corresponding to fine-grained splitting patches are
picked up as the output of feature reuse module, denoted as
Xr = FR([x1

K ;x2
K ; ...;xNc

K ]). We do not consider reusing
[class] token and uninformative tokens by zeroing out them,
since we empirically find them unbeneficial to the perfor-
mance as verified in Table. 5. Finally, we shortcut Xr to the
re-split token sequence X̃f

0 in Eq. (11) as the final input of
our CF-ViT model V at fine inference stage. Consequently,
the output of V is:

V(X̃f
0 +Xr) = [x̃0

K ; x̃1
K ; ...; x̃

Nf

K ]. (12)
Finally, the [class] token x̃0

K is fed to the same classifier
F to obtain the fine-stage category prediction distribution
pf :

pf = F(x0
K) = [pf1 , p

f
2 , ..., p

f
n]. (13)

Model η
Top-1 Acc. FLOPs Throughput

(%) (G) (img./s)
DeiT-S - 79.8 4.6 2601
CF-ViT 0.5 79.8(+0.0) 1.8(↓ 61%) 4903(↑1.88×)
CF-ViT 0.75 80.7(+0.9) 2.6(↓ 43%) 3701(↑1.32×)
CF-ViT 1.0 80.8(+1.0) 4.0(↓ 13%) 2760(↑1.06×)

LV-ViT-S - 83.3 6.6 1681
CF-ViT 0.63 83.3(+0.0) 3.1(↓ 53%) 3393(↑2.01×)
CF-ViT 0.75 83.5(+0.2) 4.0↓ 39%) 2827(↑1.68×)
CF-ViT 1.0 83.6(+0.3) 6.1(↓ 7%) 2022(↑1.31×)

Table 2: Comparison between CF-ViT and its backbones.

Training Strategy
During the training of our CV-ViT, we set the confidence
threshold η = 1, which means the fine inference stage will
be always executed for every input image. On the one hand,
we expect the fine-grained splitting can well fit the ground
truth label y for an accurate prediction of the input. On the
other hand, we expect the coarse-grained splitting obsesses
a similar output with that of fine-grained splitting such that
most input can be well recognized at coarse inference stage,
which indicates less computational cost. Consequently, the
training loss of our CF-ViT is given below:

loss = CE(pf ,y) +KL(pc,pf ), (14)

where CE(·, ·) and KL(·, ·) respectively represent the cross
entropy loss and Kullback-Leibler divergence.

During the inference of our CV-ViT, by varying the value
of η, we can obtain a trade-off between computational bud-
get and accuracy performance. A large η means more inputs
will be sent to fine inference stage, which indicates better
performance but more computational cost, and vice versa.

Experiments
Implementation Details
For ease of comparison, following existing studies on
ViT (Rao et al. 2021; Liang et al. 2022; Tang et al. 2022b;
Xu et al. 2022), we build our CF-ViT with DeiT-S (w/o dis-
tillation) (Touvron et al. 2021a) and LV-ViT-S (Jiang et al.
2021) as backbone networks, all of which split each image
into 14× 14 = 196 patches. To show the advantages of our
CF-ViT, we conduct the experiments on ImageNet (Deng
et al. 2009) from two perspectives: (1) Each input image is
split into 7× 7 (Nc = 49) patches at coarse inference stage,
leading to a total of Nf = 124 patches at fine inference
stage according to Eq. (10). As results, the computation of
our CF-ViT is much cheaper than its backbones due to its
less split patches. (2) The image patches number at coarse
inference stage is changed to 9 × 9, leading to 204 patches
at fine inference stage, which maintains similar FLOPs with
the backbones. For a clearer presentation, CF-ViT is denoted
as CF-ViT∗ in this case.

All training settings of our CF-ViT, such as image pro-
cessing, learning rate, etc, are to follow these of DeiT and
LV-ViT. In the training phase, only conducting the fine-
grained splitting at informative regions would affect the con-

7046



Vision Transformer

Vision Transformer

𝑭𝑹

MLP

… Reshape

Zero
Padding

Informative
Token Selection

Upsample

Flatten and Insert 
zero-padding
[class] token …

1

2

9

…

0

1

2

9

…

0

෩𝟏

෩𝟐

෪𝟐𝟏

0

Figure 4: Illustration of our feature reuse module. An MLP is firstly introduced for a flexible transformation among token
sequences from coarse stage. Then, four copies of each token are executed as an upsampling strategy and these areas corre-
sponding to fine-grained splitting patches are selected to shortcut to the fine-grained token sequence.

vergence. Therefore, we split the entire image into fine-
grained patches in the first 200 epochs, and select informa-
tive coarse patches for fine-grained splitting in the remaining
training process. Our CF-ViT model is trained on a work-
station with 4 A100 GPUs. Notably, both coarse stage and
fine stage share the same network parameters. Due to differ-
ent sizes of patches between coarse stage and fine stage, we
downsample the coarse patches to the shape of fine-grained
patches in order to facilitate sharing parameters in the patch
embedding layer.

Experimental Results
Model Efficiency. To demonstrate our model efficiency, we
conduct comparisons between our CF-ViT and its back-
bones. The measurement metrics include top-1 classification
accuracy, model FLOPs and model throughput. Following
existing studies (Wang et al. 2021c; Liang et al. 2022), the
model throughput is measured as the number of processed
images per second on a single A100 GPU. We feed the
model 50,000 images in the validation set of ImageNet with
a batch size of 1,024, and record the total inference time.
Then, the throughput is computed as 50,000

total inference time .
Table 2 displays the comparison results with varying val-

ues of threshold η which balances accuracy and efficiency as
discussed in Sec. . It can be observed that when maintaining
the same accuracy with the backbone, CF-ViT significantly
reduces model FLOPs of DeiT-S by 61% and LV-ViT-S by
53%. Consequently, our CF-ViT obtains a great power to
process images, leading to 1.88× throughput improvements
over DeiT-S and 2.01× over LV-ViT-S. The supreme effi-
ciency is attributed to our design of informative region iden-
tification which further splits only informative patches in the
coarse stage. Besides, with a larger η, our CF-ViT manifests
not only FLOPs and throughput, but better top-1 accuracy.
When η = 1 which indicates all the input are sent to fine
inference stage, our CF-ViT significantly increases the per-
formance of DeiT-S by 1.0% and LV-ViT-S by 0.3%. These

Model Top-1 Acc.(%) FLOPs(G)
DeiT-S

Baseline (Touvron et al. 2021a) 79.8 4.6
DynamicViT (Rao et al. 2021) 79.3 2.9

IA-RED2 (Pan et al. 2021a) 79.1 3.2
PS-ViT (Tang et al. 2022b) 79.4 2.6
EVIT (Liang et al. 2022) 79.5 3.0
Evo-ViT (Xu et al. 2022) 79.4 3.0
CF-ViT(η = 0.5)(Ours) 79.8 1.8

CF-ViT(η = 0.75)(Ours) 80.7 2.6
LV-ViT-S

Baseline (Jiang et al. 2021) 83.3 6.6
DynamicViT (Rao et al. 2021) 83.0 4.6

EVIT (Liang et al. 2022) 83.0 4.7
SiT (Zong et al. 2022) 83.2 4.0

CF-ViT(η = 0.63)(Ours) 83.3 3.1
CF-ViT(η = 0.75)(Ours) 83.5 4.0

Table 3: Comparisons between existing token slimming
based ViT compression methods and our CF-ViT.

results well demonstrate that our CF-ViT can well maintain a
trade-off between model performance and model efficiency.

Comparison with Compressed Models. To demonstrate
the efficacy of our coarse-to-fine patch splitting in reduc-
ing model complexity, we further compare our CF-ViT with
recent studies on compressing ViT models, including token
slimming compression and early-exiting compression.

(1) Token slimming compression reduces the complex-
ity of ViT models by reducing the number of input tokens
(patches), which is also the focus of this paper. Table 3
shows the comparison with existing token slimming based
ViT compression methods, including DynamicViT (Rao
et al. 2021), IA-RED2 (Pan et al. 2021a), PS-ViT (Tang
et al. 2022b), EViT (Liang et al. 2022), Evo-ViT (Xu et al.
2022) and SiT (Zong et al. 2022). We report top-1 accu-
racy and FLOPs for performance evaluation. Results with
DeiT-S and LV-ViT-S as backbones indicate that our CF-
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Figure 5: Comparison between our CF-ViT and exist-
ing early-exiting methods. MSDNet (Huang et al. 2018)
and RANet (Yang et al. 2020) are CNN-based models.
DVT (Wang et al. 2021c) and CF-ViT are built upon DeiT.

ViT outperforms previous methods w.r.t. accuracy perfor-
mance and FLOPs reduction. For example, CF-ViT signifi-
cantly reduces the FLOPs of DeiT-S to 1.8G FLOPs without
any compromise on accuracy performance, while the per-
formance of recent advance, Evo-ViT, has only 79.4% with
much heavy FLOPs burden of 3.0G. Similar results can be
observed when using LV-ViT-S as the backbone.

(2) Early-exiting compression stops the inference if the
intermediate representation of an input satisfies a particular
criterion, which is also considered in the coarse inference
stage of our CF-ViT where the computational graph stops
if the prediction confidence pcj exceeds the threshold η. In
Fig. 5, we further compare with the early-exiting methods,
including CNN-based models such as MSDNet (Huang et al.
2018) and RANet (Yang et al. 2020), as well as transformer-
based models such as DVT (Wang et al. 2021c). For fair
comparison, both DVT and our CF-ViT are constructed
upon DeiT-S as the backbone. From Fig. 5, two phenom-
ena can be observed: (1) Transformer-based models usu-
ally show supreme performance over CNN-based methods
under similar FLOPs consumption. (2) Our CF-ViT con-
sistently results in best accuracy than DVT that cascades
multiple ViTs with an increasing token number. In contrast,
our CF-ViT implements fine-grained splitting only for the
informative regions, leading to an overall reduction in to-
kens. Thus, with similar accuracy, CF-ViT manifests smaller
FLOPs consumption.

Comparison with SOTAs. Fig. 6 compares the accu-
racy and FLOPs trade-off of popular ViT models as well
as our CF-ViT built upon LV-ViT-S(Jiang et al. 2021).
The compared methods include DeiT (Touvron et al.
2021a), PVT (Wang et al. 2021a), CoaT (Xu et al. 2021),
CrossViT (Chen, Fan, and Panda 2021), Swin (Liu et al.
2021), T2T-ViT (Yuan et al. 2021b), CaiT (Touvron et al.
2021b), iFormers (Si et al. 2022), and EfficientNet (Tan and
Le 2019). It can be observed that CF-ViT is significantly
competitive in computation-accuracy trade-off among these

DeiT-SPVT-S

CrossViT-S
Swin-T

Coat-Lite-S
T2T-ViT-14

T2T-ViT-19

T2T-ViT-24

Swin-S

Swin-B

EfficientNet-B4

EfficientNet-B5

EfficientNet-B6

PVT-M

DeiT-B

CrossViT-B

LV-ViT-S

LV-ViT-M
LV-ViT-S@384

CaiT-S-24

CaiT-S-36 CaiT-S-48

Coat-Lite-M

3.5x

Figure 6: Comparison with popular ViT models. Our CF-
ViT is built upon LV-ViT-S.

Ablation Top-1 Acc.(%)
coarse fine

negative GCA 74.9 77.6
random 75.3 79.6

last class attention 75.3 80.3
Ours 75.5 80.8

Table 4: Performance comparison between our informa-
tive region identification and its variants. GCA means global
class attention.

baselines. For example, CF-ViT∗ achieves 84.1% accuracy
with 3.5× less FLOPs compared with the vanilla LV-ViT-M.

Ablation Study
We analyze the efficacy of each design in our CF-ViT, in-
cluding informative region identification, feature reuse and
early-exiting. To show the effectiveness of our designs, we
also compare our informative region identification and fea-
ture reuse with other alternatives. To show their necessity,
we remove each design individually and display the perfor-
mance. All ablation studies take DeiT-S as backbone.

Informative region identification. Three variants are de-
veloped to replace our informative region identification: (1)
Negative global class attention, which selects the regions
with smaller global class attention. (2) Random, which ran-
domly picks up regions for fine-grained. (3) Last class atten-
tion, which leverages the class attention in the last encoder.
We deactivate the early termination, and compare the per-
formance in Table 4. It is intuitive that the negative global
class attention results in the poorest performance since the
most informative are removed in this setting. This result is
in coincidence with the observation in Fig. 1(a). Our infor-
mative region identification considers the global class atten-
tion, leading to performance increase compared to this only
considering the last class attention, well demonstrating the
correctness of our motive to combine class attention across
different layers.

Feature Reuse. Our feature reuse leverages a MLP to pro-
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Ablation Top-1 Acc.(%)
coarse fine

w/o reuse 75.2 80.0
Ours + [class] token 75.4 80.2

Ours + uninformative tokens 75.4 80.6
MLP→Linear 75.3 80.6

Ours 75.5 80.8

Table 5: Performance comparison between our feature reuse
and its variants.

Figure 7: Performance analysis of removing each of the
three designs.

0.4 0.5(default) 0.6 0.7 0.8 0.9
Top1-Acc(%) 80.4 80.8 80.9 81.1 81.3 81.4

FLOPs(G) 3.7 4.0 4.4 4.7 5.1 5.5

Table 6: Accuracy and FLOPs with different values of α.

0 0.5 0.9 0.99(default) 0.999
Top1-Acc(%) 80.3 80.5 80.7 80.8 80.8

Table 7: Accuracy with different values of β.

cess the output image token in the coarse inference stage and
shortcuts them to the fine inference stage. Note that we do
not reuse the [class] token and uninformative tokens. Table 5
compares our feature reuse with three variants including: (1)
Integrating [class] token to our feature reuse. (2) Integrating
uninformative tokens to our feature reuse. (3) Replacing the
MLP with one single linear layer. From Table 5, we can see
that considering [class] token or uninformative tokens has a
negative impact on the performance. Besides, replacing the
MLP layer with a linear layer drops down the performance
from 80.8% to 80.6%. These results well demonstrate the
effectiveness of our design of feature reuse.

Necessity of each design. Fig. 7 plots the performance of
our CF-ViT by individually removing each design. Gener-
ally, we can observe that the removal of each component in-
curs severe performance drops. Thus, all three designs are
vital to the final performance of our CF-ViT. It is worth

Ablation Top-1 Acc.(%)
coarse fine

CE + CE 75.7 80.3
CE + KL(ours) 75.5 80.8

Table 8: Performance comparison between different loss
function.

Figure 8: No. of images correctly classified at coarse and
fine stages.

noting that, the one without informative region identifica-
tion split all the coarse-grained patches, leading to a drastic
increase of tokens. However, our informative identification
chooses to split only informative regions, which greatly re-
duces tokens and thus brings less computational cost.

Influence of α. Tab. 6 provides accuracy of fine inference
stage and FLOPs with different values of α

(
see Eq. 10

)
.

We can see that from Tab. 6 that, a larger α leads to better
accuracy but more FLOPs consumption. In this paper, we
set α as 0.5 for a accuracy-FLOPs trade-off.

Influence of β. Tab. 7 provides accuracy of fine inference
stage with different values of β

(
see Eq. 9

)
. It is intuitive

that β indicates the weight of attention from the shallow en-
coder. The β = 0 indicates that only the class attention from
the last encoder is used. We set β = 0.99 as default for its
optimal performance.

Influence of loss function. As shown in Eq. (14), we use
CE(·, ·) to make the output of fine stage fit the truth label,
and use KL(·, ·) to make the output of coarse stage fit the
output of fine stage. We also try to make the output of coarse
stage and the output of fine stage both fit the truth label:

ˆloss = CE(pf ,y) + CE(pc,y), (15)

As show in Tab. 8, compare with origin CE+KL
(
Eq. (14)

)
,

CE+CE
(
Eq. (15)

)
implement cause slightly benefit (+0.2%)

in coarse inference stage but more degradation (-0.5%) in
fine inference stage. We choose Eq. (14) as the loss function
because of the significant benefits in fine inference stage.

Visualization
In Fig. 9, we illustrate some images that are correctly rec-
ognized at coarse inference by CF-ViT(DeiT-S), as well as
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Figure 9: Illustration of images correctly classified at coarse stage and fine stage. For fine stage, we visualize the regions selected
by our informative region identification (grey boxes) indicate the uninformative patches.

some recognized at fine inference stage. For a better illus-
tration, we only visualize informative regions if images are
recognized at fine inference stage. We can observe an overall
trend that images well classified at coarse stage are mostly
filled with “easy” regions. Consequently, a coarse-grained
splitting can well tell the categories of these images. On
the contrary, these containing complex scenes and obscure
objects require to be further split for a correct recognition,
which is realized at fine stage. Besides, the selected regions
by our informative region identification mostly locate the
target objects. In Fig. 8, we also show some statistics w.r.t.
the number of images correctly classified at coarse stage
and fine stage. By adjusting the threshold η, CF-ViT models
can be obtained with different computational budgets. With
a larger η, more images will be further split and fed to fine
inference stage for recognition. Therefore, the increasing η
brings about more computational cost and the number of im-
ages correctly classified at fine stage also increases.

Conclusion
This paper focuses on reducing the redundant input tokens
for accelerating vision transformers. Specially, we proposed
a coarse-to-fine vision transformer (CF-ViT), the inference
of which is two-fold including a coarse inference stage and a
fine inference stage. The former splits the input image into a
small-length token sequence to recognize these images filled
with “easy” regions in a computationally economical man-
ner while the latter further splits the informative patches for
a better recognition if the coarse inference does not well
classify the input. Extensive experiments indicate that our
CF-ViT can achieve a better trade-off between performance
and efficiency. Furthermore, transferring the coarse-to-fine

inference paradigm to dense prediction tasks such as object
detection and semantic segmentation will be included in our
future work.
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