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Abstract

Off-policy deep reinforcement learning algorithms com-
monly compensate for overestimation bias during temporal-
difference learning by utilizing pessimistic estimates of the
expected target returns. In this work, we propose General-
ized Pessimism Learning (GPL), a strategy employing a novel
learnable penalty to enact such pessimism. In particular, we
propose to learn this penalty alongside the critic with dual
TD-learning, a new procedure to estimate and minimize the
magnitude of the target returns bias with trivial computational
cost. GPL enables us to accurately counteract overestimation
bias throughout training without incurring the downsides of
overly pessimistic targets. By integrating GPL with popular
off-policy algorithms, we achieve state-of-the-art results in
both competitive proprioceptive and pixel-based benchmarks.

1 Introduction
Sample efficiency and generality are two directions in which
reinforcement learning (RL) algorithms are still lacking, yet,
they are crucial for tackling complex real-world problems
(Mahmood et al. 2018). Consequently, many RL milestones
have been achieved through simulating large amounts of
experience and task-specific parameter tuning (Mnih et al.
2013; Silver et al. 2017). Recent off-policy model-free
(Chen et al. 2021) and model-based algorithms (Janner et al.
2019) advanced RL’s sample-efficiency on several bench-
mark tasks. We attribute such improvements to two main
linked advances: more expressive models to capture uncer-
tainty and better strategies to counteract detrimental biases
from the learning process. These advances yielded the stabi-
lization to adopt more aggressive optimization procedures,
with particular benefits in lower data regimes.

Modern policy gradient algorithms learn behavior by op-
timizing the expected performance as predicted by the critic,
a trained parametric model of the agent’s performance in
the environment. Within this process, overestimation bias
naturally arises from the maximization performed over the
critic’s performance predictions, and consequently, also over
the critic’s possible errors. In the context of off-policy RL,
the critic is trained to predict the agent’s future returns via
temporal difference (TD-) learning. A common strategy to
counteract overestimation is to parameterize this model with
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multiple, independently-initialized networks and optimize
the agent’s behavior over the minimum value of the rela-
tive outputs (Fujimoto, Van Hoof, and Meger 2018). Em-
pirically, this strategy consistently yields pessimistic target
performance measures, avoiding overestimation bias propa-
gating through the TD-learning target bootstraps. However,
this approach directly links the critic’s parameterization to
bias counteraction and appears to suffer from suboptimal ex-
ploration due to underestimation bias (Ciosek et al. 2019).

Based on these observations, we propose Generalized
Pessimism Learning (GPL), a new strategy that learns to
counteract biases by optimizing a new dual objective. GPL
makes use of an explicit penalty to correct the critic’s target
predictions. We design this penalty as a weighted function
of epistemic uncertainty, computed as the expected Wasser-
stein distance between the return distributions predicted by
the critic. We learn the penalty’s weight with dual TD-
learning, a new procedure to estimate and counteract any
arising bias in the critic’s predictions with dual gradient de-
scent. GPL is the first method to freely learn unbiased per-
formance targets throughout training.

We extend GPL by introducing pessimism annealing, a
new procedure motivated by the principle of optimism in the
face of uncertainty (Brafman and Tennenholtz 2002). This
procedure leads the agent to adopt risk-seeking behavior, by
utilizing a purposely biased estimate of the performance in
the initial training stages. This allows it to trade expected
immediate performance for improved directed exploration,
incentivizing the visitation of states with high uncertainty
from which it would gain more information.

We incorporate GPL with the Soft Actor-Critic (SAC)
(Haarnoja et al. 2018a,b) and Data-regularized Q (DrQ) al-
gorithms (Yarats, Kostrikov, and Fergus 2021; Yarats et al.
2021), yielding GPL-SAC and GPL-DrQ. On challenging
Mujoco tasks from OpenAI Gym (Todorov, Erez, and Tassa
2012; Brockman et al. 2016), GPL-SAC outperforms both
model-based (Janner et al. 2019) and model-free (Chen et al.
2021) state-of-the-art algorithms, while being more compu-
tationally efficient. For instance, in the Humanoid environ-
ment GPL-SAC recovers a score of 5000 in less than 100K
steps, more than nine times faster than regular SAC. Addi-
tionally, on pixel-based environments from the DeepMind
Control Suite (Tassa et al. 2018), GPL-DrQ provides signif-
icant performance improvements from the recent state-of-
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the-art DrQv2 algorithm. We validate the statistical signif-
icance of our improvements using Rliable (Agarwal et al.
2021), further highlighting the effectiveness and applicabil-
ity of GPL. We share our code to facilitate future extensions.

In summary, we make three main contributions toward
improving off-policy reinforcement learning:

• We propose Generalized Pessimism Learning, using the
first dual optimization method to estimate and precisely
counteract overestimation bias throughout training.

• To improve exploration, we extend GPL with pessimism
annealing, a strategy that exploits epistemic uncertainty
to actively seek for more informative states.

• We integrate our method with SAC and DrQ, yield-
ing new state-of-the-art results with trivial computational
overheads on both proprioceptive and pixel tasks.

2 Related Work
Modern model-free off-policy algorithms utilize different
strategies to counteract overestimation bias arising in the
critic’s TD-targets (Thrun and Schwartz 1993; Pendrith,
Ryan et al. 1997; Mannor et al. 2007). Many approaches
combine the predictions of multiple function approximators
to estimate the expected returns, for instance, by indepen-
dently selecting the bootstrap action (Hasselt 2010). In dis-
crete control, such a technique appears to mitigate the bias
of the seminal DQN algorithm (Mnih et al. 2013), consis-
tently improving performance (Van Hasselt, Guez, and Sil-
ver 2016; Hessel et al. 2018). In continuous control, similar
strategies successfully stabilize algorithms based on the pol-
icy gradient theorem (Silver et al. 2014). Most notably, Fu-
jimoto, Van Hoof, and Meger (2018) proposed to compute
the critic’s TD-targets by taking the minimum over the out-
puts of two different action-value models. This minimization
strategy has become ubiquitous, being employed in many
popular subsequent works (Haarnoja et al. 2018b). For a
better trade-off between optimism and pessimism, Zhang,
Pan, and Kochenderfer (2017) proposed using a weighted
combination of the original and minimized targets. Instead,
Kuznetsov et al. (2020) proposed to parameterize a distribu-
tional critic and drop a fixed fraction of the predicted quan-
tiles to compute the targets. Alternative recently proposed
strategies for bias-counteraction also entail combining the
different action-value predictions with a Softmax function
(Pan, Cai, and Huang 2020) and computing action-value tar-
gets with convex combinations of predictions obtained from
multiple actors (Lyu et al. 2022). Similarly to our approach,
several works considered explicit penalties based on heuris-
tic measures of epistemic uncertainty (Lee, Defourny, and
Powell 2013; Ciosek et al. 2019). Recently, Kumar, Gupta,
and Levine (2020) proposed to complement these strate-
gies by further reducing bias propagation through actively
weighing the TD-loss of different experience samples. All
these works try to hand-engineer a fixed penalization to
counteract the critic’s bias. In contrast, we show that any
fixed penalty would be inherently suboptimal (Section 5.2)
and propose a novel strategy to precisely adapt the level of
penalization throughout training.

Within model-based RL, recent works have achieved re-
markable sample efficiency by learning large ensembles of
dynamic models for better predictions (Chua et al. 2018;
Wang and Ba 2019; Janner et al. 2019). In the model-free
framework, prior works used large critic ensembles for more
diverse scopes. Anschel, Baram, and Shimkin (2017) pro-
posed to build an ensemble using several past versions of
the value network to reduce the magnitude of the TD-target’s
bias. Moreover, Lan et al. (2020) showed that different sam-
pling procedures for the critic’s ensemble predictions can
regulate underestimation bias. Their work was extended to
the continuous setting by Chen et al. (2021), which showed
that large ensembles combined with a high update-to-data
ratio can outperform the sample efficiency of contemporary
model-based methods. Ensembling has also been used to
achieve better exploration following the optimism in the face
of uncertainty principle in both discrete (Chen et al. 2017)
and continuous settings (Ciosek et al. 2019). In addition to
these advantages, we show that GPL can further exploit large
ensembles to better estimate and learn to counteract bias.

In the same spirit as this work, multiple prior methods
attempted to learn the components and parameters of under-
lying RL algorithms. Several works have approached this
problem by utilizing expensive meta-learning strategies to
obtain new learning objectives based on the multi-task per-
formance from low-computation environments (Oh et al.
2020; Xu et al. 2020; Bechtle et al. 2021). More related to
our method, Tactical Optimism and Pessimism (Moskovitz
et al. 2021) introduced the concept of adapting a bias penalty
online. Together with similar later work (Kuznetsov et al.
2021), they proposed step-wise updates to the bias correc-
tion parameters based on the performance of recent trajec-
tories. Instead, GPL proposes a new method to precisely es-
timate bias and reduce its magnitude via dual gradient de-
scent. We provide a direct empirical comparison in the ex-
tended version of this work (Cetin and Celiktutan 2021).

3 Preliminaries

In RL, we aim to autonomously recover optimal agent be-
havior for performing a particular task. Formally, we de-
scribe this problem setting as a Markov Decision Process
(MDP), defined as the tuple (S,A, P, p0, r, γ). At each time-
step of interaction, the agent observes some state in the state
space, s ∈ S, and performs some action in the action space,
a ∈ A. The transition dynamics function P : S×A×S → R
and the initial state distribution p0 : S → R describe the
evolution of the environment as a consequence of the agent’s
behavior. The reward function r : S×A → R quantifies the
effectiveness of each performed action, while the discount
factor γ ∈ [0, 1] represents the agent’s preference for earlier
rewards. A policy π : S×A → R maps each state to a prob-
ability distribution over actions and represents the agent’s
behavior. An episode of interactions between the agent and
the environment yields a trajectory τ containing the transi-
tions experienced, τ = (s0, a0, r0, s1, a1, r1, ...). The RL
objective is then to find an optimal policy π∗ that maximizes
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the expected sum of discounted future rewards:

π∗ = argmax
π

Epπ(τ)

[
∞∑
t=0

γtr(st, at)

]
, (1)

where pπ(τ) represents the distribution of trajectories stem-
ming from the agent’s interaction with the environment. Off-
policy RL algorithms commonly utilize a critic model to
evaluate the effectiveness of the agent’s behavior. A straight-
forward choice for the critic is to represent the policy’s
action-value function Qπ : S×A → R. This function quan-
tifies the expected sum of discounted future rewards after
executing some particular action from a given state:

Qπ(s, a) = Epπ(τ |s0=s,a0=a)

[
∞∑
t=0

γtr(st, at)

]
. (2)

Most RL algorithms consider learning parameterized mod-
els for both the policy, πθ, and the corresponding action-
value function, Qπ

ϕ. In particular, after storing experience
transitions (s, a, s′, r) in a replay data buffer D, we learn Qπ

ϕ

by iteratively minimizing a squared TD-loss of the form:

JQ(ϕ) = Es,a,s′,r∼D

[
(Qπ

ϕ(s, a)− y)2
]
,

y = r + γEa∼π(s′)

[
Q̂π

ϕ′(s′, a)
]
.

(3)

Here, the TD-targets y are obtained by computing a 1-step
bootstrap with a target action-value estimator Q̂π

ϕ′ . Usu-
ally, Q̂π

ϕ′ is a regularized function of action-value predic-
tions from a target critic model using delayed parameters ϕ′.
Following the policy gradient theorem (Sutton et al. 2000;
Silver et al. 2014), we can then improve our policy by max-
imizing the expected returns as predicted by the critic. This
corresponds to minimizing the negation of the critic’s ex-
pected target action-value estimates:

Jπ(θ) = −Es∼D,a∼πθ(s)

[
Q̂π

ϕ(s, a)
]
. (4)

4 Addressing Overestimation Bias
4.1 Bias in Q-Learning
In off-policy RL, several works have identified an accumu-
lation of overestimation bias in the action-value estimates as
a consequence of TD-learning (Thrun and Schwartz 1993;
Mannor et al. 2007). Formally, we quantify the target action-
value bias B(s, a, s′) as the difference between the actual
and estimated TD-targets of a transition (Chen et al. 2021):

B(s, a, s′) = γEa′∼π(s′)

[
Q̂π

ϕ′(s′, a′)−Qπ(s′, a′)
]
. (5)

Positive bias arises when the target action-values are ob-
tained directly from the outputs of a parameterized action-
value function, i.e., Q̂π

ϕ′ = Qπ
ϕ′ (Fujimoto, Van Hoof, and

Meger 2018). The reason for this phenomenon is that the
policy is trained to locally maximize the action-value es-
timates from Eqn. 4. Hence, its actions will exploit po-
tential model errors to obtain higher scores, implying that
Es,a∼π(s)[Q

π
ϕ′(s, a)] > Es,a∼π(s)[Q

π(s, a)]. Instabilities
then arise as the errors can quickly propagate through the

bootstrap operation, inherently causing the phenomenon of
positive bias accumulation. To counteract this phenomenon,
Fujimoto, Van Hoof, and Meger (2018) proposed clipped
double Q-learning. This technique consists in learning two
separate action-value functions and computing the target
action-values by taking the minimum over their outputs:

Q̂π
ϕ′
min

(s, a) = min
(
Qπ

ϕ′
1
(s, a), Qπ

ϕ′
2
(s, a)

)
. (6)

The role of the minimization is to consistently produce
overly pessimistic estimates of the target action-values, pre-
venting positive bias accumulation. This approach is an em-
pirically effective strategy for different benchmark tasks and
has become standard practice.

4.2 The Uncertainty Regularizer
In this work, we take a more general approach for computing
the target action-values. Particularly, we use a parameterized
function, the uncertainty regularizer pβ(s, a, ϕ, θ), for try-
ing to approximate the bias in the critic’s action-value pre-
dictions for on-policy actions. Thus, we specify an action-
value estimator that penalizes the action-value estimates via
the uncertainty regularizer:

Q̂π
ϕ′(s, a|β) = Qπ

ϕ′(s, a)− pβ(s, a, ϕ
′, θ),

where pβ(s, a, ϕ
′, θ) ≈ Qπ

ϕ′(s, a)−Qπ(s, a).
(7)

A consequence of this formulation is that as long as pβ is un-
biased for on-policy actions, so will the action-value estima-
tor Q̂π

ϕ′ . Therefore, this would ensure that the expected target
action-value bias is zero, preventing the positive bias accu-
mulation phenomenon without requiring overly pessimistic
action-value estimates. Based on these observations, we now
specify a new method that learns an unbiased pβ and contin-
uously adapts it to reflect changes in the critic and policy.

5 Generalized Pessimism Learning
Generalized Pessimism Learning (GPL) entails learning a
particular uncertainty regularizer pβ , which we precisely
specify in Eqn. 8. Our approach makes pβ adapt to changes
in both actor and critic models throughout the RL process, to
keep the target action-values unbiased. Hence, GPL allows
for preventing positive bias accumulation without overly
pessimistic targets. With any fixed penalty, we argue that it
would be infeasible to maintain the expected target action-
value bias close to zero due to the number of affecting pa-
rameters and stochastic factors in different RL experiments.

5.1 Uncertainty Regularizer Parameterization
We strive for a parameterization of the uncertainty regular-
izer that ensures low bias and variance estimation of the
target action-values. Similar to prior works (Ciosek et al.
2019; Moskovitz et al. 2021), GPL uses a linear model of
some measure of the epistemic uncertainty in the critic.
Epistemic uncertainty represents the uncertainty from the
model’s learned parameters towards its possible predictions.
Hence, when using expressive deep models, the areas of the
state and action spaces where the critic’s epistemic uncer-
tainty is elevated are the areas in which the agent did not
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Figure 1: Recorded estimated bias for ten runs of two simple extensions of the SAC algorithm.

yet observe enough data to reliably predict its returns and,
for this reason, the magnitude of the critic’s error is expect-
edly higher. Consequently, if a policy yields behavior with
high epistemic uncertainty in the critic, it is likely exploiting
positive errors and overestimating its expected returns. As
we use the policy to compute the TD-targets, the higher the
uncertainty, the higher the expected positive bias.

We propose measuring epistemic uncertainty with the ex-
pected Wasserstein distance between the critic’s predicted
return distributions Zπ (Bellemare, Dabney, and Munos
2017). In our main experiments we consider the usual non-
distributional case where we parameterize the critic with
multiple action-value functions, in which case we view each
action-value estimate as a Dirac delta function approxima-
tion of the return distribution, Zπ

ϕ (s, a) = δQπ
ϕ(s,a)

. Our
uncertainty regularizer then consists of linearly scaling the
expected Wasserstein distance via a learnable parameter β:

pβ(s, a, ϕ, θ) = β × Ea,ϕ1,ϕ2

[
W (Zπ

ϕ1
(s, a), Zπ

ϕ2
(s, a))

]
. (8)

We estimate the expectation in Eqn. 8 by learning N ≥ 2
independent critic models with parameters {ϕi}Ni=1, and
averaging the distances between the corresponding pre-
dicted return distributions. Notably, the Wasserstein dis-
tance has easy-to-compute closed forms for many popular
distributions. For Dirac delta functions, it is equivalent to
the distance between the corresponding locations, hence,
W (δQπ

ϕ1
(s,a), δQπ

ϕ2
(s,a)) = |Qπ

ϕ1
(s, a)−Qπ

ϕ2
(s, a)|.

Our quantification of epistemic uncertainty is an inter-
pretable measure for any distributional critic. Moreover, for
some fixed β, increasing the number of critics decreases the
estimation variance but leaves the expected magnitude of the
uncertainty regularizer unchanged. This is because the sam-
ple mean of the Wasserstein distances is always an unbiased
estimate of Eqn. 8 for N ≥ 2. Assuming we can approxi-
mately model the distribution of different action-value pre-
dictions with a Gaussian, we can show our penalty is propor-
tional to the standard deviation of the distribution of action-
value predictions. We can also restate clipped double Q-
learning using our uncertainty regularizer with N = 2 and
β = 0.5, allowing us to replicate its penalization effects for
N > 2 by simply fixing β. In contrast, Ciosek et al. (2019)
proposed the sample standard deviation of the action-value
predictions to quantify epistemic uncertainty. However, the
sample standard deviation does not have a clear generaliza-

tion to arbitrary distributional critics and its expected mag-
nitude is dependent on the number of models. All formal
derivations are provided in (Cetin and Celiktutan 2021).

5.2 Dual TD-Learning
We hypothesize that the expected bias present in the action-
value targets is highly dependent on several unaccountable
factors from the stochasticity in the environment and the
learning process. This extends recent results showing that
the effectiveness of any bias penalty highly varies across
tasks (Moskovitz et al. (2021), Fig. 4). We empirically val-
idate our hypothesis by running multiple experiments with
simple extensions of the SAC algorithm in different Gym
environments and periodically recording estimates of the
action-value bias by comparing the actual and estimated
discounted returns. As shown in Figure 1, the bias in the
predicted action-values notably varies across environments,
agents, training stages, and even across different random
seeds. These results validate our thesis that there is no fixed
penalty able to account for the many sources of stochasticity
in the RL process, even for a single task. Hence, this shows
the necessity of learning pβ alongside the policy and critic
to accurately counteract bias.

When using the uncertainty regularizer, we will denote
the target bias for a transition as B(s, a, s′|β), to highlight
its dependency on the current value of β. Furthermore, note
that B(s, a, s′|β) would take on a positive or negative value
in the cases where β yields either insufficient or excessive
regularization, respectively. Therefore, to recover unbiased
targets, we propose to optimize β as a dual variable by en-
forcing the expected target action-value bias to be zero:

argmin
β

−β × Es,a,s′∼D

[
B(s, a, s′|β)

]
. (9)

To estimate B(s, a, s′|β), we use the property that for ar-
bitrary off-policy actions the action-value estimates are not
directly affected by the positive bias from the policy gra-
dient optimization (Fujimoto, Van Hoof, and Meger 2018).
Consequently, we make the assumption that Qπ

ϕ itself pro-
vides initially unbiased estimates of the expected returns,
i.e., Es,a∼D[Qπ

ϕ(s, a)] ≈ Es,a∼D[Qπ(s, a)]. This assump-
tion directly implies that any expected error in the Bell-
man relationship between r + γEa′∼π(s′)

[
Q̂π

ϕ′(s′, a′|β)
]

and Qπ
ϕ(s, a) is due to bias present in our action-value esti-
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Figure 2: Schematic overview of the training and exploration processes involved in the GPL framework. The TD-errors play a
central role both for updating the critic and for estimating the current bias to update the uncertainty regularizer.

mator. Hence, we propose to approximate B(s, a, s′|β), with
the expected difference between the current on-policy TD-
targets and action-value predictions for off-policy actions:

B(s, a, s′|β) ≈ r+γEa′∼π(s′)

[
Q̂π

ϕ′(s′, a′|β)
]
−Qπ

ϕ(s, a). (10)

In practice, GPL alternates the optimizations of β for the
current bias, and both actor and critic parameters, with the
corresponding updated RL objectives. This is similar to the
automatic exploration temperature optimization proposed by
Haarnoja et al. (2018b), approximating dual gradient descent
(Boyd and Vandenberghe 2004). We can estimate the current
bias according to Eqn. 10 by simply negating the already-
computed errors from the TD-loss, with trivial cost. Thus,
we name this procedure dual TD-learning. We provide a
schematic overview of GPL with dual TD-learning in Fig. 2.

Limitations. When using deep networks and approximate
stochastic optimization, we recognize that the unbiasedness
assumption of Eqn. 10 might not necessarily hold. There-
fore, given initially biased action-value targets, some of the
bias might propagate to the critic model, influencing the ap-
proximation in Eqn. 10. This property of our method makes
it hard to provide a formal analysis beyond the tabular set-
ting. However, in practice, we still find that GPL’s perfor-
mance and the optimization dynamics are robust to differ-
ent levels of initial target bias, and that dual TD-learning
appears to always improve over fixed penalties. See (Cetin
and Celiktutan 2021) for an analysis of the empirical be-
havior of GPL with different initial values of β and, thus,
different bias in the initial targets. An intuition for our re-
sults is that the relative difference between the off-policy
and on-policy action-value predictions should always push
β to counteract new bias stemming from model errors in the
policy gradient action maximization, and thus improve over
non-adaptive methods which are also affected by initial bias.
We further validate dual TD-learning in (Cetin and Celiktu-
tan 2021), comparing with optimizing β by minimizing the
squared norm of the bias and by using the bandit-based op-
timization from TOP (Moskovitz et al. 2021). We also note
that integrating GPL adds non-trivial complexity by intro-
ducing an entirely new optimization step which could be un-
necessary for low-dimensional and easy-exploration prob-
lems. This inevitable limitation could further exacerbate the
reproducibility of off-policy RL (Islam et al. 2017).

5.3 Pessimism Annealing for Directed
Exploration

As described in Section 3, the policy learns to maximize the
unbiased action-values predicted by action-value estimator
Q̂π

ϕ. Motivated by the principle of optimism in the face of
uncertainty (Brafman and Tennenholtz 2002), we propose to
make use of a new optimistic policy gradient objective:

Jopt
π (θ) = −Es∼D,a∼π(s)[Q̂

πopt

ϕ (s, a|β)],

where Q̂
πopt

ϕ (s, a|β) = Qπ
ϕ(s, a)− pβopt(s, a, ϕ, θ).

(11)

This objective utilizes an optimistic shifted uncertainty reg-
ularizer, pβopt

, calculated with parameter βopt = β − λopt,
for a decaying optimistic shift value, λopt ≥ 0. This new
objective trades off the traditional exploitative behavior of
the policy with directed exploration. As λopt is large, π
will be incentivized to perform actions for which the out-
come has high epistemic uncertainty. Therefore, the agent
will experience transitions that are increasingly informative
for the critic but expectedly sub-optimal. Hence, we name
the process of decaying λopt pessimism annealing, enabling
to achieve improved exploration early on in training without
biasing the policy’s final objective.

6 Experiments
To evaluate the effectiveness of GPL, we integrate it with
two popular off-policy RL algorithms. GPL itself introduces
trivial computational and memory costs as it optimizes a sin-
gle additional weight, re-utilizing the errors in the TD-loss
to estimate the bias. Moreover, we implement the critic’s en-
semble as a single neural network, using linear non-fully-
connected layers evenly splitting the nodes and dropping
the weight connections between the splits. Practically, when
evaluated under the same hardware, this results in our al-
gorithm running more than 2.4 times faster than the imple-
mentation from Chen et al. (2021) while having a similar
algorithmic complexity (see (Cetin and Celiktutan 2021)).

We show that GPL significantly improves the perfor-
mance and robustness of off-policy RL, concretely surpass-
ing prior algorithms and setting new state-of-the-art results.
In our evaluation, we repeat each experiment with five ran-
dom seeds and record both mean and standard deviation over
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Figure 3: Performance curves for the considered complex Mujoco environments from OpenAI Gym, over five random seeds.

the episodic returns. Moreover, we validate statistical sig-
nificance using tools from Rliable (Agarwal et al. 2021).
In the extended version (Cetin and Celiktutan 2021), we
report all details of our experimental settings and utilized
hyper-parameters. We also provide comprehensive extended
results analyzing the impact of all relevant design choices,
testing several alternative implementations, and reporting all
training times.

6.1 Continuous Control from Proprioception
GPL-SAC. First, we integrate GPL as a plug-in addition to
Soft Actor-Critic (SAC) (Haarnoja et al. 2018a,b), a popular
model-free off-policy algorithms that uses a weighted en-
tropy term in its objective to incentivize exploration. Specif-
ically, we only substitute SAC’s clipped double Q-learning
with our uncertainty regularizer, initialized with β = 0.5.
Inline with the other considered state-of-the-art baselines
(Chen et al. 2021; Janner et al. 2019), we use an increased
ensemble size and update-to-data (UTD) ratio for the critic.
We found both these choices necessary for sample-efficient
learning in the evaluated experience regimes. We denote the
resulting algorithm GPL-SAC. We would like to note that
all other practices, unrelated to counteracting overestima-
tion bias (such as learning the entropy bonus) were already
present in SAC and are utilized by all baselines.

Baselines. We compare GPL-SAC with prior state-of-the-
art model-free and model-based algorithms with similar or
greater computational complexity, employing high UTD ra-
tios: REDQ (Chen et al. 2021), state-of-the-art model-free
algorithm on OpenAI Gym. This algorithm learns multi-
ple action-value functions and utilizes clipped double Q-
learning over a sampled pair of outputs to compute the
critic’s targets. MBPO (Janner et al. 2019), state-of-the-art,
model-based algorithm on OpenAI Gym. This algorithm
learns a large ensemble of world models with Dyna-style
(Sutton 1991) optimization to train the policy. SAC-20, sim-
ple SAC extension where with an increased UTD ratio of
20.

Results. We evaluate GPL-SAC compared to the de-
scribed baselines on five of the more challenging Mujoco
environments from OpenAI Gym (Brockman et al. 2016),
involving complex locomotion problems from propriocep-
tion. We collect the returns over five evaluation episodes
every 1000 environment steps. In Figure 3, we show the
different performance curves. GPL-SAC is consistently the

Metric\Alg. GPL-DrQ+An. GPL-DrQ DrQv2 CURL SAC

Milestone 1.5M frames

Average score 640.20 620.24 544.67 302.74 50.34
# Top scores 11/12 8/12 3/12 0/12 0/12

Milestone 3.0M frames

Average score 744.09 720.29 670.95 318.38 59.38
# Top scores 10/12 7/12 4/12 0/12 0/12

Table 1: Results summary for the DeepMind Control Suite
experiments. Per-task results in (Cetin and Celiktutan 2021).

best performing algorithm on all environments, setting new
state-of-the-art results for this benchmark at the time of writ-
ing. Moreover, the performance gap is greater for tasks with
larger state and action spaces. We motivate this by not-
ing that increased task-complexity appears to correlate with
an increased stochasticity affecting target bias (Fig. 1), in-
creasing the necessity for an adaptive counteraction strat-
egy. Furthermore, as all baselines use fixed strategies to
deal with overestimation bias, they also require overly pes-
simistic estimates of the returns to avoid instabilities. Hence,
the resulting policies are likely overly conservative, hinder-
ing exploration and efficiency, with larger effects on higher-
dimensional tasks. For instance, on Humanoid, GPL-SAC
remarkably surpasses a score of 5000 after only 100K steps,
more than 9× faster than SAC and 2.5× faster than REDQ.

6.2 Continuous Control from Pixels
GPL-DrQ. We also incorporate GPL to a recent version of
Data-regularized Q (DrQv2) (Yarats et al. 2021), an off-
policy, model-free algorithm achieving state-of-the-art per-
formance for pixel-based control problems. DrQv2 com-
bines image augmentation from DrQ (Yarats, Kostrikov,
and Fergus 2021) with several advances such as n-step re-
turns (Sutton and Barto 2018) and scheduled exploration
noise (Amos et al. 2021). Again, we only substitute DrQv2’s
clipped double Q-learning with our uncertainty regularizer.
To bolster exploration, we also integrate pessimism anneal-
ing from Section 5.3, with λopt linearly decayed from 0.5 to
0.0 together with the exploration noise in DrQv2. We leave
the rest of the hyper-parameters and models unaltered to
evaluate the generality of applying GPL. We name the re-
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Figure 4: Aggregate performance metrics using the evaluation protocol proposed by Rliable.We report a) interquantile mean b)
optimality gap c) probability of improvement, and d) full performance profiles. Ranges/shaded regions correspond to 95% CIs.

sulting algorithms GPL-DrQ and GPL-DrQ+Anneal.
Baselines. We compare our GPL-DrQ and GPL-

DrQ+Anneal with model-free baselines for continuous con-
trol from pixels: The aforementioned state-of-the-art DrQv2.
CURL (Srinivas, Laskin, and Abbeel 2020), recent algo-
rithm combining off-policy learning with a contrastive ob-
jective for representation learning. SAC, simple integration
of SAC with a convolutional encoder.

Results. We evaluate GPL-DrQ and GPL-DrQ+Anneal
on the environments from the DeepMind Control Suite
(Tassa et al. 2018) modified to yield pixel observations.
We use the medium benchmark evaluation as described by
Yarats et al. (2021), consisting of 12 complex tasks involving
control problems with hard exploration and sparse rewards.
In Table ??, we report the mean returns obtained after expe-
riencing 3M and 1.5M environment frames together with the
number of tasks where each algorithm achieves top scores
within half a standard deviation from the highest recorded
return. For each run, we average the returns from 100 evalu-
ation episodes collected in the 100K steps preceding each of
these milestones. We provide the full per-environment re-
sults in (Cetin and Celiktutan 2021). Both GPL-DrQ and
GPL-DrQ+Anneal significantly improve the performance of
DrQv2 and all other baseline algorithms in the great major-
ity of the tasks (7-11 out of 12). DrQv2 yields inconsistent
returns on some tasks, likely due to a lack of exploration
from its overly pessimistic critic. GPL generally appears to
resolve this issue, while pessimism annealing further aids
precisely in the tasks where under-exploration is more fre-
quent. Overall, these results show both the generality and ef-
fectiveness of GPL for improving the current state-of-the-art
through simple integrations, providing a novel framework to
better capture and exploit bias.

6.3 Statistical Significance
To validate the statistical significance of the performance
gains of GPL over the considered state-of-the-art algo-
rithms, we follow the evaluation protocol proposed by Agar-

wal et al. (2021). For both Mujoco and DeepMind Con-
trol (DMC) benchmarks, we calculate various informative
aggregate statistical measures of each algorithm halfway
through training, normalizing each task’s score within [0, 1].
Error bars/shaded regions correspond to the 95% stratified
bootstrap confidence intervals (CIs) for each algorithm’s
performance (Efron 1992). As reported in Figure 4, in both
benchmarks GPL achieves considerably higher interquan-
tile mean (a) and lower optimality gap (b) than any of
the baselines, with non-overlapping CIs. Furthermore, we
analyze probability of improvement (c) from the Mann-
Whitney U statistic (Mann and Whitney 1947), which re-
veals that GPL’s improvements are statistically meaning-
ful as per the Neyman-Pearson statistical testing criterion
(Bouthillier et al. 2021). Lastly, we calculate the different
performance profiles (d) (Dolan and Moré 2002), which
show that GPL-based algorithms stochastically dominate all
considered state-of-the-art baselines (Dror, Shlomov, and
Reichart 2019). We believe these results convincingly val-
idate the effectiveness and future potential of GPL.

7 Discussion and Future Work
We proposed Generalized Pessimism Learning, a strategy
that adaptively learns a penalty to recover an unbiased per-
formance objective for off-policy RL. Unlike traditional
methods, GPL achieves training stability without necessitat-
ing overly pessimistic estimates of the target returns, thus,
improving convergence and exploration. We show that inte-
grating GPL with modern algorithms yields state-of-the-art
results for both proprioceptive and pixel-based control tasks.
Moreover, GPL’s penalty has a natural generalization to dif-
ferent distributional critics and variational representations of
the weights posterior. Hence, our method has the potential to
facilitate research in off-policy reinforcement learning, go-
ing beyond action-value functions and model ensembles. Fu-
ture extensions could also have implications for offline RL,
a problem setting particularly sensitive to overestimation.
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