
Graph Ordering Attention Networks

Michail Chatzianastasis1, Johannes Lutzeyer1, George Dasoulas1,2, Michalis Vazirgiannis1

1 Ecole Polytechnique, Institut Polytechnique de Paris, France
2 Harvard University, Cambridge, MA, USA

{michail.chatzianastasis, johannes.lutzeyer}@polytechnique.edu, georgios_dasoulas@hms.harvard.edu,
mvazirg@lix.polytechnique.fr

Abstract

Graph Neural Networks (GNNs) have been successfully used
in many problems involving graph-structured data, achiev-
ing state-of-the-art performance. GNNs typically employ a
message-passing scheme, in which every node aggregates in-
formation from its neighbors using a permutation-invariant
aggregation function. Standard well-examined choices such
as the mean or sum aggregation functions have limited capa-
bilities, as they are not able to capture interactions among
neighbors. In this work, we formalize these interactions
using an information-theoretic framework that notably in-
cludes synergistic information. Driven by this definition, we
introduce the Graph Ordering Attention (GOAT) layer, a
novel GNN component that captures interactions between
nodes in a neighborhood. This is achieved by learning lo-
cal node orderings via an attention mechanism and pro-
cessing the ordered representations using a recurrent neu-
ral network aggregator. This design allows us to make use
of a permutation-sensitive aggregator while maintaining the
permutation-equivariance of the proposed GOAT layer. The
GOAT model demonstrates its increased performance in
modeling graph metrics that capture complex information,
such as the betweenness centrality and the effective size of
a node. In practical use-cases, its superior modeling capabil-
ity is confirmed through its success in several real-world node
classification benchmarks.

1 Introduction
Graph Neural Networks (GNNs) achieve remarkable suc-
cess in machine learning problems on graphs (Scarselli et al.
2009; Kipf and Welling 2017; Bronstein et al. 2021). In these
problems, data arises in the structure of attributed graphs,
where in addition to the node and edge sets defining a graph,
a set of feature vectors containing data on each node is
present. The majority of GNNs learn node representations
using a message-passing scheme (Gilmer et al. 2017). In
such message passing neural networks (MPNN) each node
iteratively aggregates the feature vectors or hidden represen-
tations of its neighbors to update its own hidden representa-
tion. Since no specific node ordering exists, the aggregator
has to be a permutation-invariant function (Xu et al. 2019).

Although MPNNs have achieved great results, they have
severe limitations. Their permutation-invariant aggregators

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

treat neighboring nodes as a set and process them individu-
ally, omitting potential interactions between the large num-
ber of subsets that the neighboring nodes can form. There-
fore, current MPNNs cannot observe the entire structure of
neighborhoods in a graph (Pei et al. 2020) and cannot cap-
ture all synergistic interactions between neighbors (Murphy
et al. 2019; Wagstaff et al. 2022).

The concept of synergy is important in many scientific
fields and is central to our discussion here. It expresses the
fact that some source variables are more informative when
observed together instead of independently. For example in
neuroscience, synergy is observed when the target variable
corresponds to a stimulus and the source variables are the re-
sponses of different neurons (Bizzi and Cheung 2013). In the
Statistics literature (Cox 1984), the modelling interaction of
effects, i.e., synergy of independent variables, has also been
shown to be advantageous. Synergistic information is often
presented in biological cells, where extra information is pro-
vided by patterns of coincident spikes from several neurons
(Brenner et al. 2000). In gene-gene interactions, synergy is
present when the contribution of two mutations to the pheno-
type of a double mutant is larger than the expected additive
effects of the individual mutations (Pérez-Pérez, Candela,
and Micol 2009). We believe the consideration of synergis-
tic information to have great potential in the GNN literature.

In this paper, to better understand interactions between
nodes, we introduce the Partial Information Decomposition
(PID) framework (Williams and Beer 2010) to the graph
learning context. We decompose the information that neigh-
borhood nodes have about the central node into three parts:
unique information from each node, redundant information,
and synergistic information due to the combined informa-
tion from nodes. We furthermore show that typical MPNNs
cannot capture redundant and synergistic information.

To tackle these limitations we propose the Graph Order-
ing Attention (GOAT) layer, a novel architecture that can
capture all sources of information. We employ self-attention
to construct a permutation-invariant ordering of the nodes in
each neighborhood before we pass these ordered sequences
to a Recurrent Neural Network (RNN) aggregator. Using a
permutation-sensitive aggregator, such as the Long Short-
Term Memory (LSTM) model, allows us to obtain larger
representational power (Murphy et al. 2019) and to capture
the redundant and synergistic information. We further ar-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

7006

gue that the ordering of neighbors plays a significant role in
the final representation (Vinyals, Bengio, and Kudlur 2016)
and demonstrate the effectiveness of GOAT versus other
non-trainable and/or permutation-sensitive aggregators with
a random ordering (Hamilton, Ying, and Leskovec 2017).

Our main contributions are summarized as follows:

1. We present a novel view of learning on graphs based on
information theory and specifically on the Partial Infor-
mation Decomposition. We further demonstrate that typ-
ical GNNs can not effectively capture redundant and syn-
ergistic information between nodes.

2. We propose the Graph Ordering Attention (GOAT) layer,
a novel GNN component that can capture synergistic in-
formation between nodes using a recurrent neural net-
work (LSTM) as an aggregator. We highlight that the or-
dering of the neighbors is crucial for the performance and
employ a self-attention mechanism to learn it.

3. We evaluate GOAT in node classification and regression
tasks on several real-world and synthetic datasets and
outperform an array of state-of-the-art GNNs.

2 Preliminaries and Related Work
We begin by defining our notation and problem context.

Problem Formulation and Basic Notation. Let a graph
be denoted by G = (V,E), where V = {v1, . . . , vN} is
the node set and E is the edge set. Let A ∈ RN×N denote
the adjacency matrix, X = [x1, . . . , xN]T ∈ RN×dI be
the node features and Y = [y1, . . . , yN]T ∈ NN the label
vector. We denote the neighborhood of a vertex u by N (u)
such that N (u) = {v : (v, u) ∈ E} and the neighborhood
features by the multiset XN (u) = {xv : v ∈ N (u)}. We
also define the neighborhood of u including u as N (u) =
N (u) ∪ {u} and the corresponding features as XN (u). The
goal of semi-supervised node classification and regression is
to predict the labels of a test set given a training set of nodes.

Graph Neural Networks. GNNs exploit the graph struc-
ture A and the node features X in order to learn a hid-
den representation hu of each node u such that the label yu
can be predicted from hu (Gori, Monfardini, and Scarselli
2005; Scarselli et al. 2009). Most approaches use a neighbor-
hood message-passing scheme, in which every node updates
its representation by aggregating the representations of its
neighbors and combining them with its own representation,

m(l)
u = Aggregate(l)

({
h(l−1)
v : v ∈ N (u)

})
, (1)

h(l)
u = Combine(l)

(
h(l−1)
u ,m(l)

u

)
,

where h(l)
u denotes the hidden representation of node u at the

lth layer of the GNN architecture. Note that we often omit
the superscript (l) to simplify the notation.

Typically GNNs employ a permutation-invariant “Aggre-
gate” function to yield a permutation-equivariant GNN layer
(Bronstein et al. 2021). Permutation invariance and equivari-
ance will be defined formally now.

Definition 2.1. Let SM denote the group of all permu-
tations of a set containing M elements. A function f(·)

is permutation-equivariant if for all π ∈ SM we have
πf({x1, x2, .., xM}) = f({xπ(1), xπ(2), . . . , xπ(M)}). A
function f(·) is permutation-invariant if for all π ∈ SM we
have f({x1, x2, .., xM}) = f({xπ(1), xπ(2), . . . , xπ(M)}).

Common Aggregators and Their Limitations
We now describe some of the most well-known aggregators
and discuss their limitations. Our analysis is based on two
important properties that an aggregator should have:
Relational Reasoning: The label of a node may depend not
only on the unique information of each neighbor but also
on the joint appearance and interaction of multiple nodes
(Wagstaff et al. 2022). With the term “relational reason-
ing” we describe the property of capturing these interac-
tions, i.e., synergistic information, when aggregating neigh-
borhood messages.
Injectivity: As shown in Xu et al. (2019), a powerful GNN
should map two different neighborhoods, i.e., multisets of
feature vectors, to different representations. Hence, the ag-
gregator should be injective.

The mean and max functions are commonly used to ag-
gregate neighborhood information. However, they are nei-
ther injective nor able to perform relational reasoning as they
process each node independently. The summation operator
followed by a multilayer perceptron was recently proposed
(Xu et al. 2019). This aggregator is injective but cannot per-
form relational reasoning and usually requires a large latent
dimension (Wagstaff et al. 2019, 2022). In the Graph Atten-
tion Networks (GAT) (Veličković et al. 2018a), the repre-
sentation of each node is computed by applying a weighted
summation of the representations of its neighbors. However,
the attention function is not injective since it fails to capture
the cardinality of the neighborhood. Recently, an improved
version of the GAT was published (Brody, Alon, and Yahav
2022) and also, a new type of attention was proposed (Zhang
and Xie 2020), that preserves the cardinality of the neighbor-
hood and therefore is injective. Nevertheless, none of these
models can capture interactions between neighbor nodes as
each attention score is computed based only on the represen-
tations of the central node and one neighbor node. In Section
3 we provide further details on why typical aggregators fail,
from an information theoretic perspective.

Permutation-Sensitive Aggregators
Several authors have proposed the use of permutation-
sensitive aggregators to tackle the limitations of
permutation-invariant aggregators. In particular, Niepert,
Ahmed, and Kutzkov (2016) propose to order nodes in a
neighborhood according to some labeling, e.g., the betwee-
ness centrality or PageRank score, to assemble receptive
fields, possibly extending beyond the 1-hop neighborhood
of a central node, which are then fed to a Convolutional
Neural Network (CNN) architecture. While this approach
demonstrates good performance, it relies on the fixed chosen
ordering criterion to be of relevance in the context of a given
dataset and chosen learning task. Gao, Wang, and Ji (2018)
propose to only work with the k largest hidden state values
for each hidden state dimension in each neighborhood.

7007

While not explicitly ordering the neighboring nodes, this
operation summarises any given neighborhood in a fixed
size feature matrix and enables the use of permutation-
sensitive aggregators, CNNs in their case. Of course, the
choice of k involves a loss of information in almost all
cases, i.e., when k is smaller than the maximal degree in
the graph. In the Janossy Pooling (Murphy et al. 2019)
approach, a permutation-invariant aggregator is obtained
by applying a permutation-sensitive function to all n!
permutations. Since the computational cost of this approach
is very high, they also propose an approximation, sampling
only a limited number of permutations. Similarly, in the
GraphSage (Hamilton, Ying, and Leskovec 2017) model,
a random permutation of each neighborhood is considered
and then passed to an LSTM. However, it has been observed
that even in the graph domain, where typically no natural
ordering of nodes is known, there exist some orderings that
lead to better model performance (Vinyals, Bengio, and
Kudlur 2016). Whether these high performance orderings
are discovered during the training process is left to chance
in the GraphSage and Janossy Pooling models. In contrast,
our method learns a meaningful ordering of neighbors with
low complexity by leveraging the attention scores.

3 An Information Theory Perspective
In this section, we show how neighborhood dependencies
can be encoded in the Partial Information Decomposition
framework. This decomposition will motivate us to build a
more expressive GNN layer, that is able to capture various
interactions among neighborhood nodes.

Partial Information Decomposition
The domain of information theory provides a well-
established framework for measuring neighborhood influ-
ence. A few graph representation learning results capitalize
on information-theoretic tools, either assuming a probability
distribution over the feature vectors (Veličković et al. 2018b;
Peng et al. 2020) or over the structural characteristics (Luo
et al. 2021; Dasoulas et al. 2020).

The majority of GNNs (including the attention-based
models) use an aggregation that does not capture interac-
tions among neighbors. Mutual information is a measure that
can give us insight into the omitted informative interactions.

Definition 3.1. For a given node u ∈ V, let HN (u) =

[hv1 , . . . , hv|N(u)|
] ∈ R|N (u)|×d denote the hidden repre-

sentations of the nodes in N (u). Then, if we assume that
HN (u) and hu follow distributions p(HN (u)) and p(hu),

respectively, the mutual information between hu and HN (u)

is defined as

I(hu;HN (u)) =

∫∫
p
(
hu,HN (u)

)
log

 p
(
hu,HN (u)

)
p(hu)p

(
HN (u)

)
 dhudHN (u). (2)

Figure 1: An illustration of the Partial Information Decom-
position for the case of one central node u and two neighbors
v1, v2. Each of the mutual information terms I(hu;hv1

) and
I(hu;hv2

) consists of the unique information provided by
v1 (Uv1 , blue patch) and v2 (Uv2 , red patch), respectively,
as well as the shared information of v1 and v2 (R, purple
patch). The joint mutual information I(hu;hv1 , hv2) (yel-
low box encompassing the inner two circles) consists of four
elements: the unique information in the neighbors v1 and v2,
their redundant information and additionally the synergistic
information, I(hu;hv1

, hv2
) = Uv1

+ Uv2
+R+ S.

Following Williams and Beer (2010), (2) can be decom-
posed into three components as follows:

I(hu;HN (u)) =
∑

v∈N (u)

Uv +R+ S, (3)

• The unique information Uv for all v ∈ N (u) corresponds
to the information a neighbor carries independently and
no other neighbor has,

• The redundant information R is the information that can
be found overlapping in two or more neighbors and

• The synergistic information S expresses the information
that can be captured only if we take the interactions
among neighbors into account.

In Figure 1, we provide an illustration of the PID frame-
work. To exemplify this concept we discuss it in the context
of the much-used Cora dataset, for which node feature vec-
tors contain a binary indication of the presence or absence
of certain keywords in the abstracts of scientific publications
(Sen et al. 2008). For this dataset unique information takes
the form of keywords, which are present in only one ab-
stract in a given neighborhood, redundant information refers
to keywords, which are repeatedly present without their total
number of appearances being of consequence to our learning
task, and synergistic information refers to insight that can be
gained by observing a certain combination of keywords.

Information Captured by Aggregators
To better understand the information captured by standard
GNNs, we first analyze the contribution of each neighboring
node to the aggregated representation of a central node.

We assume the structure of an MPNN model, in which
each node updates its hidden representation by aggregating
information of its neighbors. Further, we denote the message

7008

Sequence of
Neighborhood

	

[, , ,]
Sequence

Model

(LSTM)

Ordering
Module

(Attention)

Figure 2: An illustration of a GOAT layer applied to a single node vi. A self-attention mechanism is used to rank neighborhood
nodes. Then, the ordered neighborhood representations are passed to an LSTM producing the updated representation of node vi.

that a given central node u receives from a neighboring node
v by cuv ∈ Rd. Then, cuv can be interpreted as the contri-
bution of node v to the hidden state of u and the aggregated
messages in (1) can be expressed as mu =

∑
v∈N (u) cuv.

For the Graph Isomorphism Network (GIN) and Graph
Convolutional Network (GCN) we observe that cuv =
f(Suv, hv) = Suvhv , where S ∈ RN×N is a graph shift
operator, such as A or (D + I)−1/2(A + I)(D + I)−1/2,
and D denotes the graph’s degree matrix. The contribution
of each neighbor v is only determined by its hidden state hv

and the value Suv of the graph shift operator. For the GAT
we observe that cuv = f(hu, hv) = auvhv , where auv is the
attention score that is computed from hu and hv . The contri-
bution of each neighbor is also affected by the hidden state
of the central node, but is not affected by the other neigh-
bors.

We argue that processing each neighbor individually lim-
its current aggregators, as any interactions among neigh-
bors are ignored by design. Therefore, they can not cap-
ture synergistic information between nodes, i.e., the amount
of information that is captured equals

∑
v∈N (u) I(hu;hv).

Consider the example of a neighborhood with two neigh-
bors v1, v2. The information captured by a standard GNN
is expressed in terms of the PID as follows, I(hu;hv1) +
I(hu;hv2

) = Uv1
+ Uv2

+ 2R, which is different from the
joint mutual information I(hu;hv1

, hv2
) = Uv1

+Uv2
+R+

S. Thus, the captured information from a standard GNN is
less than the information present in the neighborhood due to
the absence of synergistic information.

To address this problem, we introduce a dependence of
the contribution cuv of the neighbor node v on all neighbors
of u. Therefore, cuv is now a function not only of hu and hv,
but also of hj for j ∈ N (u), i.e., cuv = f(S,HN (u)). To
achieve this, we learn a meaningful ordering of the neighbor
nodes using an attention mechanism and then use an RNN
to aggregate the representations of the neighbors.

4 Graph Ordering Attention Layer
We now present the architecture of our Graph Ordering At-
tention (GOAT) layer and highlight its theoretical advantages
over other message-passing models. A deep GNN can be
constructed by stacking several GOAT layers or combining
GOAT layers with other GNN layers. A GOAT layer (illus-
trated in Figure 2) consists of two parts:

1) The Ordering Part (red box in Figure 2) transforms
the unordered multiset of neighbor hidden state vectors, each
of dimension d, {h1, . . . , hQ}, with Q =

∣∣N (u)
∣∣ , into an

ordered sequence, using an attention mechanism,

[hπ(1), . . . , hπ(Q)] = OrderingPart({h1, . . . , hQ}),

where the ordering is given by the permutation function π(·).
Specifically, similar to the GAT model, for each node

vi ∈ V , we first apply a shared linear transformation pa-
rameterized by a weight matrix W1 ∈ Rd×d and then per-
form a shared self-attention mechanism parameterized by
w⃗2 ∈ R2d to compute the attention scores

aij = LeakyReLU
(
w⃗T

2 [W1hi∥W1hj]
)
, (4)

for all j such that vj ∈ N (vi). Then, we sort the coefficients
in decreasing order of magnitude

aiπ(1), . . . , aiπ(Q) = sort (ai1, . . . , aiQ) , (5)

obtaining a specific permutation π of the nodes in the neigh-
borhood. When all attention scores are different from each
other, we observe that the sorting function in (5) is determin-
istic and permutation invariant. In cases where two or more
nodes have equal attention scores, we resort to an additional
sorting criterion, described in Appendix A, to ensure that our
sorting function is deterministic and permutation invariant.

Once we obtain the permutation π, we construct the sorted
sequence of neighbourhood hidden states

hsorted(i) =

[
eaiπ(1)∑Q
j=1 e

aiπ(j)

W1hπ(1), . . . ,

eaiπ(Q)∑Q
j=1 e

aiπ(j)

W1hπ(Q)

]
. (6)

Note that we use the attention scores to both order the hid-
den states and, after normalization via the softmax function,
as coefficients for the hidden states. Only due to the occur-
rence of the attention coefficients in (6) are we able to obtain
gradients in the backpropagation algorithm for W1 and w⃗2

(the sorting function in (5) is not differentiable). Note fur-
ther that any self-attention mechanism, such as the GATv2
by Brody, Alon, and Yahav (2022), can be used instead of
GAT, to obtain the attention scores in a GOAT layer.

7009

2) The Sequence Modeling Part (yellow box in Figure 2)
takes the ordered sequences of nodes produced by the Order-
ing Part as input and processes them using an RNN, that is
shared across all neighborhoods, to generate the new hidden
states. In the PID context, the Bidirectional LSTM (Hochre-
iter and Schmidhuber 1997) appears to be the best suited
RNN available. Its forget gate allows us to discard redun-
dant information; the input gate is sufficiently expressive to
isolate unique information; while its memory states allow
for the identification of synergistic information.

hnew
i = LSTM

(
hsorted(i)

)
∈ RdO . (7)

Since we utilize a Bidirectional LSTM the contribution of
each node, discussed in Section 3, depends on all other hid-
den states in the neighborhood. Specifically, each direction
in the Bidirectional LSTM ensures that both the nodes pre-
ceding and succeeding a particular node j are taken into ac-
count when calculating the contribution cij of node j.

Note that the choice of the LSTM is made without loss
of generality and any RNN could be chosen in the Sequence
Modeling Part. Indeed, in Section 5 we will observe results
for a variety of RNNs chosen as part of our GOAT layer.
To work with a faster, more scalable implementation we pad
all neighborhood sequences with zero vectors to be equal in
length to the sequence of hidden states arising in the largest
neighborhood in the graph. This allows us to train the LSTM
on larger batches of neighborhoods in parallel. The alterna-
tive implementation, where neighborhood sequences of dif-
ferent lengths are fed to the LSTM individually is equally
valid, while slower, implementation.

Multi-Head Attention Ordering. We can also employ
multi-head attention to provide additional representational
power to our model. We see several advantages in the con-
sideration of multiple heads in our architecture. If only one
sensible ordering of the nodes in a neighborhood exists, then
multiple heads can help us estimate this ordering more ro-
bustly. If on the other hand, there exist several sensible or-
derings of the nodes in a neighborhood, then a multi-head
architecture allows us to take all of these into account in our
model. Let K be the number of the attention heads. Equation
(4) for the k-th attention head is transformed as

akij = ak(Wk
1hi,W

k
1hj).

Then we sort the K sets of attention scores obtaining mul-
tiple orderings of the neighborhood, hk

sorted(i) for k ∈
{1, . . . ,K}. To generate the final representation of the nodes
we concatenate the features from the K independent Bidi-
rectional LSTM models, i.e.,

hnew
i =

K

∥
k=1

LSTMk
(
hk
sorted(i)

)
.

Complexity. The time complexity of a single-head
GOAT layer is O(|V |dOd+ |E|dO + |V |dmax log(dmax) +
|V |dmax4d(dO + d + 3)), where dmax denotes the maxi-
mal degree in the graph. For dmax ≪ d, the only addi-
tional complexity introduced by our model manifests in the
multiplicative dmax term in the last summand of the com-
plexity expression. Limiting the maximal degree by apply-
ing a sampling strategy, limits the additional complexity our

model introduces. Hence, the time complexity of our GOAT
model can be comparable to standard MPNNs models. Note
that the space complexity of a GOAT layer only exceeds the
space complexity of a GAT layer by the space complexity
of the LSTM model. A more detailed discussion of the com-
plexity of our model can be found in Appendix B.

Permutation-Equivariance and Injectivity of GOAT.
Recall from Section 2 that the permutation-equivariance and
injectivity are desirable properties for a GNN layer to have.
We will now prove that our GOAT layer satisfies both of
these criteria.
Proposition 4.1 (Permutation-Equivariance of GOAT). Our
GOAT layer performs a permutation-equivariant transfor-
mation, with respect to node label permutations, of the hid-
den states corresponding to the nodes in a graph.

Hence, our GOAT layer benefits from the expressivity of a
permutation-sensitive aggregator, while acting on the node’s
hidden representations in a permutation-equivariant way.
Our result on the injectivity of a GOAT layer relies on the
concept of function approximation in probability. We repro-
duce the definition of this concept from Hammer (2000).
Definition 4.1. Let X denote the space of finite lists with
elements in Rq for q ∈ N and P be a probability measure on
X . For measurable functions f1, f2 : X → Rt we say that
f1 approximates f2 with accuracy ϵ > 0 and confidence
δ > 0 in probability if P (x ∈ X | |f1(x)−f2(x)| > ϵ) < δ.

Theorem 1 (Injectivity of GOAT). Assume that for all nodes
u ∈ V the multisets of hidden states corresponding to its
neighbors are finite and have elements in Rq for q ∈ N.
Then, there exists a GOAT layer approximating a measur-
able function arbitrarily well in probability for which any
two distinct multisets are mapped to distinct node represen-
tations.

Therefore, we have shown that our GOAT layer is suffi-
ciently expressive to approximate any measurable injective
function in probability. The proofs of Proposition 4.1 and
Theorem 1 are in Appendices C and D, respectively.

5 Experimental Evaluation
We perform an extensive evaluation of our GOAT model and
compare against a wide variety of state-of-the-art GNNs, on
three synthetic datasets as well as on nine node-classification
benchmarks. Our code is publicly available on GitHub1.

Baselines. We compare GOAT against the following
state-of-the-art GNNs for node classification: 1) GCN the
classical graph convolution neural network, 2) Graph-
SAGE(mean) that aggregates by taking the elementwise
mean value, 3) GraphSAGE(lstm) that aggregates by feed-
ing the neighborhood hidden states in a random order to an
LSTM, 4) GIN the injective summation aggregator, 5) GAT
that aggregates with a learnable weighted summation oper-
ation, 6) PNA (Corso et al. 2020) that combines multiple
aggregators with degree-scalers. We also compare with 7) a
standard MLP that only uses node features and does not in-
corporate the graph structure. To better understand the im-
pact of the choice of RNN in the GOAT architecture, we

1Code: https://github.com/MichailChatzianastasis/GOAT

7010

Method Top-2 pooling Betweenness Centrality (MSE) Effective Size (MSE)
(Accuracy) N=100, p=0.09 N=1000, p=0.01 N=100, p=0.09 N=1000, p=0.01

GCN 57.35 ±4.13 0.0063 ±0.0036 0.0020 ±0.0008 0.0135 ±0.0067 0.00380 ±0.00120
GraphSAGE (mean) 61.45 ±5.79 0.0401 ±0.0158 0.0221 ±0.0069 0.0374 ±0.0085 0.02430 ±0.00560
GraphSAGE (lstm) 65.05 ±8.71 0.0094 ±0.0073 0.0153 ±0.0105 0.0022 ±0.0017 0.00080 ±0.00020
GIN 56.40 ±5.26 0.0083 ±0.0052 0.0042 ±0.0015 0.0024 ±0.0016 0.00070 ±0.00030
GAT 53.34 ±2.43 0.0409 ±0.0158 0.0220 ±0.0068 0.0382 ±0.0079 0.02480 ±0.00560
PNA 61.50 ±10.9 0.0115 ±0.0089 0.0020 ±0.0008 0.0121 ±0.0119 0.00137 ±0.00035
GOAT(lstm) 69.21 ±5.10 0.0038 ±0.0019 0.0006 ±0.0002 0.0016 ±0.0008 0.00020 ±0.00008

Table 1: Classification accuracy (± standard deviation) on the “Top-2 pooling” synthetic dataset and MSE (± standard devia-
tion) results on the synthetic datasets “Betweenness Centrality” and “Effective Size” for two different types of random graphs.

provide results from three different GOAT architectures, in
which the standard RNN, GRU (Cho et al. 2014) and LSTM
are used.

Setup. For a fair comparison we use the same training
process for all models adopted by Veličković et al. (2018a).
We use the Adam optimizer (Kingma and Ba 2015) with an
initial learning rate of 0.005 and early stopping for all mod-
els and datasets. We perform a hyperparameter search for all
models on a validation set. The hyperparameters include the
size of hidden dimensions, dropout, and number of atten-
tion heads for GAT and GOAT. We fix the number of layers
to 2. In our experiments, we combine our GOAT layer with
a GAT or GCN layer to form a 2-layer architecture. More
information about the datasets, training procedure, and hy-
perparameters of the models is in Appendix E.

Top-2-Pooling
In this task, we sample Erdős–Rényi random graphs with
1000 nodes and a probability of edge creation of 0.01. We
draw 1-dimensional node features from a Gaussian Mixture
model with three equally weighted components with means
1, 1 and 2 and standard deviations 1, 4 and 1. We label each
node with a function ϕ(·, ·) of the two 1- or 2-hop neighbors
that have the two different largest features, i.e., to each node
u ∈ V we assign a label yu = ϕ(xa, xb), where xa and
xb are the largest, distinct node features of all nodes in the
2-hop neighborhood of u with nodes features at a distance
of 2 being down-weighted by a factor of 0.8. We set ϕ to
be ϕ(xa, xb) =

√
exp(xa) + exp(xb). Finally, to transform

this task to node classification we bin the y values into two
equally large classes. We use 60/20/20 percent of nodes for
training, validation and testing.

We report the average classification accuracy and the stan-
dard deviation across 10 different random graphs in Table 1.
Our GOAT model outperforms the other GNNs by a large
margin. Specifically, our model leads to an 18.36% increase
in performance over GAT and 6.65% increase over Graph-
Sage(lstm). We explain this performance gap with the fol-
lowing hypothesis. To find the largest element of a set one
must consider 2-tuple relationships therefore synergistic in-
formation is crucial for this task. An LSTM can easily per-
form the necessary comparisons with a 2-dimensional hid-
den space. As nodes are processed they can either be dis-
carded via the forget gate, if they are smaller than the cur-
rent hidden state, or the hidden state is updated to contain

the new feature node. In contrast, typical GNNs need ex-
ponentially large hidden dimensions in order to capture the
necessary information as they cannot efficiently discard re-
dundant information. We observe that GraphSage(lstm) is
the second-best performing model due to its LSTM aggre-
gator. However, it does not learn a meaningful ordering of
the nodes that simplifies this task.

Prediction of Graph Structural Properties
The experiments in this section establish the ability of our
GOAT model to predict structural properties of nodes. The
first task is to predict the betweenness centrality of each
node and the second task is to predict the effective size of
each node. Both of these metrics, defined in Appendix E,
are affected by the interactions between the neighbor nodes,
so synergistic information is crucial for these tasks. We set
the input features to the identity matrix, i.e., X = I and
use two parameter settings to sample Erdős–Rényi random
graphs, namely (N, p) ∈ {(100, 0.09), (1000, 0.1)}, where
N is the number of nodes and p is the probability of edge
creation. We use 60% of nodes for training, 20% for valida-
tion and 20% for testing. We train the models by minimizing
the Mean Squared Error (MSE).

We report the mean and standard deviation accuracy and
MSE across 10 graphs of each type in Table 1. Our model
outperforms all models in both tasks and in both graph pa-
rameter settings. GOAT can capture the synergistic informa-
tion between the nodes, which is crucial for predicting the
betweenness centrality and effective size. The other aggre-
gators miss the structural information of nodes in neighbor-
hoods. We observe that GraphSAGE(lstm) that uses a ran-
dom node ordering is not on par with GOAT, indicating that
the learned ordering in GOAT is valuable here also.

Node Classification Benchmarks
We utilize nine well-known node classification benchmarks
to validate our proposed model in real-world scenarios orig-
inating from a variety of different applications. Specifi-
cally, we use 3 citation network benchmark datasets: Cora,
CiteSeer (Sen et al. 2008), ogbn-arxiv (Hu et al. 2020),
1 disease spreading model: Disease (Chami et al. 2019),
1 social network: LastFM Asia (Rozemberczki and Sarkar
2020), 2 co-purchase graphs: Amazon Computers, Ama-
zon Photo (Shchur et al. 2019) and 2 co-authorship graphs:
Coauthor CS,Physics (Shchur et al. 2019). For the GOAT

7011

Method Cora CiteSeer Disease LastFM Asia Computers Photo CS Physics

MLP 43.8 52.9 79.10 ±0.97 72.27 ±1.00 79.53 ±0.66 87.89 ±1.04 93.76 ±0.26 95.85 ±0.20
GCN 81.4 67.5 88.98 ±2.21 83.58 ±0.93 90.72 ±0.50 93.99 ±0.42 92.96 ±0.32 96.27 ±0.22
GraphSAGE (mean) 77.2 65.3 88.79 ±1.95 83.07 ±1.19 91.47 ±0.37 94.32 ±0.46 94.11 ±0.30 96.31 ±0.22
GraphSAGE (lstm) 74.1 59.9 90.50 ±2.15 86.85 ±1.07 91.26 ±0.51 94.32 ±0.64 93.46 ±0.29 96.40 ±0.16
GIN 75.5 62.1 90.20 ±2.23 82.94 ±1.25 84.68 ±2.33 90.07 ±1.19 92.38 ±0.38 96.38 ±0.16
GAT 83.0 69.3 89.13 ±2.22 77.57 ±1.82 85.41 ±2.95 90.30 ±1.76 92.78 ±0.27 96.17 ±0.18
PNA 76.4 58.9 86.84 ±1.89 83.24 ±1.10 90.80 ±0.51 94.35 ±0.68 91.83 ±0.33 96.25 ±0.21
GOAT(lstm) 84.9 69.5 92.11 ±1.88 83.29 ±0.91 91.34 ±0.50 94.38 ±0.66 94.21 ±0.42 96.69 ±0.31
GOAT(gru) 83.5 70.0 91.97 ±1.90 83.35 ±0.91 91.54 ±0.48 94.22 ±0.58 93.62 ±0.22 96.32 ±0.24
GOAT(rnn) 84.2 67.9 91.67 ±1.69 83.21 ±0.98 89.10 ±0.51 92.45 ±0.60 93.48 ±0.19 96.44 ±0.20

Table 2: Node classification accuracy using different train/validation/test splits. We highlight the best-performing model and
underline the second-best. Since there exists a single standardized split for Cora and CiteSeer no standard deviations are given.

Method ogbn-arxiv

GCN 33.3 ±1.2
GraphSAGE 54.6 ±0.3
GAT 54.1 ±0.5
GOAT(lstm) 55.1 ±0.4

Table 3: Node classification accuracy on the ogbn-arxiv
dataset. We used the same setup and the reported results
from Kim and Oh (2022).

results on the ogbn-arxiv dataset we randomly sample 100
neighbors per node to represent the neighborhoods for faster
computation. We report the classification accuracy results in
Tables 2 and 3. Our model outperforms the others in eight of
nine datasets.

Ablation Studies on the Learned Ordering
In our GOAT architecture, we make the implicit assumption
that ordering neighborhoods by the magnitude of the train-
able attention scores is an ordering that results in a well-
performing model. We now perform several ablation studies
where we compare the GOAT model to models with fixed
neighborhood node orderings (GOAT-fixed).

We train our GOAT model on the Cora and Disease
datasets, using 8 attention heads and the LSTM aggrega-
tor. We store the ordering of the nodes in each neighbor-
hood for each attention head for each epoch. Then, we train
various (GOAT-fixed) models that use different fixed or-
derings extracted from the initial model. Specifically, we
train 4 different models with orderings extracted from the
0, 100, 200, 500 epochs, respectively. We run the experiment
3 times and report the results in Table 4. We observe that
GOAT-fixed-0, which uses random ordering, since the or-
dering is extracted before training, achieves the worst per-
formance. This highlights the importance of a meaningful
ordering of the nodes, and the ability of our model to learn
one. We also observe that the fixed ordering extracted from
epoch 100 outperforms the GOAT model. We believe this
phenomenon to be associated with the training dynamics of
our model. Having a fixed ordering may lead to more sta-
bility in the learning of high-performing model parameters
not associated with the ordering. Learning an ordering in the

Method Cora Disease

GOAT 83.36 ±0.42 90.64 ±0.40
GOAT-fixed-0 81.56 ±0.19 90.48 ±0.29
GOAT-fixed-100 83.80 ±1.14 90.90 ±0.26
GOAT-fixed-200 82.13 ±0.27 90.57 ±0.59
GOAT-fixed-500 82.27 ±0.34 90.50 ±0.49

Table 4: Accuracy of the GOAT model using fixed order-
ings extracted from different epochs of the baseline model’s
training.

first run of our model and then training with a fixed ordering
may therefore be most advisable.

We perform additional ablation studies in Appendix F.
Firstly, we investigate the potential use of the GATv2 model
instead of the GAT model in a GOAT layer and find that
the two model variants perform comparably. Secondly, we
observe the GOAT model to significantly outperform the
Janossy Pooling approach on the Cora, CiteSeer and Dis-
ease datasets. We further examine the impact of the number
of attention heads in our model. We observe one attention
head to yield optimal performance on Cora, four attention
heads are optimal for CiteSeer, while eight attention heads
resulted in the best performing model in the Disease dataset.

6 Conclusion
We have presented a novel view of learning on graphs by
introducing the Partial Information Decomposition to the
graph context. This has allowed us to identify that cur-
rent aggregation functions used in GNNs often fail to cap-
ture synergistic and redundant information present in neigh-
borhoods. To address this issue we propose the Graph Or-
dering Attention layer, which makes use of a permutation-
sensitive aggregator capable of capturing synergistic and
redundant information, while maintaining the permutation-
equivariance property. The GOAT layer is implemented by
first learning an ordering of nodes using a self-attention
mechanism and by then applying an RNN to the ordered rep-
resentations. This theoretically grounded architecture yields
improved accuracy in the node classification and regression
tasks on both synthetic and real-world networks.

7012

Acknowledgments
The work of Dr. Johannes Lutzeyer and Prof. Michalis Vazir-
giannis is supported by the ANR chair AML-HELAS (ANR-
CHIA-0020-01).

References
Bizzi, E.; and Cheung, V. C. 2013. The neural origin of
muscle synergies. Frontiers in computational neuroscience,
7: 51.
Brenner, N.; Strong, S.; Koberle, R.; Bialek, W.; and
Steveninck, R. 2000. Synergy in a Neural Code. Neural
computation, 12: 1531–52.
Brody, S.; Alon, U.; and Yahav, E. 2022. How Attentive are
Graph Attention Networks? In International Conference on
Learning Representations (ICLR).
Bronstein, M. M.; Bruna, J.; Cohen, T.; and Veličković, P.
2021. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges. arXiv:2104.13478.
Chami, I.; Ying, R.; Ré, C.; and Leskovec, J. 2019. Hyper-
bolic Graph Convolutional Neural Networks. Advances in
neural information processing systems (NeurIPS).
Cho, K.; van Merriënboer, B.; Bahdanau, D.; and Bengio,
Y. 2014. On the Properties of Neural Machine Translation:
Encoder–Decoder Approaches. In Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in Sta-
tistical Translation, 103–111.
Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; and Veličković,
P. 2020. Principal Neighbourhood Aggregation for Graph
Nets. In Advances in Neural Information Processing Sys-
tems (NeurIPS).
Cox, D. R. 1984. Interaction. International Statistical Re-
view/Revue Internationale de Statistique, 1–24.
Dasoulas, G.; Nikolentzos, G.; Scaman, K.; Virmaux, A.;
and Vazirgiannis, M. 2020. Ego-based Entropy Measures for
Structural Representations. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
Gao, H.; Wang, Z.; and Ji, S. 2018. Large-scale learnable
graph convolutional networks. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge dis-
covery & data mining, 1416–1424.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International conference on machine learning
(ICML), 1263–1272. PMLR.
Gori, M.; Monfardini, G.; and Scarselli, F. 2005. A new
model for learning in graph domains. In IEEE international
joint conference on neural networks (IJCNN), 729–734.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. Advances in neural
information processing systems (NIPS), 30.
Hammer, B. 2000. On the approximation capability of recur-
rent neural networks. Neurocomputing, 31(1-4): 107–123.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural computation, 9(8): 1735–1780.

Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open graph benchmark:
Datasets for machine learning on graphs. Advances in neural
information processing systems, 33: 22118–22133.
Kim, D.; and Oh, A. 2022. How to find your friendly
neighborhood: Graph attention design with self-supervision.
International Conference on Learning Representations
(ICLR).
Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In International Conference on
Learning Representations (ICLR).
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations (ICLR).
Luo, G.; Li, J.; Peng, H.; Yang, C.; Sun, L.; Yu, P. S.;
and He, L. 2021. Graph Entropy Guided Node Em-
bedding Dimension Selection for Graph Neural Networks.
arXiv:2105.03178.
Murphy, R. L.; Srinivasan, B.; Rao, V.; and Ribeiro,
B. 2019. Janossy Pooling: Learning Deep Permutation-
Invariant Functions for Variable-Size Inputs. In Interna-
tional Conference on Learning Representations (ICLR).
Niepert, M.; Ahmed, M.; and Kutzkov, K. 2016. Learn-
ing convolutional neural networks for graphs. In Interna-
tional conference on machine learning (ICML), 2014–2023.
PMLR.
Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B.
2020. Geom-GCN: Geometric Graph Convolutional Net-
works. In International Conference on Learning Represen-
tations (ICLR).
Peng, Z.; Huang, W.; Luo, M.; Zheng, Q.; Rong, Y.; Xu,
T.; and Huang, J. 2020. Graph representation learning via
graphical mutual information maximization. In Proceedings
of The Web Conference (WWW), 259–270.
Pérez-Pérez, J. M.; Candela, H.; and Micol, J. L. 2009. Un-
derstanding synergy in genetic interactions. Trends in Ge-
netics, 25(8): 368–376.
Rozemberczki, B.; and Sarkar, R. 2020. Characteristic func-
tions on graphs: Birds of a feather, from statistical descrip-
tors to parametric models. In Proceedings of the 29th ACM
international conference on information & knowledge man-
agement (CIKM), 1325–1334.
Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The Graph Neural Network Model.
IEEE Transactions on Neural Networks, 20(1): 61–80.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective Classification in Net-
work Data. AI Magazine, 29(3): 93.
Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann,
S. 2019. Pitfalls of Graph Neural Network Evaluation. In
R2L Workshop at NeurIPS.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.;
Liò, P.; and Bengio, Y. 2018a. Graph Attention Networks.
In International Conference on Learning Representations
(ICLR).

7013

Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
Y.; and Hjelm, R. D. 2018b. Deep Graph Infomax. In Inter-
national Conference on Learning Representations (ICLR).
Vinyals, O.; Bengio, S.; and Kudlur, M. 2016. Order Mat-
ters: Sequence to sequence for sets. In International Confer-
ence on Learning Representations (ICLR).
Wagstaff, E.; Fuchs, F.; Engelcke, M.; Posner, I.; and Os-
borne, M. A. 2019. On the limitations of representing
functions on sets. In International Conference on Machine
Learning (ICML), 6487–6494. PMLR.
Wagstaff, E.; Fuchs, F. B.; Engelcke, M.; Osborne, M. A.;
and Posner, I. 2022. Universal approximation of functions
on sets. Journal of Machine Learning Research, 23(151):
1–56.
Williams, P. L.; and Beer, R. D. 2010. Nonnegative Decom-
position of Multivariate Information. arXiv:1004.2515.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In International Con-
ference on Learning Representations (ICLR).
Zhang, S.; and Xie, L. 2020. Improving attention mech-
anism in graph neural networks via cardinality preserva-
tion. In IJCAI: Proceedings of the Conference, volume 2020,
1395. NIH Public Access.

7014

