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Abstract

Triplet learning, i.e. learning from triplet data, has attracted
much attention in computer vision tasks with an extremely
large number of categories, e.g., face recognition and per-
son re-identification. Albeit with rapid progress in design-
ing and applying triplet learning algorithms, there is a lack-
ing study on the theoretical understanding of their general-
ization performance. To fill this gap, this paper investigates
the generalization guarantees of triplet learning by leverag-
ing the stability analysis. Specifically, we establish the first
general high-probability generalization bound for the triplet
learning algorithm satisfying the uniform stability, and then
obtain the excess risk bounds of the order O(n− 1

2 logn) for
both stochastic gradient descent (SGD) and regularized risk
minimization (RRM), where 2n is approximately equal to the
number of training samples. Moreover, an optimistic general-
ization bound in expectation as fast as O(n−1) is derived for
RRM in a low noise case via the on-average stability analy-
sis. Finally, our results are applied to triplet metric learning
to characterize its theoretical underpinning.

Introduction
As two popular paradigms of machine learning, data-driven
algorithms with pointwise loss and pairwise loss have been
widely used to find the intrinsic relations from empirical
observations. In the algorithmic implementation, the for-
mer (called pointwise learning) often aims to minimize the
empirical risk characterized by the divergence between the
predicted output and the observed response of each input
(Vapnik 1998; Cucker and Smale 2001; Poggio et al. 2004),
while the latter (called pairwise learning) usually concerns
the model performance associated with pairs of training in-
stances, see e.g., ranking (Agarwal and Niyogi 2009) and
metric learning (Xing et al. 2002; Ying and Li 2012).

Despite enjoying the advantages of feasible implemen-
tations and solid foundations, pointwise learning and pair-
wise learning may face a crucial challenge for learn-
ing tasks with an extremely large number of categories.
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Such learning scenarios appear in face recognition (Schroff,
Kalenichenko, and Philbin 2015; Ding and Tao 2018), per-
son re-identification (Ustinova and Lempitsky 2016; Cheng
et al. 2016; Xiao et al. 2016), image retrieval (Lai et al. 2015;
Huang et al. 2015) and other individual level fine-grained
tasks (Wohlhart and Lepetit 2015; Simo-Serra et al. 2015).
As illustrated in Yu et al. (2018), the traditional learning
model is difficult to achieve good performance in the set-
ting of an extremely large number of categories since its
parameters will increase linearly with the number of cate-
gories. To surmount this barrier, many triplet learning algo-
rithms are formulated by injecting triplet loss function into
the metric learning framework (Schroff, Kalenichenko, and
Philbin 2015; Ustinova and Lempitsky 2016; Cheng et al.
2016; Xiao et al. 2016; Ding and Tao 2018). For triplet met-
ric learning (Schroff, Kalenichenko, and Philbin 2015; Ge
et al. 2018), the implementation procedures mainly include:
1) Constructing triplets associated with anchor sample, posi-
tive sample and negative sample; 2) Designing margin-based
empirical risk associated with triplet loss; 3) Learning met-
ric space transformation rule via empirical risk minimiza-
tion (ERM), which aims to minimize intra-class distance
and maximize inter-class distance simultaneously. However,
the triplet characteristic often leads to a heavy computa-
tional burden for large-scale data. Recently, stochastic gra-
dient descent (SGD) is employed for deploying triplet learn-
ing algorithms due to its low time complexity (Schroff,
Kalenichenko, and Philbin 2015; Ge et al. 2018). Although
there has been significant progress in designing and apply-
ing triplet learning algorithms, little work has been done to
recover their generalization guarantees from the lens of sta-
tistical learning theory (SLT) (Vapnik 1998).

The generalization guarantee of learning algorithm is the
core of SLT, which evaluates the prediction ability in the
unseen inputs (Vapnik 1998; Cucker and Zhou 2007). In
a nutshell, there are three branches of generalization anal-
ysis including uniform convergence approaches associated
with hypothesis space capacity (e.g., VC dimension (Vap-
nik 1998), covering numbers (Cucker and Zhou 2007; Chen
et al. 2017), Rademacher complexity (Bartlett and Mendel-
son 2001)), operator approximation technique (Smale and
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Zhou 2007; Rosasco, Belkin, and Vito 2010), and algorith-
mic stability analysis (Bousquet and Elisseeff 2002; Elisse-
eff, Evgeniou, and Pontil 2005; Shalev-Shwartz et al. 2010).
It is well known that the stability analysis enjoys nice prop-
erties on flexibility (independent of the capacity of hypoth-
esis function space) and adaptivity (suiting for rich learning
scenarios, e.g., classification and regression (Hardt, Recht,
and Singer 2016), ranking (Agarwal and Niyogi 2009), and
adversarial training (Xing, Song, and Cheng 2021)). Re-
cently, besides learning algorithms based on ERM and reg-
ularized risk minimization (RRM), generalization and sta-
bility have been understood for SGD of pointwise learning
(Hardt, Recht, and Singer 2016; Roux, Schmidt, and Bach
2012; Fehrman, Gess, and Jentzen 2020; Lei, Hu, and Tang
2021) and pairwise learning (Lei, Ledent, and Kloft 2020;
Arous, Gheissari, and Jagannath 2021; Lei, Liu, and Ying
2021). While the existing extensive works on stability anal-
ysis, to our best knowledge, there is no related result of SGD
and RRM for triplet learning.

To fill the above gap, this paper aims to provide stability-
based generalization analysis for a variety of triplet learning
algorithms. We establish generalization bounds for SGD and
RRM with triplet loss, which yield comparable convergence
rates as pointwise learning (Feldman and Vondrák 2019) and
pairwise learning (Lei, Ledent, and Kloft 2020) under mild
conditions. The main contributions of this paper are summa-
rized as follows.

• Generalization by algorithmic stability for triplet learn-
ing. After introducing a new definition of triplet uniform
stability, we establish the first general high-probability
generalization bound for triplet learning algorithms sat-
isfying uniform stability, motivated by the recent analy-
sis for pairwise learning (Lei, Ledent, and Kloft 2020).
Especially, the current analysis just requires the uniform
stability of the triplet learning algorithm and the bound-
edness of loss function in expectation.

• Generalization bounds for triplet SGD and triplet RRM.
Generalization properties are characterized for SGD
and RRM of triplet learning when the loss function is
(strongly) convex, L-Lipschitz and α-smooth. Particu-
larly, the derived excess risk bounds are with the decay
rate O(n−

1
2 logn) as n+ � n− � n, where n+ and n−

are the numbers of positive samples and negative sam-
ples, respectively. Moreover, for the strongly convex loss
function, the refined generalization bound with the order
O(n−1) is derived for RRM by leveraging the triplet on-
average stability. To the best of our knowledge, these re-
sults are the first generalization bounds of SGD and RRM
for triplet learning.

Related Work
In this section, we briefly review the related works on triplet
learning and algorithmic stability.

Triplet Learning. The main purpose of deep metric
learning is to directly learn a feature representation vec-
tor from input data with the help of deep neural networks.
Bromley et al. (1993) found that the relationship between
samples can be measured by the difference between the

corresponding embedded vectors, and some deep metric
learning models have been subsequently proposed (Chopra,
Hadsell, and LeCun 2005; Hadsell, Chopra, and LeCun
2006). Later, Schroff, Kalenichenko, and Philbin (2015) pro-
posed the FaceNet by integrating the idea of triplet learn-
ing (Schultz and Joachims 2003; Weinberger, Blitzer, and
Saul 2005) and deep metric learning together. In contrast
to the previous approaches, FaceNet directly trains its out-
put to be a compact 128-D embedding vector using a triplet
loss function based on large margin nearest neighbor (Wein-
berger, Blitzer, and Saul 2005), and it is implemented by
employing the SGD strategy. Encouraged by the impressive
performance of FaceNet, lots of learning algorithms with
triplet loss have been formulated in the computer version
field (Cheng et al. 2016; Xiao et al. 2016; Ustinova and
Lempitsky 2016; Liu et al. 2016; Ramanathan et al. 2015;
Ding and Tao 2018). Although there have been significant
works on designing triplet metric learning algorithms, our
theoretical understanding of their generalization ability falls
far below the experimental validations.

Generalization and Algorithmic Stability. In SLT, uni-
form convergence analysis focuses on bounding the uni-
form deviation between training error and testing error over
hypothesis space (Vapnik 1998; Cucker and Smale 2001;
Bartlett and Mendelson 2001; Wang et al. 2020; Chen et al.
2021), and operator approximation approach is inspired by
functional analysis theory (Smale and Zhou 2007; Rosasco,
Belkin, and Vito 2010). Indeed, the former depends on the
capacity of hypothesis space (e.g., VC dimension (Vap-
nik 1998), covering numbers (Cucker and Zhou 2007),
Rademacher complexity (Bartlett and Mendelson 2001)),
and the latter is limited to some special models enjoying op-
erator representation (e.g., regularized least squares regres-
sion (Smale and Zhou 2007), regularized least squares rank-
ing (Chen 2012)). Different from the above routes, algorith-
mic stability is described by the gap among training errors
of different training sets, which is dimension-independent
and enjoys adaptivity for wide learning models. The con-
cept of algorithmic stability can be put forward as early as
the 1970s (Rogers and Wagner 1978), and its learning theo-
retical framework was established in Bousquet and Elisseeff
(2002) and Elisseeff, Evgeniou, and Pontil (2005). In essen-
tial, the algorithmic uniform stability is closely related to
the learnability (Poggio et al. 2004; Shalev-Shwartz et al.
2010). For the pointwise learning setting, the stability-based
generalization guarantees have been stated in terms of uni-
form stability (Hardt, Recht, and Singer 2016; Foster et al.
2019), on-average stability (Kuzborskij and Lampert 2018;
Lei and Ying 2021), local elastic stability (Deng, He, and
Su 2021) and argument stability (Bassily et al. 2020; Lei
and Ying 2020; Liu et al. 2017). For the pairwise learning
setting, there are fine-grained analyses on the generaliza-
tion and stability of SGD and RRM (Shen et al. 2019; Lei,
Ledent, and Kloft 2020; Lei, Liu, and Ying 2021). Due to the
space limitation, we further summarize different definitions
and properties of algorithmic stability in Supplementary Ma-
terial C. Along this line of the above corpus, it is natural to
investigate the generalization bounds of triplet learning by
algorithmic stability analysis.
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Preliminaries
This section introduces the necessary backgrounds on triplet
learning and algorithmic stability. The main notations used
in this paper are stated in Supplementary Material A.

Triplet Learning
Let X+,X− ⊂ Rd are two d-dimensional input spaces
and Y ⊂ R is an output space. We give the training set
S := {z+

i := (x+
i , y

+
i )}n+

i=1 ∪ {z
−
j := (x−j , y

−
j )}n−j=1 ∈ Z

with Z := Zn+

+ ∪Zn−− , where each positive sample z+
i and

negative sample z−j are drawn independently from Z+ :=
X+×Y andZ− := X−×Y , respectively. Note that there are
likely more than two classes in positive and negative sample
spaces. Given empirical observation S, triplet learning algo-
rithms usually aim to find a model hw : X+×X+×X− → R
such that the expectation risk

R(w) := Ez+,z̃+,z−`(w; z+, z̃+, z−) (1)

is as small as possible. Here the model parameter w ∈ W
with d′-dimensional parameter spaceW ⊆ Rd′ , Ez denotes
the conditional expectation with respect to (w.r.t.) z, and the
triplet loss function ` : W × Z+ × Z+ × Z− → R+ is
used to measure the difference between model’s prediction
and corresponding real observation. Since the intrinsic dis-
tributions generating z+ and z− are same and unknown, it
is impossible to implement triplet learning by minimizing
the objective R(w) directly. Naturally, we consider the cor-
responding empirical risk of (1) defined as

RS(w) :=
1

n+(n+ − 1)n−

∑
i,j∈[n+],i 6=j,

k∈[n−]

`(w; z+
i , z

+
j , z

−
k )

(2)
for algorithmic design, where [n] := {1, ..., n}. Clearly,
the triplet learning algorithms, built from RS(w) in (2),
are much more complicated than the corresponding ones in
pointwise learning and pairwise learning.

In the sequel, for the given algorithm A and the training
data S, we denote the corresponding output model param-
eter as A(S) for feasibility. In triplet learning, we usually
build predictors by optimizing the models measured by the
empirical risk RS(A(S)) or its variants. However, the nice
empirical performance of learning model does not guaran-
tee its effectiveness in unseen observations. In SLT, it is mo-
mentous and fundamental to bound generalization error, i.e.
R(w) − RS(w), since it characterizes the gap between the
population risk R(w) and its empirical estimator RS(w).
Despite the existing rich studies for pointwise learning and
pairwise learning, the generalization bound of triplet learn-
ing is rarely touched in the machine learning community. In
this paper, we pioneer the generalization analysis of triplet
SGD and RRM to understand their learnability.

Triplet Algorithmic Stability
An algorithm A : Zn+

+ ∪ Zn−− → W is stable if the model
parameterA(S) is insensitive to the slight change of training
set S. Various definitions of algorithmic stability have been
introduced from different motivations (see Supplementary

Material C), where uniform stability and on-average sta-
bility are popular for studying the generalization bounds of
SGD and RRM (Hardt, Recht, and Singer 2016; Lin, Camo-
riano, and Rosasco 2016; Kuzborskij and Lampert 2018; Lei
and Ying 2021; Lei, Ledent, and Kloft 2020). Following this
line, we extend the previous definitions of uniform stability
and on-average stability to the triplet learning setting.
Definition 1. (Uniform Stability). Assume any training
datasets S = {z+

1 , ..., z
+
n+
, z−1 , ..., z

−
n−}, S̄ = {z̄+

1 , ..., z̄
+
n+
,

z̄−1 , ..., z̄
−
n−} ∈ Z

n+

+ ∪ Zn−− are differ by at most a single
sample. A deterministic algorithm A : Zn+

+ ∪ Zn−− →W is
called γ-uniformly stable if

sup
z+,z̃+∈Z+,

z−∈Z−

|`(A(S); z+, z̃+, z−)− `(A(S̄); z+, z̃+, z−)| ≤ γ

for any training datasets S, S̄ ∈ Zn+

+ ∪ Zn−− that differ by
at most a single sample.

Definition 1 coincides with the uniform stability defini-
tions for pointwise learning (Hardt, Recht, and Singer 2016)
and pairwise learning (Lei, Ledent, and Kloft 2020), except
for the triplet loss involving two sample spaces Z+ and Z−.
Definition 2. (On-average Stability). Let Si,j,k =
{z+

1 , ..., z
+
i−1, z̄

+
i , z

+
i+1, ..., z

+
j−1, z̄

+
j , z

+
j+1, ..., z

+
n+
, z−1 , ...,

z−k−1, z̄
−
k , z

−
k+1, ..., z

−
n−}, i, j ∈ [n+], i 6= j, k ∈ [n−]. A

deterministic algorithm A : Zn+

+ ∪ Zn−− → W is called
γ-on-average stable if

1

n+(n+ − 1)n−

∑
i,j∈[n+],i 6=j,

k∈[n−]

ES,S̄
[
`(A(Si,j,k); z+

i , z
+
j , z

−
k )

− `(A(S); z+
i , z

+
j , z

−
k )
]
≤ γ.

Compared with the existing ones for pointwise learning
(Kuzborskij and Lampert 2018) and pairwise learning (Lei,
Ledent, and Kloft 2020; Lei, Liu, and Ying 2021), Definition
2 considers much more complicated perturbations of train-
ing set S involving three samples. Definition 2 takes the ex-
pectation over S and S̄, and takes the average over perturba-
tions, which is weaker than the uniform stability described
in Definition 1.

Main Results
This section states our main results on generalization bounds
for triplet learning by stability analysis. We show a gen-
eral high-probability generalization bound of triplet learn-
ing algorithms firstly, and then apply it to two specific algo-
rithms, i.e. SGD and RRM. Finally, the on-average stability
is employed for getting an optimistic generalization bound
of RRM in expectation. All the proofs are provided in Sup-
plementary Material B due to the space limitation.

Similar with the previous analyses (Hardt, Recht, and
Singer 2016; Lei, Ledent, and Kloft 2020), our results are
closely related to the following properties of triplet loss
function.
Definition 3. For a triplet loss function ` : W × Z+ ×
Z+ × Z− → R+, denote by ∇`(w) := ∇`(w; z+, z̃+, z−)
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its gradient w.r.t. the model parameter w ∈ W and denote
by ‖ · ‖ a norm on an inner product space which satisfies
‖ · ‖2 = 〈·, ·〉. Let σ ≥ 0 and L,α > 0.

1) The triplet loss ` is σ-strongly convex if, for all w,w′ ∈
W ,

`(w) ≥ `(w′) + 〈∇`(w′), w − w′〉+
σ

2
‖w − w′‖2.

2) The triplet loss ` is L-Lipschitz if
|`(w)− `(w′)| ≤ L‖w − w′‖, ∀w,w′ ∈ W .

3) The triplet loss ` is α-smooth if
‖∇`(w)−∇`(w′)‖ ≤ α‖w − w′‖, ∀w,w′ ∈ W .

When σ = 0, ` is convex which also implies that
∇2`(w; z+, z̃+, z−) > 0. It is easy to verify that logistic
loss, least square loss and Huber loss are convex and smooth.
Meanwhile, we observe that hinge loss, logistic loss and Hu-
ber loss are convex and Lipschitz (Hardt, Recht, and Singer
2016; Lei, Ledent, and Kloft 2020; Lei, Liu, and Ying 2021).

Stability-based Generalization Bounds
This subsection establishes the connection between uniform
stability and generalization with high probability for triplet
learning. Although rich results on the relationship between
stability and generalization, the previous results do not hold
directly for triplet learning due to its complicated loss struc-
ture. This difficulty is tackled by implementing much more
detailed error decomposition and developing the analysis
technique of Lei, Ledent, and Kloft (2020).
Lemma 1. If A : Zn+

+ ∪ Zn−− → W is γ-uniformly stable,
for any S, S̄, we have
|`(A(S); z+, z̃+, z−)− `(A(Si,j,k); z+, z̃+, z−)| ≤ 3γ

for all z+, z̃+ ∈ Z+, z
− ∈ Z−, where S, S̄, Si,j,k is defined

in Definition 2 for any i, j ∈ [n+], i 6= j, k ∈ [n−].
Lemma 1 illustrates that an upper bound of the change

of the loss function still exists even after changing multiple
samples of the training set. Here, the upper bound 3γ re-
flects the sensitivity of triplet learning w.r.t. the perturbation
of training data.

It is a position to state our first general generalization
bound with high probability for the uniformly stable triplet
learning algorithm A. Detailed proof can be found in Sup-
plementary Material B.1.
Theorem 1. Assume that A : Zn+

+ ∪ Zn−− → W is γ-
uniformly stable. Let constant M > 0 and, for all z+, z̃+ ∈
Z+ and z− ∈ Z−, let |ES`(A(S); z+, z̃+, z−)| ≤M . Then,
for all δ ∈ (0, 1/e), we have

|RS(A(S))−R(A(S))|

≤ 6γ + e

(
8M
( 1
√
n−

+
2√

n+ − 1

)√
log(e/δ)

+24
√

2γ
(
dlog2(n−(n+ − 1)2)e+ 2

)
log(e/δ)

)
with probability 1− δ, where dne denotes the minimum inte-
ger no smaller than n and e denotes the base of the natural
logarithm.

Remark 1. Theorem 1 demonstrates the generalization per-
formance of triplet learning depends heavily on the sam-
ple numbers n+, n− and the stability parameter γ, which
extends the Theorem 1 of Lei, Ledent, and Kloft (2020)
for pairwise learning to the triplet learning setting. Denote
x � y as ay < x ≤ by for some constants a, b > 0. In
particular, when n+ � n− � n, the high-probability bound
in Theorem 1 can be rewritten as O(n−

1
2 + γlogn), which

is comparable with the previous analyses (Lei, Ledent, and
Kloft 2020; Lei, Liu, and Ying 2021).

Generalization Bounds for SGD
Let w1 ∈ W and let∇`(w) be the subgradient of triplet loss
` w.r.t. the argument w. For triplet learning by SGD, at the
t-th iteration, we draw (it, jt, kt) randomly and uniformly
over {(it, jt, kt) : it, jt ∈ [n+], it 6= jt, kt ∈ [n−]}, and
update the model parameter wt by

wt+1 = wt − ηt∇`(wt; z+
it
, z+
jt
, z−kt), (3)

where {ηt}t is a sequence of step sizes.
To apply Theorem 1, we need to bound the uniform sta-

bility parameter of (3). Denote by I[·] the indicator function
which takes 1 if the situation in the brackets is satisfied and
takes 0 otherwise.
Lemma 2. Assume that S, S̄ ∈ Zn+

+ ∪ Zn−− are different
only in the last positive sample (or negative sample). Sup-
pose `(w; z+, z̃+, z−) is convex, α-smooth and L-Lipschitz
w.r.t. ‖ · ‖, ∀z+, z̃+ ∈ Z+, z

− ∈ Z−. If ηt ≤ 2/α, then SGD
in (3) with t-th iteration is γ-uniformly stable, where

γ ≤2L2
t∑
l=1

ηlI
[
(il = n+ or jl = n+, il 6= jl, kl ∈ [n−], z+

n+

6= z̄+
n+

) or (il, jl ∈ [n+], il 6= jl, kl = n−, z
−
n− 6= z̄−n−)

]
.

In Lemma 2, we just consider the perturbation on the last
positive (or negative) sample without loss of generality. The
above uniform stability bound of SGD involves an indicator
function associated with S and S̄, which is nonzero only
when different triplets are used.

Now we state the generalization bounds for SGD (3). The
proof is present in Supplementary Material B.2.
Theorem 2. Let the loss function `(w; z+, z̃+, z−) is con-
vex, α-smooth and L-Lipschitz for all z+, z̃+ ∈ Z+, z

− ∈
Z− and |ES`(wT ; z+, z̃+, z−)| ≤ M , where wT is pro-
duced by SGD (3) with ηt ≡ c/

√
T and constant c ≤ 2/α.

For any δ ∈ (0, 1/e), with probability 1− δ we have

|RS(wT )−R(wT )|

=O

((
dlog(n−(n+ − 1)2)e+ 2

)
log(1/δ)

(√ log(1/δ)

max{ Tn+
, Tn− }

+ 1
)(√T

n+
+

√
T

n−

)
+
( 1
√
n−

+
1√

n+ − 1

)√
log(1/δ)

)
.

Remark 2. Theorem 2 demonstrates that the generalization
error of (3) relies on the numbers of positive and negative
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Algorithm Reference
Assumptions

Tool Convergence
rateConvex Lipschitz Smooth

SGD (N)
Hardt, Recht, and Singer (2016)

√ √ √ Uniform
stability O(n−

1
2 )

Lei and Ying (2020)
√

×
√ On-average

model stability O(n−1)

SGD (NN)

Lei, Ledent, and Kloft (2020)
√ √ √ Uniform

stability ∗O(n−
1
2 logn)

Lei, Liu, and Ying (2021)
√

×
√ On-average

model stability O(n−1)

Lei, Liu, and Ying (2021)
√ √

× On-average
model stability O(n−

1
2 )

Yang et al. (2021)
√ √

× Uniform
stability O(n−

1
2 )

Yang et al. (2021)
√ √ √ Uniform

stability O(n−
1
2 )

SGD (NNH) Ours (n+ � n− � n)
√ √ √ Uniform

stability ∗O(n−
1
2 logn)

Table 1: Summary of stability-based generalization analyses of SGD in the setting of convexity (N-pointwise; NN-pairwise;
NNH-triplet;

√
-the reference has such a property; ×-the reference hasn’t such a property; ∗-high-probability bound).

training samples (i.e. n+, n−) and the iterative steps T . Our
result also uncovers that the balance of positive and nega-
tive training samples is crucial to guarantee the generaliza-
tion of triplet learning algorithms. When n+ � n− � n,
we get the high-probability bound |RS(wT ) − R(wT )| =

O(n−
1
2 logn), which is consistent with Theorem 4 in Lei,

Ledent, and Kloft (2020) for pariwise SGD.
Remark 3. Let w∗R = arg min

w∈W
R(w). We can deduce that

R(wT )−R(w∗R) =
(
R(wT )−RS(wT )

)
+
(
RS(wT )

−RS(w∗R)
)

+
(
RS(w∗R)−R(w∗R)

)
. (4)

As illustrated in previous studies (Bottou and Bousquet
2007; Lei, Ledent, and Kloft 2020; Lei and Ying 2020), the
first two terms in (4) are called the estimation error and op-
timization error, respectively. Theorem 2 guarantees the up-
per bound of estimation error withO(n−

1
2 logn) and Harvey

et al. (2019) states the upper bound of the optimization er-
ror with O(T−

1
2 logT ). The third term on the right side of

(4) can be bounded by Bernstein’s inequality for U-statistics
(Pitcan 2017), which is present in the following Lemma 3.
Lemma 3. Let b = supz+,z̃+,z− |`(w; z+, z̃+, z−)| and τ be
the variance of `(w; z+, z̃+, z−). Then, for any δ ∈ (0, 1),
with probability at least 1− δ we have

|RS(w)−R(w)| ≤2blog(1/δ)

3bn+/2c
+

√
2τ log(1/δ)

bn+/2c

+
2blog(1/δ)

3bn−c
+

√
2τ log(1/δ)

bn−c
,

where bnc denotes the maximum integer no larger than n.

Under mild conditions, i.e., b = O(
√
n) and n+ � n− �

n, we getRS(w∗R)−R(w∗R) = O
( log(1/δ)√

n
+
√

τ log(1/δ)
n

)
=

O(n−
1
2 ). Combining this with the bounds of estimation er-

ror and optimization error in Remark 3, we deduce that the
excess risk R(wT )−R(w∗R) = O(n−

1
2 logn) as T � n.

Remark 4. To better highlight the characteristics of The-
orem 2, we compare it with the generalization analyses in
the setting of convexity (Hardt, Recht, and Singer 2016; Lei
and Ying 2020; Lei, Ledent, and Kloft 2020; Lei, Liu, and
Ying 2021; Yang et al. 2021) in Table 1. Clearly, our learn-
ing theory analysis is novel since it is the first touch for SGD
under the triplet learning setting. When n+ � n− � n, the
derived result is comparable with the previous convergence
rates (Hardt, Recht, and Singer 2016; Lei, Ledent, and Kloft
2020; Lei, Liu, and Ying 2021).

Generalization Bounds for RRM
We now turn to study the generalization properties of RRM
for triplet learning. Detailed proofs are stated in Supplemen-
tary Material B.3. Let r : W → R+ be a regularization
penalty for increasing the data-fitting ability of ERM. For
any datatset S ∈ Zn+

+ ∪Zn−− and RS(w) defined in (2), the
derived model parameter of RRM is the minimizer of

FS(w) := RS(w) + r(w) (5)

over w ∈ W and F (w) := R(w) + r(w).
To apply Theorem 1, we also need to verify the stable

parameter of RRM (5).
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Lemma 4. Assume that FS(w) is σ-strongly convex w.r.t.
‖ · ‖ and `(w; z+, z̃+, z−) is convex and L-Lipschitz. Then,
the RRM algorithm A defined as A(S) = arg min

w∈W
FS(w)

is γ-uniformly stable with γ = min
{

8
n+
, 4
n−

}
L2

σ .

When n+ � n− � n, the uniform stability parameter
is O(L

2

nσ ), which coincides with the previous analysis for
pariwise learning (Lei, Ledent, and Kloft 2020). To tackle
the triplet structure, the current analysis involves elaborate
error decomposition and the deduce strategy of Lemma B.2
in Lei, Ledent, and Kloft (2020).

It is required in Theorem 1 that we assume the triplet loss
for a uniformly stable algorithm is bounded in expectation.
To get the necessary guarantee, we introduce the follow-
ing Lemma 5, which can be proved coherently by utilizing
Lemma 2 (Lei, Ledent, and Kloft 2020) and the Lipschitz
continuity of the loss function `.
Lemma 5. Let FS(w) be σ-strongly convex w.r.t. ‖ · ‖,
w∗ = arg min

w∈W
F (w), and, for all z+, z̃+ ∈ Z+, z

− ∈

Z−, let ˜̀(A(S); z+, z̃+, z−) = `(A(S); z+, z̃+, z−) −
`(w∗; z+, z̃+, z−). If the RRM algorithm A measured by
loss function ` is γ-uniformly stable, then A measured by
loss function ˜̀ is also γ-uniformly stable and

|ES ˜̀(A(S); z+, z̃+, z−)| ≤M := min
{ 4
√

6
√
n+

,
4
√

3
√
n−

}L2

σ
.

Theorem 3. Assume that FS(w) is σ-strongly convex w.r.t.
‖ · ‖, and `(w; z+, z̃+, z−) is convex and L-Lipschitz and
supz+,z̃+,z− |`(w∗; z+, z̃+, z−)| ≤ O(

√
n). Let the vari-

ance of `(w∗; z+, z̃+, z−) is less than a positive constant τ .
For the RRM algorithm A defined as and any δ ∈ (0, 1/e),
we have
|RS(A(S))−R(A(S))|

=O

(
σ−1

(
min

{ √2
√
n+

,
1
√
n−

}( 1
√
n−

+
1
√
n+

)√
log

1

δ

+ min
{ 2

n+
,

1

n−

}
log
(
n−n

2
+

)
log

1

δ

)
+

√
log 1

δ

n+
+

√
log 1

δ

n−

)
with probability 1− δ.
Remark 5. If n+ � n− � n, the above bound is equivalent
to O

(
n−

1
2 + (nσ)−1logn

)
. Due to the definitions of FS(w)

and A(S) and r(A(S)) ≥ 0, we deduce that the excess risk
R(A(S))− R(w∗) ≤ R(A(S))− RS(A(S)) + RS(w∗)−
R(w∗) + r(w∗). Analogous to the third term to the right of

(4), we have RS(w∗)−R(w∗) = O( log(1/δ)√
n

+
√

τ log(1/δ)
n )

with probability 1 − δ. Therefore, the excess risk bound is
O(n−

1
2 logn) when r(w∗) = O(σ‖w∗‖2) and σ � n−

1
2 .

Note that the reason for r(w∗) = O(σ‖w∗‖2) can be found
in the last part of Supplementary Material B.3.

Optimistic Generalization Bounds for RRM
In this part, we use the on-average stability in Definition
2 and some properties of smoothness to establish the opti-
mistic generalization bounds of RRM in the low noise case.

Different from the above theorems, we do not require the
Lipschitz continuity condition for the triplet loss function.

The following lemma establishes the relationship between
the estimation error and the model perturbation induced by
the change at a single point of the training set.
Lemma 6. Assume that for all z+, z̃+ ∈ Z+, z

− ∈ Z− and
w ∈ W , the loss function `(w; z+, z̃+, z−) is convex and
α-smooth w.r.t. ‖ · ‖. Then, for all ε > 0,

ES [R(A(S))−RS(A(S))]

≤ 3(ε+ α)

2n+(n+ − 1)n−

∑
i∈[n+],

k∈[n−]

(
2ES,S̄‖A(Si)−A(S)‖2

+ ES,S̄‖A(Sk)−A(S)‖2
)

+
αESRS(A(S))

ε
,

where Si = {z+
1 , ..., z

+
i−1, z̄

+
i , z

+
i+1, ..., z

+
n+
, z−1 , ..., z

−
n−}

and Sk = {z+
1 , ..., z

+
n+
, z−1 , ..., z

−
k−1, z̄

−
k , z

−
k+1, ..., z

−
n−}.

From the proof of Lemma 6 (see Supplementary Material
B.4) and Definition 2, we know the upper bound in Lemma
6 provides the selection of on-average stability parameter
γ. After establishing the connection between ES,S̄‖A(Si)−
A(S)‖2 (or ES,S̄‖A(Sk) − A(S)‖2) and ESRS(A(S)), we
get the following error bound of RRM.
Theorem 4. Assume that the loss function `(w; z+, z̃+, z−)
is convex and α-smooth for all z+, z̃+ ∈ Z+, z

− ∈ Z− and
w ∈ W , and FS(w) is σ-strongly convex w.r.t. ‖ · ‖ with
S ∈ Zn+

+ ∪ Zn−− . Let σmin{n+, n−} ≥ 8α and A(S) =
arg min

w∈W
FS(w). Then, for all ε > 0,

ES [F (A(S))− FS(w∗)] ≤ ES [R(A(S))−RS(A(S))]

≤
(
α

ε
+

1536α(ε+ α)

n2
+(n+ − 1)σ2

+
256α(ε+ α)

3(n+ − 1)n2
−σ

2

)
ESRS(A(S)).

Remark 6. The upper bounds in Theorem 4 are closely
related to the empirical risk ESRS(A(S)). It is reason-
able to assume that the empirical risk of A(S) is small
enough with the increasing of training samples. When n+ �

n− � n, r(w∗) = O(σ‖w∗‖2) and ε =

√
3n2

+(n+−1)n2
−σ

2

4608n2
−+256n2

+
,

ES
[
R(A(S))−R(w∗)

]
= O

(
R(w∗)

n
3
2 σ

+
(
n−

3
2 +σ

)
‖w∗‖2

)
.

When σ = n−
3
4 ‖w∗‖−1

√
R(w∗) and R(w∗) =

n−
1
2 ‖w∗‖2, ES

[
R(A(S)) − R(w∗)

]
= O(n−1‖w∗‖2).

Note that R(w∗) can not less than n−
1
2 ‖w∗‖2 due to

σmin{n+, n−} ≥ 8α.
The above excess risk bound assures the convergence rate

O(n−1‖w∗‖2) in expectation under proper conditions of w∗
and RS(A(S)), which extends the previous optimistic gen-
eralization bounds of pointwise learning (Srebro, Sridharan,
and Tewari 2010; Zhang, Yang, and Jin 2017) and pairwise
learning (Lei, Ledent, and Kloft 2020) to the triplet setting.
Remark 7. As summarized in Table 2, the convergence
guarantees in Theorems 3 and 4 are comparable with the
existing results in the setting of strong convexity even involv-
ing the complicated triplet structure in error decomposition.
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Algorithm Reference
Assumptions

Tool Convergence
rateStrongly

Convex Lipschitz Smooth

Full-batch
SGD (N) Klochkov and Zhivotovskiy (2021)

√ √
× Uniform

stability ∗O(n−1logn)

RRM (N) Feldman and Vondrák (2019)
√ √

× Uniform
stability ∗O(n−

1
2 logn)

RRM (NN)
Lei, Ledent, and Kloft (2020)

√ √
× Uniform

stability ∗O(n−
1
2 logn)

Lei, Ledent, and Kloft (2020)
√

×
√ On-average

stability O(n−1)

RRM (NNH)
Ours (n+ � n− � n)

√ √
× Uniform

stability ∗O(n−
1
2 logn)

Ours (n+ � n− � n)
√

×
√ On-average

stability O(n−1)

Table 2: Summary of stability-based generalization analyses for algorithms in the setting of strong convexity (N-pointwise;
NN-pairwise; NNH-triplet;

√
-the reference has such a property; ×-the reference hasn’t such a property; ∗-high-probability

bound).

Applied to Triplet Metric Learning
This section applies our generalization analysis to triplet
metric learning, which focuses on learning a metric to min-
imize the intra-class distance and maximize inter-class dis-
tance simultaneously. Let t(y, y′) be the symbolic function,
i.e., t(y, y′) = 1 if y = y′ and −1 otherwise. Inspired by
the 0-1 loss in pairwise metric learning `0−1(w; z, z′) =
I[t(y, y′)(1 − hw(x, x′)) ≤ 0] (Lei, Liu, and Ying 2021),
we consider a 0-1 triplet loss `0−1(w; z+, z̃+, z−) =
I[hw(x+, x̃+) − hw(x+, x−) + ζ ≥ 0], where the train-
ing model hw is considered as hw(x+, x̃+) =

〈
w, (x+ −

x̃+)(x+ − x̃+)>
〉
, and ζ denotes the margin that requires

the distance of negative pairs to excess the one of positive
pairs. We introduce the triplet loss

`φ(w; z+, z̃+, z−) = φ(hw(x+, x̃+)− hw(x+, x−) + ζ)
(6)

associated with the logistic function φ(u) = log(1 +
exp(−u)), which is consistent with the error metric used
in Schroff, Kalenichenko, and Philbin (2015) and Ge et al.
(2018).

When max{supx+∈X+
‖x+‖, supx−∈X−‖x

−‖} ≤ B,
Theorems 2-3 yield the following convergence rates for
SGD and RRM with the triplet loss (6), respectively.
Corollary 1. Let wT is produced by SGD (3) with
ηt ≡ c/

√
T , c ≤ 1/(32B4) and

∣∣ES [φ(hwT
(x+, x̃+) −

hwT
(x+, x−) + ζ)]

∣∣ ≤ M . For any δ ∈ (0, 1/e),
with probability 1 − δ, we have |RS(wT ) − R(wT )| =

O
(
n−

1
2 lognlog

3
2 (1/δ) + n−

1
2 log

1
2 (1/δ)

)
.

Corollary 2. Consider FS(w) in (5) with the triplet loss
(6) and r(w∗) = O(σ‖w∗‖2) with σ � n−

1
2 . Assume that

supz+,z̃+,z− |`(w∗; z+, z̃+, z−)| ≤ O(
√
n) and the vari-

ance of `(w∗; z+, z̃+, z−) is bounded. Then for A(S) =

arg min
w∈W

FS(w) and any δ ∈ (0, 1/e), we have R(A(S)) −

R(w∗) = O(n−
1
2 lognlog(1/δ)) with probability 1− δ.

Moreover, we get the refined result of RRM from Theo-
rem 4 with the help of the strong-convexity of (6).
Corollary 3. Under the basic assumptions and notations
of Corollary 2, assume σ = n−

3
4 ‖w∗‖−1

√
R(w∗) and

R(w∗) = n−
1
2 ‖w∗‖2, then we have ES

[
R(A(S)) −

R(w∗)
]

= O(n−1‖w∗‖2).

Conclusion
This paper fills the theoretical gap in the generalization
bounds of SGD and RRM for triplet learning by developing
algorithmic stability analysis techniques, which are valuable
to understanding their intrinsic statistical foundations of out-
standing empirical performance. We firstly derive the gen-
eral high-probability generalization boundO(γlogn+n−

1
2 )

for triplet uniformly stable algorithms, and then apply it to
get the explicit resultO(n−

1
2 logn) for SGD and RRM under

mild conditions of loss function. For RRM with triplet loss,
the optimistic boundO(n−1) in expectation is also provided
by leveraging the on-average stability. Even for the compli-
cated triplet structure, our results also enjoy similar conver-
gence rates as the previous related works of pointwise learn-
ing (Hardt, Recht, and Singer 2016; Feldman and Vondrák
2019) and pairwise learning (Lei, Ledent, and Kloft 2020).
Some potential directions are discussed in Supplementary
Material D for future research.
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