
Attribute and Structure Preserving Graph Contrastive Learning

Jialu Chen, Gang Kou*

School of Business Administration, Faculty of Business Administration, Southwestern University of Finance and Economics
lukac@smail.swufe.edu.cn, kougang@swufe.edu.cn

Abstract

Graph Contrastive Learning (GCL) has drawn much research
interest due to its strong ability to capture both graph structure
and node attribute information in a self-supervised manner.
Current GCL methods usually adopt Graph Neural Networks
(GNNs) as the base encoder, which typically relies on the ho-
mophily assumption of networks and overlooks node simi-
larity in the attribute space. There are many scenarios where
such assumption cannot be satisfied, or node similarity plays
a crucial role. In order to design a more robust mechanism, we
develop a novel attribute and structure preserving graph con-
trastive learning framework, named ASP, which comprehen-
sively and efficiently preserves node attributes while exploit-
ing graph structure. Specifically, we consider three different
graph views in our framework, i.e., original view, attribute
view, and global structure view. Then, we perform contrastive
learning across three views in a joint fashion, mining com-
prehensive graph information. We validate the effectiveness
of the proposed framework on various real-world networks
with different levels of homophily. The results demonstrate
the superior performance of our model over the representa-
tive baselines.

Introduction
Graph representation learning (GRL), which aims to learn
low-dimensional representations for graphs, has shown its
great potential for various application areas, such as graph
matching (Li et al. 2019), physics (Shlomi, Battaglia, and
Vlimant 2021), chemistry (Do, Tran, and Venkatesh 2018)
and biology (Zitnik, Agrawal, and Leskovec 2018). Due to
the scarcity of task-specific labeled graph data, recent re-
search efforts for GRL methods have been devoted to self-
supervised learning on graphs, where only limited or no la-
bels are needed (Xie et al. 2021; Liu et al. 2022). Among
all these methods, graph contrastive learning (GCL), which
successfully applys contrastive learning from the field of vi-
sion and language to graph data, has drawn considerable
research attention. By maximizing the agreement between
jointly sampled positive views and drawing apart the dis-
tance between negative views, GCL methods have achieved
promising results on many graph-based tasks (Veličković
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et al. 2019; Zhu et al. 2020b; Hassani and Khasahmadi
2020). Typically, GCL methods first generate multiple views
for each instance through various data augmentation strate-
gies, and then adopt graph neural networks as the backbone
encoder to obtain the corresponding representations for con-
trastive objectives. Researchers usually improve the perfor-
mance and generalizability of GCL models by designing
novel data augmentation strategies (Zhu et al. 2021b; You
et al. 2021), or adjusting suitable contrastive objectives (Sun
et al. 2019; Peng et al. 2020b; Jiao et al. 2020).

While the success of GCLs, they ignore a key weakness
that built in the backbone encoder they use, i.e., homophily
assumption of graph neural networks, where nodes within
the same class tend to connect with each other. Since graphs
with different level of homophily are widespread in real
world, the homophily assumption may not always be sat-
isfied, which restrict the performance of GNNs on general
data (Pei et al. 2020). Thus, exisiting GCLs based on graph
neural network encoder could also suffer from this issue and
thus lead to impaired performance. Hence, a natural question
emerges: When the knowledge of labels and downstream
tasks are unavailable, how to design the framework of con-
trastive learning so that it could capture comprehensive in-
formation for graphs with different levels of homophily?

Several recent works have studied dealing with graphs
with different homophily level in a supervised manner. For
example, Pei et al. (2020) proposes a geometric aggrega-
tion scheme for graph neural networks to overcome neigh-
borhood structural information losing and long-range de-
pendencies in non-homophilous graphs lacking. Zhu et al.
(2020a) combines a set of key designs that can boost learn-
ing from the graph structure in heterophily into a model. Jin
et al. (2021a) designs a universal propagation mechanism
which learns node embeddings by adaptively fusing infor-
mation from 1-hop, 2-hop, and kNN neighbors. Jin et al.
(2021b) develops a feature preserving aggregation which
adaptively integrates graph structure and node attributes by
incoporating attribute graph. Lim et al. (2021) collects and
introduces non-homophilous datasets from a variety of ap-
plication areas, and proposes a simple scalable learning
method for non-homophilous graphs.

However, designing graph contrastive learning methods
for graphs with different level of homophily could be chal-
lenging. First, adaptive views which could distinguish the
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homophily level of graphs usually are trained under the
supervised signal. Since labels and downstream tasks are
unknown while training, it is hard to generate such adap-
tive views under unsupervised scenario. In addition, di-
rectly contrasting two views generated from methods for ho-
mophilous graphs and methods for non-homophilous graphs
seems to be a good choice. However, if two views reveal sig-
nificantly diverse information, the embeddings are far away
from each other, thus being bad views for contrastive learn-
ing (Tian et al. 2020).

To tackle the challenges discussed above, we propose
a novel graph contrastive learning framework named ASP,
which preserves both attribute and structure information
and achieves competitive performance independent of ho-
mophily level. We first incorporate attribute graph into our
framework, since node similarity relationship built in at-
tribute graph is proved to be helpful for dealing with non-
homophilous graphs (Jin et al. 2021a,b). Then, we design a
novel data augmentation strategy: add one view to another
view and use the summation of two views as a final view for
contrasting. Such design solves the problem that two node
embeddings generated from very different views tend to be
far from each other. Specifically, we use original graph as
one of the contrastive view, and treat the summation of at-
tribute graph and original graph as another contrastive view.
Through maximizing the agreement between the two con-
trastive views, our model preserves the attribute information
without annotated labels. Next, to preserve the structure in-
formation in the meantime, we propose another contrastive
learning module which mainly aims to preserve global struc-
ture information. Different from existing methods (Hassani
and Khasahmadi 2020; Zhu et al. 2020b), we directly adopt
higher-order view of the graph as global structure view.
We find that contrasting the higher-order view and original
graph view is sufficient for preserving global structure infor-
mation. Besides, in order to align the representations across
different modules, a novel cross-module contrastive loss are
proposed. By jointly optimizing the attribute loss, structure
loss and cross-module loss, our framework could learn ex-
pressive node representations without any human annotated
labels. Our main contributions can be summarized as fol-
lows:

• We propose a novel framework ASP, which could learn
effective node representations for graphs with different
levels of homophily in a self-supervised fashion.

• We design two contrastive learning modules which could
respectively capture attribute and structure information
of the input graph, and train them coordinately.

• Extensive experimental results show that our approach
achieves superior performance over the representative su-
pervised and unsupervised baselines1.

Related Work
Graph Neural Networks. Over the past few years, Graph
Neural Networks (GNNs) have emerged as a powerful tool

1Our implementation is available at https://github.com/
JialuChenChina/ASP

for learning powerful node representations. There are two
main categories of GNNs, i.e., spectral-based GNNs and
spatial-based GNNs. Spectral-based GNNs (Bruna et al.
2014; Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2017) are built on spectral graph theory which
defines graph convolutions by introducing filters from the
perspective of graph signal processing(Shuman et al. 2012).
Spatial-based GNNs (Gilmer et al. 2017; Hamilton, Ying,
and Leskovec 2017; Veličković et al. 2018) treat graph con-
volutions as a message passing process in which node in-
formation can be passed along edges directly. Moreover,
to increase the expressive power, many efforts are taken to
explore higher-order GNNs (Li, Han, and Wu 2018; Chen
et al. 2020a; Zeng et al. 2022, 2023). Although GNNs have
shown impressive power under many scenarios, their perfor-
mance might be impaired when the homophily assumption
fails (Pei et al. 2020). To solve this problem, researchers try
to design GNNs with broader information, by considering
node attribute graph (Jin et al. 2021b,a), by incorporating an
interpretable compatibility matrix in the graph (Zhu et al.
2021a), and many others (Zhu et al. 2020a; Li et al. 2022).

Self-supervised Learning on Graphs. Recently, inspired
by the success of self-supervised learning (SSL) in computer
vision (He et al. 2020; Chen et al. 2020b) and natural lan-
guage processing (Devlin et al. 2018), self-supervised learn-
ing on graphs has been a promising research direction. There
are three main categories of SSL on graphs: contrastive, gen-
erative and predictive (Wu et al. 2021). Graph contrastive
learning approaches usually design different views and aim
at maximizing agreement between representations of views.
DGI (Veličković et al. 2019) maximizes the mutual informa-
tion between patch representations and corresponding high-
level summary of graphs. GRACE (Zhu et al. 2020b) focuses
on contrasting views at the node level. GraphCL (You et al.
2020a) applies four types of graph augmentations and learns
to predict whether two graphs originate from the same graph
or not. Some recent works intend to construct graph views
without data augmentation, but instead by adding noise to
the hidden embedding space (Zhang et al. 2022; Yu et al.
2022) or model parameters (Xia et al. 2022). Compared
with contrastive methods, the generative methods (You et al.
2020b; Hu et al. 2020) are based on generative models and
treat the original input data as a natural self-supervision.
Different from contrastive methods and generative methods,
predictive methods (Peng et al. 2020a; Jin et al. 2020) aim
to self-generate informative labels from the data as a super-
vision.

Most of previous graph self-supervised learning methods
use graph neural networks as the backbone encoder, and
achieve remarkable performance in homophilous datasets.
However, few efforts have been devoted to designing
self-supervised node representation learning framework for
graphs with different levels of homophily.

Notations and Preliminaries
Notations
Let G = (V , E ,X) be an undirected attributed graph, where
V = {v1, v2, ..., vn} is the set of N nodes, E is the set
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of edges describing the relations between nodes and X =
[x1,x2, ...,xn]

T ∈ Rn×f is the node attribute matrix with f
attributes per node. In a node classification task, each node
vi is associated with a label yi ∈ Y . Let A ∈ Rn×n denote
the adjacency matrix and Ã ∈ Rn×n denote the adjacency
matrix with added self-loops. D ∈ Rn×n and D̃ ∈ Rn×n

represent the corresponding degree matrix of A and Ã. Be-
sides, we use (A,X) to represent graph data.

Homophily
Homophily of a graph characterizes the possibility that
nodes with the same label are near each other in a graph.
There are many measures of homophily that fits this defini-
tion. In this paper, we use edge homophily ratio (Zhu et al.
2020a) defined as the fraction of edges in a graph that con-
nect nodes with the same label:

homophily ratio =
|{(vi, vj) : (vi, vj) ∈ E ∧ yi = yj}|

|E|
.

(1)
Graphs with homophily ratio closer to 1 tend to have more
edges connecting nodes within the same class, whereas
graphs with homophily ratio closer to 0 have more edges
connecting nodes in different classes. A graph is considered
to be non-homophilous if the homophily ratio is smaller than
0.5, homophilous otherwise.

Graph Contrastive Learning
Given an input graph, graph contrastive learning aims to
learn one or more encoders such that representations of sim-
ilar instances agree with each other and representations of
dissimilar graph instances disagree with each other. We de-
couple a typical graph contrastive learning into three main
modules.

Multiple Views Generation. Given a graph G, M differ-
ent transformations T1, ..., TM can be applied to obtain dif-
ferent views v1, ...,vM of the graph:

vi = Ti(A,X), i = 1, ...,M. (2)

In practice, graph transformation approaches include node
attribute masking, edge perturbation, edge diffusion, sub-
graph sampling, etc.

View Encoding. A set of encoders f1, ..., fM take corre-
sponding views as their inputs and output the representations
h1, ...,hM of the graph from each view:

hi = fi(vi), i = 1, ...,M. (3)

Contrastive Objectives. During training, the contrastive
objective aims to train encoders to maximize the mutual
information MI(hi,hj) of two views from the same in-
stance:

max
{fi}M

i=1

1∑
i̸=j σi,j

[∑
i̸=j

σi,jMI(hi,hj)

]
, (4)

where σi,j ∈ {0, 1}, and σi,j = 1 if the mutual informa-
tion is computed between hi and hj , and σi,j = 0 other-
wise. In order to efficiently compute the mutual information,

three popular lower-bound forms of the mutual informa-
tion are derived, i.e., Donsker-Varadhan estimator (Belghazi
et al. 2018), Jensen-Shannon estimator (Nowozin, Cseke,
and Tomioka 2016) and InfoNCE estimator (Gutmann and
Hyvärinen 2010).

Proposed Method
In this section, we present our proposed ASP framework in
detail. An overview of ASP is shown in Figure 1.

View Generation
View choices control the information node representations
capture, and thus are critical for contrastive learning meth-
ods. Existing contrastive learning methods mainly construct
views from transformations of existing graph data (i.e. A
and X). We argue that such data transformation strategies
are not sufficient for learning comprehensive and robust
node embeddings. First, comprehensive self-supervised sig-
nals such as attribute graph are hardly utilized in current
frameworks. Second, data transformation methods such as
edge removing or adding may destroy the original graph
topology and optimal data transformation strategies are hard
to devise. Third, few existing transformation methods con-
sider the heterophily of graphs. Therefore, by jointly consid-
ering three different graph views, i.e., original view, attribute
view and global structure view, we solve the issues above.

The original graph data without any data augmentation
strategy is deemed to original view vo, which acts as an an-
chor to other views. To capture the rich attribute similarity
relationship between nodes, we utilize the attribute matrix
X to construct a k-Nearest-Neighbor (kNN) graph GA, and
treat it as attribute view va. The kNN graph GA could be
built based on different distance metrics, such as euclidean
distance, cosine distance or Jaccard distance. We use cosine
distance and Jaccard distance in our framework. Experimen-
tal results in section show that the choice of distance metric
could influence the kNN graph we built and thus affect the
final model performance. For a given node pair (vi, vj), their
cosine distance and Jaccard distance are defined as:

dcos(vi, vj) = 1− xi · xj

|xi||xj |
, (5)

dJ(vi, vj) =
# of non-equal dimensions
# of nonzero dimensions

, (6)

where |·| denotes the magnitude of a vector. The adjacency
matrix and corresponding degree matrix of the kNN graph
are represented by AF and DF .

In order to extract global structure information, we gen-
erate a simple yet effective graph view. Unlike the edge per-
turbation strategies which arbitrarily modifying the graph
structure, edge diffusion methods (Hassani and Khasahmadi
2020) are able to keep rich global information of graphs.
Current edge diffusion methods mainly employ Personal-
ized PageRank(PPR) (Page et al. 1999) or heat kernel (Kon-
dor and Lafferty 2002) for global view. However, the so-
lutions of such methods involve computation of matrix ex-
ponential or matrix inverse, which is computationally inef-
ficient. Although applying approximating could reduce the
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Figure 1: The overview of our proposed framework: ASP. We first generate three graph views from the input graph: original
view, attribute view and global structure view. Then the three graph views are fed into the encoders to obtain the corresponding
node representations. Instead of directly contrasting these graph views, we use the summation of node representations from
attribute view and original view as the new node representations Ha for subsequent contrastive learning. Through minimizing
attribute contrastive loss Lattr, structure contrastive loss Lstr, and cross-module loss Lcross between Hõ and Ho, ASP learns
expressive node embeddings.

computational complexity, extra hyperparameter tuning is
tedious and time-consuming. Different from existing meth-
ods, we directly adopt higher-order view of the graph as
global structure view vs. Under global structure view, each
node captures information from the neighbors which are l
hops away. As l increases, more global information is in-
cluded. Both original graph G and the kNN graph GA could
be used for generating higher-order views. We find that sim-
ply contrasting original graph views with higher-order views
could lead to comparable performance.

Attribute Preserving Contrastive Learning
Existing GCL methods usually adopt Graph Neural Net-
works (GNNs) as the base encoder, which captures rich
structure information of graphs. Despite their success, they
commonly overlook the node attribute similarity relation-
ship that rooted in the attribute matrices. In this work, we
design a more robust mechanism, which preserves the at-
tribute knowledge based on original graph view and attribute
graph view.

Although most GNNs are allowed in our framework, we
choose SGC (Wu et al. 2019) as the base encoder, due to its
model simplicity and comparable performance. SGC sim-
plifies the structure of GCN (Kipf and Welling 2017) by
removing the intermediate nonlinearities, and the learnable
parameters collapse into a single matrix:

H = SPXΘ, (7)
where S denotes the normalized adjacency matrix with
added self-loops S = D̃−1/2ÃD̃−1/2, and Θ is a trainable
weight matrix. Note that SPX denotes the representations
obtained by propagating information from nodes that are P -
hop away. Normally, P is a positive integer in SGC, while

we allow P to be 0, which turns SGC to one-layer MLP.
The reason is that we find MLP is more suitable for non-
homophilous graphs. For homophilous graphs, P is set to be
a positive integer, which could aggregate useful information
from similar neighbors.

Instead of directly comparing original view with attribute
view, we harness attribute view as a complement for orig-
inal view. Specifically, we add the node embeddings from
attribute view to original view, and treat the summation of
the node embeddings as the final contrastive view. Formally,
we have

Ho = SpXΘa,

Ha = SpXΘa + SFXΘa,
(8)

where SF = D
−1/2
F AFD

−1/2
F . The weight matrix Θa is

shared between Ho and Ha.
After obtaining the node embeddings Ho and Ha, we

adopt InfoNCE (Gutmann and Hyvärinen 2010) to estimate
the lower bound of the mutual information between them.
For node vi, the learned node embeddings ho

i and ha
i form

the positive samples, and nodes embeddings other than them
are naturally regarded as negative samples. With the defined
positive and negative samples, the loss function of attribute
preserving contrastive learning module can be defined as:

Lattr(vi) =

− log
eD(ho

i ,h
a
i )/τ

N∑
j=1

eD(ho
i ,h

a
j )/τ +

∑
v∈{o,a}

N∑
j=1

1[j ̸=i]e
D(hv

i ·hv
j )/τ

,

(9)

where τ denotes the temperature parameter, and D(·) is the
discriminator that computes the agreement score between
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two vectors. Here, we use cosine similarity as D(·).

Structure Preserving Contrastive Learning
Although attribute information has been revealed from at-
tribute preserving contrastive learning, the global structural
information hasn’t been explored. Hence, to increase robust-
ness and expressiveness of the proposed framework, struc-
ture preserving contrastive learning module is introduced.

We still utilize SGC as the base encoder in structure pre-
serving contrastive learning. In order to capture global struc-
ture information, we directly contrast original graph view
with global structure view:

Hõ = SpXΘõ,

Hs = (SG)
lXΘs,

(10)

where l is a positive integer which is significantly larger
than p, and SG ∈ {S,SF }. We set SG to be SF for non-
homophilous datasets, since the homophily assumption in
GNNs doesn’t hold in those datasets. Notice that we use dis-
tinct weight matrices for Ho and Hõ, so that they do not
interfere with each other.

Given node embeddings hõ
i and hs

i of node vi, we gener-
ate the contrastive loss for structure preserving learning:
Lstr(vi) =

− log
eD(hõ

i ,h
s
i )/τ

N∑
j=1

eD(hõ
i ,h

s
j)/τ +

∑
v∈{õ,s}

N∑
j=1

1[j ̸=i]e
D(hv

i ·hv
j )/τ

.

(11)

Model Training
With the two major components of ASP, next we introduce
the cross-module loss which we utilize to align representa-
tions of original view across different modules. Thereafter,
we present the overall objective loss for ASP.

Cross-Module Loss. The cross-module loss aims to align
representations of Ho and Hõ. We find that by contrasting
representations of the same view but different modules can
improve the quality of the proposed framework.
Lcross(vi) =

− log
eD(ho

i ,h
õ
i )/τ

N∑
j=1

eD(ho
i ,h

õ
j )/τ +

∑
v∈{o,õ}

N∑
j=1

1[j ̸=i]e
D(hv

i ·hv
j )/τ

,

(12)

Overall Objective Loss. The overall objective loss of
ASP is defined to be a sum of attribute preserving loss, struc-
ture preserving loss and cross-module loss:
L = Lattr + λ1Lstr + λ2Lcross (13)

=
1

N

N∑
i=1

[
Lattr(vi) + λ1Lstr(vi) + λ2Lcross(vi)

]
,

where λ1 and λ2 are tuning parameters to weight the impor-
tance of Lstr and Lcross, respectively. The detailed descrip-
tion of our framework is provided in Algorithm 1.

Algorithm 1: ASP algorithm
Input: Graph G = (V, E ,X)

1: for epoch← 1, 2,... do
2: Obtain node representations for attribute preserving

contrastive learning module Ho and Ha;
3: Obtain node representations for structure preserving

contrastive learning module Hõ and Hs;
4: Calculate attribute loss Lattr based on Eq.(9);
5: Calculate structure loss Lstr based on Eq.(11);
6: Calculate cross-module loss Lcross with Eq.(12);
7: Update parameters according to the overall objective

loss L in Eq.(13);
8: end for
9: return The optimal encoder weights Θa,Θõ,Θs.

Experimental Results
In this section, we conduct extensive experiments to vali-
date the proposed ASP. In particular, we aim to answer the
following research questions:

• How does ASP perform on homophilous and non-
homophilous datasets?

• How do different components affect the performance of
ASP?

• How do the hyper-parameters in our model affect the fi-
nal performance?

We first introduce the experimental settings. Then we report
and analyze the experimental results.

Experimental Setup
Datasets To evaluate the performance of different meth-
ods, we adopt seven public real-world datasets with differ-
ent levels of homophily. These datasets can be categorized
into two types: homophilous datasets and non-homophilous
datasets.

For homophilous datasets, we choose three popular pub-
lic datasets: Cora, Citeseer and Pubmed (Yang, Cohen,
and Salakhutdinov 2016), where nodes represent documents
and edges represent citation links. Node attributes of these
datasets are bag-of-words representation of documents.

For non-homophilous datasets, we choose four public
datasets: Actor, Cornell, Texas, and Wisconsin (Pei et al.
2020). Actor is an actor-only induced subgraph of the film-
director-actor-writer network, where each node corresponds
to an actor, and edges denote co-occurrence on the same
Wikipedia page. Node attributes of Actor correspond to
some keywords in the Wikipedia pages. As to Cornell,
Texas, and Wisconsin, nodes represent web pages, edges
represent hyperlinks between them and node attributes are
bag-of-words representation of web pages.

Statistics of all datasets are summarized in Table 1.

Baselines We compare our ASP with representative
contrastive self-supervised baselines, including DGI
(Veličković et al. 2019), GRACE (Zhu et al. 2020b), BGRL
(Thakoor et al. 2021), RoSA (Zhu et al. 2022), as well as
supervised baselines GCN (Kipf and Welling 2017), GAT
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Dataset Type #Nodes #Edges #Features #Classes Edge Density Homophily Ratio

Cora Citation 2,708 5,278 1,433 7 0.0014 0.81
Citeseer Citation 3,327 4,552 3,703 6 0.0008 0.74
Pubmed Citation 19,717 44,324 500 3 0.0002 0.80
Cornell Webpage 183 298 1,703 5 0.0179 0.31
Texas Webpage 183 325 1,703 5 0.0194 0.11
Wisconsin Webpage 251 515 1,703 5 0.0164 0.20
Actor Actor Co-occurence 7,600 30,019 932 5 0.0010 0.22

Table 1: Dataset Statistics.

Method Cora Citeseer Pubmed

Supervised Approaches
GCN 81.5 70.3 79
GAT 83.0±0.7 72.5±0.7 79.0±0.3
SGC 81.0±0.0 71.9±0.1 78.9±0.0
APPNP 83.4±0.5 71.7±0.5 80.1±0.3

Unsupervised Approaches
DGI 82.3±0.6 71.8±0.7 76.8±0.6
GRACE 80.9±0.7 67.0±0.5 80.5±0.8
BGRL 82.7±0.6 71.1±0.8 79.6±0.5
RoSA 81.8±0.8 70.9±0.4 82.1±0.5
ASP-cos 84.2±0.4 72.8±0.7 79.5±0.7
ASP-J 84.7±0.6 73.0±1.0 80.7±0.6

Table 2: Node classification accuracy(%) results on ho-
mophilous graphs. The best performance is highlighted in
bold.

(Veličković et al. 2018), APPNP (Gasteiger, Bojchevski,
and Günnemann 2019), and Geom-GCN (Pei et al. 2020).
GRACE∗ and RoSA∗ are variants of GRACE and RoSA,
which use MLP as the base encoder instead of GNNs. Note
that Geom-GCN is mainly designed for non-homophilous
graphs, thus we only report its performance on four non-
homophilous graphs. We take the results of baselines from
their original paper if available.

Evaluation Protocol We evaluate the representations
learned by our proposed ASP on node classification task.
First, we train the model with graph data (A,X) without any
annotated labels. Then, the resulting embeddings are used to
train and test a simple l2 regularized logistic regression clas-
sifier. We train the model for 5 runs and report the mean clas-
sification accuracy with standard deviation. For Cora, Cite-
seer and Pubmed, we use the public fixed split introduced by
Yang, Cohen, and Salakhutdinov (2016). For Actor, Cornell,
Texas, and Wisconsin, we randomly split nodes of each class
into 60%, 20%, and 20% for training, validation and testing
as introduced by Pei et al. (2020).

Note that we include different distance metrics for con-
structing attribute graph, which leads to two versions of our
framework, ASP-cos and ASP-J, where ASP-cos utilizes co-
sine distance and ASP-J utilizes Jaccard distance. Experi-
mental results of both versions are reported.

Method Cornell Texas Wisconsin Actor

Supervised Approaches
GCN 53.4 63.2 49.1 28.7
GAT 55.4 59.9 60.7 26.9
SGC 52.9 59.5 60.7 24.8
APPNP 55.0 59.5 52.8 28.9
Geom-GCN 60.8 67.6 64.1 31.6

Unsupervised Approaches
DGI 52.7 57.4 47.4 29.9
GRACE 54.7 55.4 43.4 29.3
GRACE∗ 66.0 74.8 77.5 31.4
BGRL 48.2 53.6 47.4 27.5
RoSA 59.3 55.1 60.3 26.0
RoSA∗ 74.3 71.1 77.1 31.3
ASP-cos 78.2 81.6 79.4 32.6
ASP-J 73.4 75.5 75.5 33.6

Table 3: Node classification accuracy(%) results on non-
homophilous graphs. The best performance is highlighted
in bold.

Implementation Details We implement our proposed
framework and some baselines using Pytorch (Paszke et al.
2017) and Pytorch Geometric (Fey and Lenssen 2019). The
hyperparameters we tune include: (1) the initial learning rate
∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4}, (2) k ∈ {20, 30, 40, 50,
60, 70} for k nearest neighbors, (3) the aggregation hops
l ∈ {10, 20, 30}. For homophilous datasets, the output di-
mension of our encoder network is fixed to 256, while tuned
within {24, 32, 64, 128} for non-homophilous datasets. We
set a patience of 20 and a maximum of 500 epochs for early
stopping.

Performance Comparison
We use classification accuracy as the evaluation metric, the
relevant results are shown in Table 2 and Table 3. Table 2
shows the results for three homophilous datasets. It is ob-
served that our approach achieves the state-of-the-art results
and competes the best one with respect to the existing unsu-
pervised approaches. Compared with supervised baselines,
our approach outperforms all the baselines.

We report the results of our method with the strong base-
lines for four non-homophilous datasets in Table 3. In partic-
ular, for GRACE and RoSA, we use both GNN and MLP as
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the base encoder. From the results we can see that GRACE
and RoSA with MLP as the base encoder performs signif-
icantly better than GNN as the base encoder, which shows
that structure information extracted by GNN may degrade
the expressivity and overall quality of contrastive methods
at low level of homophily. ASP outperforms all baselines
on all four datasets including methods with MLP encoder
GRACE∗ and RoSA∗, which validates the effectiveness of
our method for non-homophilous graphs. In particular, on
Cornell and Texas, our model ASP outperforms the best
baselines RoSA∗ and GRACE∗ by a very large margin, i.e.,
3.9% and 6.8%, which proves the superiority of our method.

Besides, ASP-J performs better than ASP-cos on all three
homophilous datasets (Cora, Citeseer, and Pubmed) and one
non-homophilous dataset (Actor), while ASP-cos performs
better on other non-homophilous datasets (Cornell, Texas,
and Wisconsin). This phenomenon shows that different dis-
tance metrics affect the kNN graphs we construct, thus in-
fluencing the performance of the whole ASP framework.

Ablation Study
Our proposed ASP employs two contrastive learning mod-
ules to learn rich self-supervised information of the input
graph. To shed light on the contributions of the main com-
ponents of our framework, we conduct ablation experiments
masking different components under the same hyperparam-
eters and training scheme. Specifically, we build the follow-
ing ablations:

• Removing the attribute preserving contrastive learning
module (w/o AP).

• Removing the structure preserving contrastive learning
module (w/o SP).

• Removing the cross-module loss Lcross.

As shown in Table 2 and Table 3, ASP achieves more im-
provement on non-homophilous datasets. Hence, we mainly
report the ablation results on non-homophilous datasets. Be-
sides, the choice of distance metric influences the perfor-
mance of ASP, so we choose the version of ASP which per-
forms better for each dataset, which means for Actor, ASP-
J is utilized for ablation study, and for Cornell, Texas and
Wisconsin, we use ASP-cos. The results are summarized
in Table 4. We can observe that the performance degrades
when any of the components is dropped, which indicates the
effectiveness of the corresponding components. Especially,
when attribute preserving contrastive learning module (AP)
is masked, the performance of all four datasets drops sig-
nificantly, which shows that attribute preserving contrastive
learning module essentially boost the performance while
structure preserving contrastive learning module and cross-
module loss Lcross can further improve the performance.

Parameter Sensitivity
We perform sensitivity analysis on several critical param-
eters of ASP. Firstly, we measure how the performance is
affected by varying the number of nearest neighbors k for
kNN graph in the range of {20, 30, 40, 50, 60, 70}. The re-
sults on Cora and Texas are depicted in Figure 2. We get the

Ablation Cornell Texas Wisconsin Actor

ASP 78.2 81.6 79.4 33.6
-w/o AP 65.4 64.9 53.3 32.1
-w/o SP 68.6 76.8 52.5 33.5
-w/o Lcross 72.0 74.6 53.3 32.6

Table 4: Ablation study on ASP.
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Figure 2: Analysis on critical hyperparameters. The left fig-
ure shows the impact of the number of nearest neighbors k
in kNN graph, the right figure embodies the influence of hop
number l.

best results as k reaches 40 for Cora and 70 for Texas. There-
fore, choosing a relative large number of nearest neighbors
is a reasonable way. Moreover, for both homophilous dataset
Cora and non-homophilous dataset Texas, our model is ro-
bust to the changes of parameter k. Even in the worst settings
of k, ASP still achieves the best performance above all other
baselines in Table 2 and Table 3.

Secondly, we test the impact of hop number l and show
the results in Figure 2. For homophilous dataset Cora, when
l equals a relatively smaller value 10, our model achieves
the best result. While for non-homophilous dataset Texas,
when l reaches 30, our model achieves the best result. In
addition, our model is also robust to the parameter l, as under
all settings, ASP achieves comparable performance.

Conclusion
In this work, we propose a novel contrastive learning frame-
work, ASP, which effectively preserves both attribute and
structure information from the input graph. By performing
contrastive learning across three different graph views in a
joint fashion, the encoder network learns expressive node
representations. Extensive experiment results demonstrate
that our model outperforms representative baselines on var-
ious real-world datasets with different levels of homophily.
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